

TeraGridʼs Integrated Information Service

Lee Liming1, John-Paul Navarro1, Eric Blau1, Jason Brechin3, Charlie Catlett1, Maytal Dahan5,
Diana Diehl4, Rion Dooley5, Michael Dwyer4, Kate Ericson4, Ian Foster1, Ed Hanna6, David L.

Hart4, Chris Jordan5, Rob Light6, Stuart Martin1, John McGee7, Laura Pearlman2, Jason Reilly7,
Tom Scavo3, Michael Shapiro3, Shava Smallen4, Warren Smith5, Nancy Wilkins-Diehr4

1The University of Chicago/Argonne National Laboratory, 2Information Sciences Institute, University of Southern
California, 3National Center for Supercomputing Applications, 4San Diego Supercomputer Center, 5Texas

Advanced Computing Center, 6Pittsburg Supercomputing Center, 7Renaissance Computing Institute

{ liming, navarro, blau, smartin }@mcs.anl.gov, { catlett, foster }@anl.gov, laura@isi.edu,
{ brechin, mshapiro, trscavo }@ncsa.uiuc.edu, { mcgee, jdr0887 }@renci.org,

{ dhart, diehl, kericson, mdwyer, ssmallen, wilkinsn }@sdsc.edu,
 { ctjordan, dooley, maytal, wsmith }@tacc.utexas.edu, { ehanna, light }@psc.edu

Abstract – The NSF TeraGrid project has designed and
constructed a federated integrated information service (IIS) to
serve its capability publishing and discovery needs. This
service has also proven helpful in automating TeraGrid’s
operational activities. We describe the requirements that
motivated this work; IIS’s system architecture, information
architecture, and information content; processes that IIS
currently supports; and how various layers of the system
architecture are being used. We also review motivating use
cases that have not yet been satisfied by IIS and outline
approaches for future work.

Keywords – High-performance computing systems,
distributed systems, information services, information federation,
service registries, directory services, schema, TeraGrid.

I. INTRODUCTION
As operators of the NSF-sponsored TeraGrid, we have a critical
need to describe, track, and publish a diverse set of hardware and
software capabilities offered by independently operated resource
providers. TeraGrid’s federated nature complicates this task in a
way that is not uncommon in other large distributed systems.

A centralized capability database has several disadvantages: (1) it
makes content owners depend on someone else’s information
system, (2) databases typically have rigid schemas, (3) databases
easily get out of sync with reality, and (4) merging local
information from federation participants into a central database
can be challenging. To address TeraGrid’s requirements, we
designed and deployed an integrated information service (IIS)
with a federated model for publishing, aggregating, and accessing
capability information. Section II describes this motivation and
background in more detail.

Quite different from a central database approach, IIS’s
architecture is similar to the World Wide Web indexing model, in
which content is published locally by many sources and separately
indexed by agents such as Google. Section III describes IIS’s
system architecture, the software components we assembled to
implement IIS’s distributed architecture.

Another key aspect of IIS’s design is an agile approach to content
and formats. This approach has allowed us to be highly responsive
to changing user requirements, both from information publishers
and consumers. Section IV describes IIS’s information
architecture: how we model TeraGrid capabilities as data, and
how that data is organized.

IIS has significantly improved our ability to automate key pieces
of TeraGrid’s operations and to provide users and user
applications with up-to-date and useful information about
TeraGrid and its capabilities. Although we have encountered
some scaling limitations, IIS’s overall system design provides
high reliability and scalability. Section V describes how TeraGrid
users and operations currently use IIS to enhance their work.
Section VI summarizes the challenges that IIS has successfully
addressed, and suggests areas for future work.

II. DESCRIBING AN HPC RESOURCE FEDERATION
Our creation of TeraGrid’s IIS was motivated by a need to
describe TeraGrid’s federated high-performance computing
(HPC), storage, and visualization resource capabilities. Federation
membership changes over time, as do the capabilities offered by
members. Above all, our primary sponsor, NSF, requires that our
federation present itself to users as a coherent service, and not as a
collection of separate services. This combination of requirements
motivated development of an information service and architecture
that together can accurately and coherently collect, track, and
present the diverse federated system capabilities.

A. National-Scale HPC Federation
TeraGrid was commissioned in 2001 by NSF [1] as a single
Teraflop/s research facility—the Distributed Terascale Facility, or
DTF [2]—with four locations and common system architecture, a
high-performance wide-area network, and distributed computing
tools such as Globus middleware. By the end of the three-year
construction, NSF had added seven HPC systems with unique
architectures and applications and charged the expanded TeraGrid
program with supplying coordinated, comprehensive, and
production-quality HPC services to support general U.S. academic
research [3]. TeraGrid thus became a federation of many

independently operated HPC centers, each serving a variety of
user needs and focused on specialized types of HPC applications.

When commissioned in 2004, this federation presented itself to
the academic community as a full-service suite of HPC services
with a single, unified process for applying for access and
obtaining support. It proved significantly more difficult, however,
to provide a consistent user environment across a dozen HPC
platforms aimed at different application types.

B. Consistent User Environment
Our initial strategy for a consistent user environment was the
Common TeraGrid Software Stack (CTSS-1): a specific list of
software components that all TeraGrid system had to install and
make available to users. By providing the same components on all
TeraGrid systems, we would reduce our users’ needs for
specialized training and orientation to new systems and would
encourage users to use a wider variety of TeraGrid’s resources.

This approach worked moderately well for the DTF--four systems
with common system architecture--but not when we tripled the
number of systems and incorporated several new architectures
aimed at new application types. Key problems included: (1) many
CTSS components were poor matches for some new system
architectures, (2) some CTSS components required considerable
porting effort to more exotic platforms, (3) some components
required expensive licenses that couldn’t be imposed on newer
TeraGrid members, (4) the CTSS definition lacked explicit use
cases or user scenarios informing users and operators of targeted
functionality, and (5) the periodic need to upgrade individual
CTSS components impact users in unexpected ways when
upgrading the entire stack as occurred between CTSS-1, CTSS-2,
and CTSS-3.

Responding to these issues, in 2006 we introduced a new strategy
for consistent user environments. The Coordinated TeraGrid
Software and Services (CTSS-4) was based on a capability model,
in which the common user environment was defined in terms of
user capabilities, not software components. Each user capability
had an associated set of use cases enabled by the capability and a
recommended implementation of software components. Most
importantly, all but one of these capabilities were optional and
each resource could choose the capabilities suited for its system
architecture and target uses and users. In addition, capabilities
could be developed, deployed, and upgraded independently of
each other.

The capability model has proven to be significantly more
workable for a distributed federation of resource providers and
diverse resources. Both users and resource providers appreciate a
system definition based on modular user capabilities instead of
software components. It made sense that not all capabilities were
appropriate for all HPC platforms. The model introduced a new
set of challenges, however, most notably: (1) the need to enable
autonomous resource provider decisions about which capabilities
to offer on their resources, (2) the need to document those
capability choices, (3) the need to document technical details
necessary for users to discover and use available capabilities, and
(4) the need to maintain this information accurately as both
resources and capabilities evolved over time asynchronously.

C. Federated Information Service
Our shift from the software stack model to the capability model
made it necessary to create a TeraGrid-wide capability

information service. This need was not new. From the beginning,
TeraGrid had envisioned an information service that could be
used for automatic resource selection (i.e., meta-scheduling or
resource brokering), workflow configuration, and other advanced
computing purposes [4][5]. Indeed, TeraGrid already had
specialized central databases. However, keeping these databases
up-to-date was a challenge in the face of a federated membership.
Our new pressing need was to tell our users which TeraGrid
coordinated capabilities were available on each TeraGrid system.
This information had to be highly reliable and current, and it had
to be available in time for the release of CTSS-4.

The most fundamental requirements for TeraGrid’s information
service were as follows. (1) Information in the system must be
more current than user documentation, which was known to lag
the system status by weeks or months in some cases. (2) All
federation members must have control of the information about
their own resources. Our experience with central databases was
that keeping a database in sync with reality was a challenge. (3)
Capability descriptions must include technical details specific to
each capability. Though a small set of standard fields could satisfy
many user needs, we soon found users demanding more details
than could be expressed in standardized fields. (4) Authenticated
access is required for some information (e.g. individual job
information)—but is infeasible for information that had to be
public. (5) A variety of access methods and formats must be
supported. New information consumers often had unique
integration requirements, requiring us to support a variety of
protocols (e.g., WS/SOAP, WS/REST) and data formats (e.g.,
HTML, XML, CSV, JSON).

III. SYSTEM ARCHITECTURE
We believe that there are two key elements to the success of
TeraGrid’s IIS. Section IV discusses IIS’s flexible information
architecture and the content published via IIS. Here, we present
IIS’s system architecture: the distributed collection of
components, services, and interfaces and how their interactions
achieve our high-level goals of an authoritative, accurate and
reliable capability information service. We also discuss the
security and operational reliability requirements; and the
requirements of information consumers and discovery clients for
high-performance, robust, and simple information access.

A. Distributed Design
TeraGrid resource and service providers do not have exclusive
relationships with TeraGrid. They also maintain local users and
resources and they may participate in other federated systems
such as the Open Science Grid [6]. This was a key consideration
in our basic IIS design. In particular, we realized that an
information service that could leverage information already
provided for other federations and that could easily be re-used in
other federations would be more likely to be kept up-to-date than
one that involved maintaining a separate copy of the data solely
for TeraGrid. In short, resource and service providers should be
able to maintain a single local set of descriptive data and be able
to publish that data in any of the federations to which they belong.

TeraGrid resource and service providers operate services for their
users, and are in the best position to accurately describe them. We
recognized that in our IIS, publishing information about services
should be the privilege and responsibility of the service provider,
accomplished via a simple local information service. TeraGrid

should be responsible for aggregating information from its
constituent members to enable collaboration-wide discovery.

A distributed publisher/aggregator model also improves the
availability, reliability, and serviceability of aggregation services.
These benefits are described more fully in the section below on
Aggregation and Caching Design.

B. High-Level Components and Interfaces
We chose the Globus MDS4 [7][8] and WebMDS tools [9] for the
initial IIS implementation because they offered a robust, secure,
and flexible framework for distributed information publishing,
aggregation, indexing, and access. As our implementation evolved
it became clear that MDS4 could not satisfy all of our information
persistence and aggregation requirements and that WebMDS and
WS/SOAP could not satisfy all of our client requirements,
particularly the need for lightweight, agile interfaces. While
leveraging the strengths of MDS4 [10] and WebMDS, we
addressed these limitations by adding a custom aggregation and
caching system and REST interfaces based on Apache 2. This
multi-tool strategy has given us the flexibility to meet existing
functional requirements and to adapt to new requirements.

Our system architecture calls for two types of information
services. Each service provider within the federation operates a
local information service that publishes its local capabilities.
These local registries are not expected to handle heavy client
loads, nor do they need to be available all of the time. They do,
however, support authentication in order to offer restricted access
to some data. A central information index aggregates and re-
publishes this information for use by others. The central index is
engineered for high availability, in part using redundant servers at
multiple locations in a “hot standby” configuration. Figure 1
illustrates this high-level architecture. On the left are multiple
local service provider information services, each of which
publishes content to TeraGrid-wide indices (of which there are
several for redundancy). On the right are clients, each of which
accesses the central index via a dynamic name service entry
(info.teragrid.org) that can rapidly and transparently redirect
clients to a backup index in the event of a failure.

Figure 1. High-level IIS components

C. Local Capability Registries
Most local capability registries are implemented as Globus MDS4
Index Services. These MDS4 services publish XML documents
produced by information-gathering plug-ins (known as
“information providers” in MDS4 terminology). MDS4 services

authenticate to upstream TeraGrid-wide aggregation servers using
GSI credentials [11], ensuring secure and authoritative
information aggregation. TeraGrid-wide aggregation servers
restrict registration and aggregation to known local information
services.

Local capability registries may also be implemented as REST-
compatible web services, so long as they are able to generate
XML documents using the recognized schemas. When a REST
service is used for publishing, central information services are
configured to pull information from local services.

When we create software installers that implement TeraGrid
capabilities, we include IIS registration files that describe the
capabilities and associated components. These files are in simple
“keyword = value” format making them easy to maintain. We also
provide registration file translators to generate TeraGrid standard
XML documents. CTSS-4 installation instructions include the
steps to add this data to the local capability registry, By tightly
coupling capability publishing with capability deployment, we
have made it easy for service providers to keep their service
descriptions synchronized with their actual deployments.
If a service provider has some or all of the data they need to
describe their capabilities in local systems, they can write scripts
to generate or update registration files, or can bypass registration
files and generate TeraGrid standard XML documents directly.

D. Aggregation Design
IIS’s central indices are based on the MDS4 Index Service. The
Index Service is designed to participate in a hierarchy of
information services: local MDS instances register their local
information with higher-level instances that aggregate the data
from lower-level instances. This built-in mechanism uses a soft-
state (automatically expiring) registration pattern in order to prune
out-of-date information if a lower-level registry disappears
without explicitly de-registering [4]. This mechanism was
designed with system monitoring in mind, where the goal is to
track the current status of every system element. IIS initially used
this aggregation framework, but we soon found that it was not a
good match for our capability registry requirements.

Like other services, local service registries are subject to outages.
These outages may be planned or unplanned and may be quite
short (a few minutes) or quite long. It is not uncommon for a
TeraGrid resource provider’s network or machine room to be
offline for several days at a time. Using the built-in aggregation
mechanism, if a local MDS instance fails to renew its registration
during a service or network outage, the information it had been
reporting will not persist in the central aggregation service. Also,
the MDS4 index service stores its aggregated data in memory, so
if the central index resets for any reason while a capability
registry is unavailable, the data from that registry will not
reappear in the central index until the registry returns. Both of
these outcomes are unacceptable. It is vital that the information
that describes services persist in TeraGrid-wide views even when
the local registry is not currently available.

Our solution was to implement an external aggregation
mechanism on the central indices. Local service registries use
MDS4 mechanisms to register their existence and contact
information with the central indices. Once registered in the central
index, a set of scripts on the central servers—run periodically by
the cron mechanism—queries these registries and stores valid
results in persistent files. An information provider plug-in for the

MDS4 Index Service assembles the data from the cached files for
central service publishing. This on-disk content caching satisfies
our persistence requirements.

E. High-availability Engineering
Central information services are often the first contact point for
users and services discovering TeraGrid’s capabilities. We
designed IIS to provide continuous, high availability (99.5%
uptime) service for client-side uses.

To achieve high availability, all local information services register
to two redundant central index services. These services operate
independently of each other at separate physical facilities in a
primary and hot-standby configuration. Both contain the latest
aggregate data from all service provider registries. Using
TeraGrid’s “dyn.teragrid.org” dynamic DNS domain we can
redirect the info.teragrid.org hostname from one server to the
other within 15-minutes—the time it takes our dynamic DNS
updates to propagate through all Internet DNS caches. This design
helped us meet the requirement for highly available information.
To ensure the synchronization of the central indices’ software
environments, we automate non-intrusive server comparison,
allowing us to easily propagate changes between peer servers. We
also swap primary and standby servers on a routine basis to ensure
that the hot-standby server is always ready to assume primary
duty. Through these processes, we have provided better than
99.5% availability for more than a year despite hardware failures,
network outages, power outages, and host system OS and
hardware upgrades. It has also made the operational process of
switching servers—whether due to failure or other reasons—a
routine event.

F. Client Interfaces
Aggregated information is published using simple REST
interfaces [12][13], HTTP WebMDS interfaces, and MDS4’s
web-service SOAP interfaces. All of these interfaces access the
same aggregated information.

We chose REST interfaces as our primary and preferred
information-publishing interface because it eliminates the need for
special client tools or libraries, because the interface is simple and
easy-to-use, because the interface style is familiar to a large
number of Web developers, because it is amenable to engineering
techniques for high scalability and performance, and because
there is significant interest amongst discovery client developers.
The WebMDS interface accesses MDS4 native XML content, can
convert that content into a variety of formats using XSLT
transforms, and then serves the results via standard HTTP to client
programs or web browsers. The MDS4 WS/SOAP interface
provides a wider range of functionality, including subscription
and notification features and authenticated access for restricted
data.

To support interactive users and scripted discovery, we also
developed a command line discovery client (written in Perl for
wide portability) called ‘tginfo’ [14]. It can access IIS from any
computer with Internet connectivity.

IV. INFORMATION ARCHITECTURE
The second key element to the success of TeraGrid’s IIS is the
flexible information architecture and the published content. This
section describes that content -- the data entities and relationships

that we use to describe TeraGrid’s characteristics. This
information architecture achieves important goals independent of
the IIS system architecture.

A. The Generic Capability
Wikipedia defines Information Architecture as “the art of
expressing a model or concept of information used in activities
that require explicit details of complex systems.” [15]. TeraGrid is
a complex system of many compute, storage, network hardware,
software, and service components. Describing it is a challenge
because there are many ways to do it, and many perspectives on
what characteristics need to be described.

Rather than describing a complex infrastructure by describing
hardware and software components and their interactions, we
designed a user-focused information architecture and introduced
the generic “capability” architectural element. Capabilities are
collections of software, services, and information that enable
specific user activities, or use cases. For example, most TeraGrid
systems allow users to locally submit batch jobs. To enable job
submission from anywhere inside or outside TeraGrid, we defined
the Remote Computation capability. An HPC system that offers
the Remote Computation capability provides remote job
submission via one or more of the interfaces documented in the
Remote Computation capability definition.

Since capabilities are abstractions, we were able to define a small
set of universal elements and attributes (see Figure 2) that we felt
were important to users and operators. These entities and
attributes identify a particular instantiation of a capability by
describing the resource the capability is deployed on, the
institution that operates that resource, and the capability name and
version. We provide a short capability description, a capability
class, current and target support levels, a URL where the
capability status can be verified, and the institution name and
contact location that provides support for the capability.

Resource

ResourceID
ResourceName
SiteID

Kit

Name
Version
Description
Class
SupportLevel
SupportGoal
Installed
StatusURL
UserSupportOrganization
UserSupportContact
Extensions

Software

Name
Version
Description
Default
HandleType
HandleKey
Flavor
Extensions

Service

Type
Name
Version
Description
Endpoint
Extensions

ResourceKits
1
1..*

KitSoftware
1 1..*

KitServices
1 0..*

Figure 2. Capability entities and attributes

The capability kit is the information architecture element that
binds all TeraGrid IIS information. When specific capabilities
need to advertise additional information, they publish separate
schemas that are referenced in their capability registration
Extensions. Additional extension information may apply to the
entire capability kit, or an individual capability service or software

component. When clients need to discover capability information,
they first look for capabilities that support use cases of interest,
then examine the common attributes to find where the capability
is available, it’s operational status, support information, and
included software and service components.

We note that these entities and attributes do not use the terms
TeraGrid or CTSS. We use this structure to describe capabilities
in the extended TeraGrid community that are not directly
deployed, coordinated, or supported by TeraGrid. TeraGrid
elements are identified by the suffix “teragrid.org” in the SiteID,
ResourceID, or capability kit name.

The native IIS data format is XML. By defining extensions
elements in TeraGrid XML schemas we can aggregate and
publish arbitrary additional information with little or no
development.

B. TeraGrid Capabilities
CTSS-4 was introduced in 2007 with eight capabilities that
covered the original CTSS-3 components. In less than two years
the number of capabilities has doubled. Initially, IIS covered
CTSS capabilities that were coordinated across compute and
storage resources. Now, IIS also describes local and gateway
capabilities that are not coordinated. The diversity of the
capabilities continues to grow significantly. IIS allows users and
members of the TeraGrid federation to maintain a coherent and
up-to-date view of our capabilities.

Below we list production or near-production CTSS-4 capabilities.
This list highlights the broad scope of TeraGrid capabilities and
demonstrates how the capability kit abstraction is used in practice.
All capabilities publish standard information, and some publish
custom information. All published information is discoverable
through IIS.
Basic Capabilities - TeraGrid Core Integration [16] allows local
capability publishing in IIS. Remote Login enables access to a
TeraGrid standard command shell using local or GSI credentials
and supports TeraGrid’s single sign-on capability.
Computation Capabilities - Remote Computation allows
computation tasks to be submitted and managed remotely. Science
Gateway Support enables science gateways to submit jobs using a
single credential per gateway with embedded user attributes so
that resource providers can track and manage end user access and
restrict the capabilities of gateway accounts. Advance Reservation
allows users to establish a reserved time at which they will be
guaranteed access to a service. Co-scheduling allows users to
establish a time when they may use multiple services at the same
time. Application Development & Runtime Support enables code
development and execution by registering local programming
languages, tools, and libraries and by providing a baseline set of
runtime tools. Science Workflow Support manages large numbers
of parallel tasks and workflows for users. Parallel Application
Support enables MPI-based parallel applications by registering
local MPI tools and libraries. Distributed Parallel Application
Support enables MPI-based parallel applications to be built and
executed using multiple compute systems.
Data and Storage Capabilities - Data Movement provides the
ability to transfer files to/from a storage system, including mass
storage. Data Management allows users to manage large
collections of data and meta-data in mass storage. Data
Visualization provides a standard set of data analysis and

visualization tools. Wide-area GPFS and Wide-area Lustre
provide access to shared high-performance global file systems.

Uncoordinated Capabilities - Local HPC Software allows local
HPC software tools and libraries to be registered in IIS. Science
Gateway Applications allows scientific applications that are
currently available via science gateways to be registered in IIS.
User Profiles allows the TeraGrid User Portal and authenticated
science gateways to obtain user profile, resource, and allocation
information.

C. Queue and Scheduler Load Information
The TeraGrid User Portal needs dynamic TeraGrid resource load
and job information for display in the System Monitor. The
System Monitor has always been one of the most prominent
features of the user portal and must have reliable and accurate
information. Prior to IIS, the portal team ran custom cron jobs
from personal accounts on RP resources to gather information.
With over twenty resources, this approach requires significant
support. Using IIS, we were able to integrate load and queue
publishing into RP local information services, have the
information published and aggregated securely, and have the user
portal and other consumers access it from IIS.

D. Resource Descriptions
TeraGrid’s Core Services 2.0 [17] planning effort recognized the
need for a definitive source of current and historical TeraGrid
resource descriptions to address the challenges of resource
federation. This central Resource Description Repository (RDR)
[18], currently under development, will model resources as
implemented by various central TeraGrid services, including the
allocations and accounting system, Resource Catalog, and User
Portal. Beyond current needs, the RDR was envisioned to support
more complex resource models and enable more complex
functions within TeraGrid’s central services.

As currently deployed, IIS does not fully satisfy RDR
requirements for maintaining historical information and tracking
changes to certain attributes over time, for example when the
number of nodes or processor speed in a resource is upgraded.

Resource attributes for RDR were defined in consultation with the
maintainers of existing central services that stored resource
information—the TeraGrid Central Database (TGCDB), POPS
(for allocation requests), the Resource Catalog—as well as the
maintainers of information already published via IIS. The
descriptive attributes for resources were initially broken down into
two major sets: a “common” set that applies to all resources, and a
“compute” set that applies only to a computational resource. The
common set includes such fields as the organization, resource
name, and resource type. The compute set encompasses attributes
related to the hardware and operational environment of the HPC
compute systems.

To ensure rapid adoption and validate values critical to the
functioning of TeraGrid’s core services, the RDR will facilitate
data entry of resource information, store the history of changes to
this resource information, and provide an interface to enable RPs
to create valid IIS XML data files. A RESTful web service [12]
will allow RPs to automatically or manually download their
resource information from the RDR to publish using IIS.

The goal is that all consumers of RDR information, including
TeraGrid’s central services, will access resource descriptions from
IIS. As RPs become more familiar and comfortable with IIS, we

will enable RPs to publish resource data directly to IIS for
ingestion into the RDR.

E. Science Gateway Information
Science gateways provide scientists and engineers with additional
capabilities and collaboration opportunities that are tailored to
specific research communities. Gateways are customized
applications (often web portals) that make use of TeraGrid
computation and storage services on behalf of their users.

Science gateways use IIS both as content consumers and as
content publishers. Gateways frequently use TeraGrid’s remote
computation, remote login, data management, and data movement
capabilities. When using these capabilities, gateways need to be
able to look up details such as the service endpoints, the local
software available on a system, the current load average, or the
job queue length. But gateways also publish data in IIS. The
following examples demonstrate how science gateways are both
publishers and consumers of IIS information.

The gateway registry is used to maintain metadata about over
thirty gateways from diverse science disciplines. We help
scientists and engineers discover gateways that may be of use to
them by maintaining and publishing gateway information through
various channels, including IIS.

Most gateways develop and deploy web services that can be
invoked by a user from their work process pipeline via third-party
clients, like Taverna [19], or by directly coding against the web
service. While these web services have proven invaluable for
broadening access to TeraGrid, scientists are often unaware of the
availability of gateway capabilities. The Gateway Application
Web Service Registry (GAWSR) will raise awareness of the
scientific applications made available via gateways by defining a
standard schema (GAWSR-XSD) for describing gateway services
and by aggregating the information from many gateways to
facilitate discovery. This mechanism will offer gateway
developers a re-usable way to publish their gateways’ capabilities
and will offer discovery clients a standard schema and content to
search. By aggregating the GAWSR metadata in IIS, the
challenging task of finding these web service endpoints can be
accomplished by a single IIS search. It may even be possible to
invoke the web services based on the metadata available in the
GAWSR. TeraGrid’s education, outreach, and training will also
benefit by providing a searchable store of scientific resources.

Since science gateways may serve hundreds or thousands of end
users, gateways typically submit job requests under a community
credential: a single security credential that is used for all requests
from the gateway. For each request, the gateway embeds
information about the end user in the community credential using
the GridShib SAML Tools [20], which leverage Security
Assertion Markup Language (SAML) [21] to communicate
information to resource providers. This frees resource providers
from having to maintain long lists of end gateway users while still
giving them the ability to know their end users for the purposes of
auditing and incident response. To prevent abuse and auditing
errors, resource providers verify that the request is from a gateway
and that the asserted end user identity is valid for the gateway that
is reporting it. To this end, IIS provides a scalable and secure way
to aggregate information from various data sources and to produce
a security configuration file (in SAML Metadata format [22]) for
TeraGrid resource providers to configure their WS GRAM service
with GridShib for GT [20] in the Science Gateway Support

capability. In this way, a resource provider verifies that the end
user identity reported in a gateway request is valid.

F. Advanced Scheduling Information
During the past year, TeraGrid has deployed several
metascheduling tools that enable users to submit jobs to TeraGrid
as a whole, instead of specific systems. A metascheduler chooses
where jobs should execute based on the requirements and
preferences of each job and typically also manages the execution
of jobs on the systems to which they are matched. Several tools
are being deployed and while some (e.g., Moab [23] and MCP
[24]) gather information themselves or require only a minimum
amount of information, other tools (e.g., Condor-G [25], GridWay
[26], and Swift [27]) require externally provided information.
TeraGrid is deploying information gatherers to support this
second class of metaschedulers.
The primary user of the gathered information is, at present,
Condor-G matchmaking [28]. A Condor-G user submits a job to
Condor and Condor then uses Globus [29] mechanisms to execute
the job on a remote computer system. A Condor-G user specifies
an exact system to execute the job on so Condor-G adds only fault
tolerance and job tracking functionality atop Globus. A user of
Condor-G with matchmaking specifies constraints and preferences
for the system that their job will be run on. Condor-G selects a
system that satisfies the constraints and optimizes the preferences
and then manages the execution of the job on that system. A
secondary goal of this information gathering is to be able to
support other metaschedulers, such as Gridway, or custom
resource selection tools deployed by TeraGrid science gateways.
Fortunately, the set of information that metascheduling tools need
is relatively consistent. This information includes hardware
information (nodes, CPUs, memory, file systems), software
information (operating system, available Grid services), and
scheduling information (queues, queue limits, load). There is
some variation and some tools, such as Condor-G, allow full
customization of the information that is provided about systems.
To provide information to metaschedulers, we had to identify
what information they needed, select or create a schema for this
information, create information gatherers, and integrate the
gathering of this information into IIS’s information architecture.
We determine what information to gather by examining the needs
of several metascheduler implementations and deployments. We
were familiar with the Grid Laboratory Uniform Environment
(GLUE) schema for describing Grid sites and version 2 of the
GLUE schema was under development in the Open Grid Forum
(OGF) [30]. Version 2 has recently been released as a
recommendation [31]. We chose GLUE 2 because it met our
initial needs, allows for extension, and will allow us to
interoperate with other grids.

We initially implemented information-gathering scripts that gather
scheduling-related information from the LoadLeveler, LSF, PBS,
and SGE batch scheduling systems and produce XML in an early
version of the GLUE 2 schema. Resource providers publish this
GLUE 2 XML document via local information services. TeraGrid
wide information servers periodically aggregate across all
resource providers. We note that while MDS4 supports
periodically executing information provider scripts, the execution
time of our GLUE 2 information-gathering scripts are long
enough that MDS4 frequently times out waiting for them. We
therefore generate GLUE 2 XML documents asynchronously.

GLUE 2 XML documents describing many of TeraGrid’s member
systems are now available in IIS. This information can be
retrieved and processed for incorporation into metaschedulers. For
example, using IIS information we can produce Condor class ads
of TeraGrid systems and queues. These ads can be viewed on
many TeraGrid systems by simply by executing ‘condor_status.’

G. Local HPC Software
Most TeraGrid resource providers have locally supported software
not coordinated, documented, or supported by TeraGrid as a
whole. Resource providers have a variety of local catalogs and
several use the HPC Software Catalog [32] application developed
and supported by NCSA. TeraGrid users are interested in all
available software; they are less concerned about whether specific
software is considered TeraGrid- or RP-supported.

To enable users to discover all available software, in 2008
TeraGrid started developing a new Local HPC Software
publishing capability using IIS. IIS will aggregate local RP
software information, and combine it with CTSS-4 software
information, and eventually Science Gateway application registry
information to enable TeraGrid users to discover all available
software, including how to access the software and obtain support.

H. Accounting and Allocations
The TGCDB is the cornerstone of TeraGrid’s allocations,
accounting, and user identity infrastructure. Thus far, TeraGrid
has provided direct, custom interfaces to subsets of TGCDB
information destined for users (e.g., the TeraGrid User Portal and
the tgusage command-line utility) and for staff (via online
monitoring interfaces). As we make more TGCDB information
available to outside services, we are using IIS as a general-
purpose mechanism for publishing information, particularly for
programmatic purposes. The first TGCDB information to be
published via IIS was resource identification and cross-reference
data, providing a rudimentary linkage between other resource
information being published via IIS and the information known to
TeraGrid’s central services. Attributes published by the RDR
(described above) will supersede this early resource information.
More recently and more representative of the potential
capabilities, TGCDB began publishing information about the
resources available to a given allocated project (i.e., the set of
resource authorizations associated with a given research group).
This service was initiated to serve both TeraGrid science
gateways and TeraGrid’s scheduling activities. In both cases, the
objective is to enable a service to discover the resources on which
a gateway or an individual user (who provides a valid project
identifier) should be able to run.

A new User Profile Service will provide a RESTful interface for
users, portals, and gateways to consume accounting and allocation
information from TGCDB. Authenticated users can discover
usage information, resource allocations, and colleague activity
and account status. This fills a need in the overall TeraGrid
architecture for a way for gateways to quickly discover user-
appropriate information. It also opens the door for gateway
developers to more effectively integrate value-added services with
the existing TeraGrid resources.

V. LEVERAGING IIS
IIS was motivated by the need to provide authoritative and up-to-
date information to users about the capabilities available within

TeraGrid. We present here how user-facing systems, such as user
documentation and the user portal, are leveraging IIS to achieve
TeraGrid’s goal of presenting users with accurate and up-to-date
capability information. We also summarize how our TeraGrid’s
operational practices have significantly benefited from both the
IIS architecture and information content. Finally, we review how
emerging capabilities leverage TeraGrid’s IIS to publish
capability specific information, and how this approach is making a
significant impact on capability discovery by both users and
software systems.

A. TeraGrid User Documentation
As the diversity and heterogeneity of TeraGrid resources grew, so
did the demands for exceptions and special cases in
documentation. While resources diverged from the original
configurations, their documentation requirements also became
nonstandard and unique. The ability to keep user information
accurate and relevant was a growing challenge. In response to
this, TeraGrid User Support documentation began exposing
dynamic data for resource-specific information.

Beginning with CTSS-4, users can now look up the availability of
TeraGrid capabilities in any of four common ways. Users may
view tables showing the capabilities, software components, and
service interfaces offered by specific TeraGrid resources. Users
can also search for TeraGrid resources that support specific
software or services, specific CTSS capabilities (by name), or
specific use cases. This approach provides a fuller view of the
capabilities available on TeraGrid through a user-friendly
interface integrated into familiar documentation Web pages.

Throughout TeraGrid’s user documentation, we provide many
lists of resources, services, and configuration details that grow and
change frequently. Before IIS, these lists were often out of date
because the system changed more rapidly than the documentation
could be updated. Now, user documentation obtains live data for
many of these lists from IIS, and the content is always current.
This documentation is used between 300 and 600 times per
month. (TeraGrid has roughly 2,000 active users.)

Another important topic covered by TeraGrid’s user
documentation is the availability of system-specific software that
is not coordinated with other TeraGrid systems. The HPC
Software Catalog was designed as a searchable repository of all
non-CTSS software on TeraGrid resources, organized by site and
resource. This feature is currently being redesigned to be more
inclusive and to integrate software from CTSS as well as local
non-CTSS collections and Science Gateways into a single,
seamless, searchable repository. Since users typically do not care
where the software they want to use ultimately comes from or by
whom it is supported, it makes sense to combine all of these assets
into a single collection and present the results together. This new
design also leverages IIS, making the information available to all
services.

For users, this new search interface greatly improves their ability
to identify optimal resources by helping them find combinations
of compiler, workflow, job execution and data movement
software in a single resource, or combinations of resources that
can support their specific job, scientific data handling, and
workflow software needs.

B. TeraGrid User Portal
One of the most visited pages on the TeraGrid User Portal
(TGUP) [33] is the System Monitor. The System Monitor
provides basic descriptive information (name, institution, type,
etc.), resource attributes (number of processors, peak
performance, total memory, etc.), plus current status, load, and
jobs queued. Thus, the System Monitor presents both dynamic
and static information in an interface that helps users decide
which machines are appropriate for their computational work and
which are less heavily loaded and more likely to execute jobs
sooner. Figure 3 is a snapshot of the System Monitor.

Figure 3. User portal system monitor

The system monitor is based on the GridPort Information
Repository (GPIR) [34]. GPIR provides a place to store
information about Grid resources that is readily accessible via
web services to the portal. As described in IV.C the first version
of TGUP relied on custom scripts running from developer account
and sending information to a GPIR Ingester web service. This
design was a challenge to support. The System Monitor was
improved by incorporating publishing scripts in resource provider
information services, having IIS aggregate that information, and
having the user portal use a single provider script that accesses IIS
aggregated data and sends it to the GPIR service.

Figure 4. User portal system monitor usage: accesses per month

Figure 4 shows TeraGrid User Portal system monitor usage. The
system monitor usage is consistently a highly used feature of the
user portal with peaks during March 2008 due to the release of the
new Ranger system, which generated attention to TeraGrid and
the User Portal. The reduced frequency in the system monitor
beginning in August 2008 is due to the release of the new system

monitor, which uses JavaScript to display data and thus does not
require a server refresh for each user request.

Future work on TGUP will include expanding the IIS services
used within the portal. We expect to include metascheduling
services, resource information, local software services, and more
as user requirements harden.

C. Operations Verification and Validation
As section III describes, resource providers are in the best position
to describe accurately the capabilities they provide. However, it is
equally important to have external verification of the published
information to ensure the highest quality of service. In TeraGrid, a
Grid monitoring tool called Inca performs the external verification
of registered capabilities.

Inca detects infrastructure problems by executing automated, user-
level testing of Grid software and services [35]. Originally
designed for TeraGrid, Inca has been monitoring TeraGrid since
2003 and is also used in other large-scale global Grid projects
including ARCS [36], DEISA [37], and NGS [38]. Today, Inca
improves the reliability of Grid software and services by detecting
user-level failures and providing detailed information about its
tests and their execution to aid in debugging problems. Grid
managers can use Inca to identify failure trends and verify that
resource providers fulfill operations requirements. System
administrators and users may use Inca to debug and resolve user
account and environment issues.

Inca tests capabilities published in IIS with a SupportLevel of
testing or production. Predefined tests are then deployed to
monitor the individual software and services provided by a CTSS
capability. When errors of critical services are detected, email
notification is sent to the resource provider. Today, Inca executes
2,483 tests on TeraGrid resources. Typically, lightweight tests of
critical services run more frequently while heavier-weight tests
run every once or twice a day.

Inca provides many web status page views from detailed test
information to summary views and historical reports. All Inca data
is published as XML and is either translated to HTML using
XSLT or graphed using JFreeChart in order to generate particular
web status page views. Because Inca and IIS both use XML, it
was straightforward to provide analogous REST interfaces to view

Inca status information
for resource capabilities.
For example, the figure
on the left shows the
status of a workflow
capability (in HTML
format) on Purdue’s
Steele machine using a
REST URL. TGUP and
the LEAD science
gateway display resource
status information
accessed via Inca’s REST
interfaces.

D. Expanding IIS adoption
Although initially driven by the need to advertise CTSS-4
capabilities offered by resource providers, we have seen
considerable uptake among TeraGrid working groups and service
providers interested in leveraging IIS to address broader

publishing, discovery, and streamlined operations use cases. The
following are some examples.

There is growing interest in further leveraging IIS to streamline
TeraGrid capability verification and validation using the Inca
system. By formally defining a test repository and mapping tests
to capability kits and components, we believe an automated
system for testing a federation is achievable.

TeraGrid’s data area has identified extended GridFTP service
information that enables data movement clients to make more
optimal data movement decisions. They also used IIS to configure
the Speedpage data movement testing framework [39].
The recently formed TeraGrid Quality Assurance working group
is looking at leveraging IIS to register and discover components of
a QA test bed and to register information about the QA tests that a
particular capability must satisfy.
An Open Science Grid-to-TeraGrid gateway is now using IIS to
discover where it can submit jobs. Other TeraGrid science
gateways are considering using IIS to automate capability
discovery and resource selection.

Figure 5 shows monthly aggregated information service usage
information. We are missing WS/REST usage data from
November and December ’08. In addition, these numbers exclude
search engine scans and internal accesses (where queries to one
service result in internal queries to other services). Since the user
portal, user documentation, Inca system, and other persistent
systems often use cached IIS content, these graphs do not reflect
total IIS information accesses.

Figure 5. Aggregated information services queries. Some WS/REST data

are missing during the Nov-Dec 08 period

VI. CONCLUSION AND FUTURE WORK
TeraGrid’s IIS system and information architecture have proven
to be an effective means to communicate capability information
from resource and service providers to TeraGrid users who need
to discover and use those capabilities. It has also provided
significant benefits for automating key aspects of TeraGrid’s
operations and user support activities.

IIS’s two key design elements are its flexible information
architecture and its federated system architecture. The information
architecture permits TeraGrid to describe diverse capabilities and
adapt quickly to new discovery needs. The system architecture
allows us to gather information from diverse service providers,
not limited in any way to those that have been traditionally part of
TeraGrid. The IIS architecture seems ideally suited for federating

resources and for simplifying and streamlining how federated
resources are discovered and operated.

Our future system architecture and implementation work is
focused on: (1) improving local service registry implementations
and local information quality assurance tools, (2) improving and
scaling our custom aggregation and caching system and exploring
new aggregation, caching, and publishing frameworks to satisfy
existing and new requirements, (3) evaluating historical
information tracking requirements, (4) improving discovery
interfaces to further enable Web 2.0 and emerging collaborative
technologies, and (5) improving the local information service
software distribution, perhaps by providing virtual machine
images.

Our future information architecture work is focused on: (1)
formally describing TeraGrid-operated capabilities such as our
web sites, portals, accounting, allocations, and user management
systems, (2) expanding our generic capability schemas to support
more Grid and Cloud computing use cases, and (3) expanding the
generic capability schemas to publish use cases, access policies,
and testing/QA information.
We believe the challenges faced by TeraGrid that motivated IIS
are not unique to TeraGrid. Our outreach activities are focused on:
(1) reaching out to non-TeraGrid service providers (e.g., science
gateway developers, external compute and storage providers) to
register their services in TeraGrid’s IIS to spread awareness
among TeraGrid users, (2) encouraging other federations to
deploy their own IIS-like information services, and (3) working
with standards groups and other federated communities to
encourage interoperability among our information services.

VII. ACKNOWLEDGEMENTS
This work is supported by NSF award OCI-0503697 to
TeraGrid’s Grid Integration Group (GIG), and in part by the U.S.
Dept. of Energy under contract DE-AC02-06CH11357. The
TeraGrid User Portal is funded by the NSF and includes input and
participation from TeraGrid Partner Institutions. We thank
TeraGrid users for their suggestions, feedback, and support in
making TeraGrid a highly used, productive service for the
national community. We also acknowledge the NSF-funded Open
Grid Computing Environments (OGCE) project for the
technology contributions to the User Portal project.

We thank Mike D’Arcy, Jennifer Schopf, Neill Miller, and Robert
Miller for their contributions to the design and implementation of
MDS4 services on TeraGrid.

REFERENCES
[1] Catlett, C. and others, TeraGrid: Analysis of Organization, System

Architecture, and Middleware Enabling New Types of Applications,
in High Performance Computing and Grids in Action. 2007.

[2] NSF Program Synopsis, URL:
http://www.nsf.gov/funding/pgm_summ.jsp?pims_id=5456

[3] NSF Fact Sheet “From Supercomputing to the TeraGrid,”
April 19, 2006.

[4] Czajkowski, K., et al., Grid Information Services for Distributed
Resource Sharing, in 10th IEEE International Symposium on High
Performance Distributed Computing. 2001, IEEE Computer Society
Press. p. 181-184.

[5] Fitzgerald, S., et al., A Directory Service for Configuring High-
Performance Distributed Computations, in 6th IEEE Symposium on
High-Performance Distributed Computing. 1997. p. 365-375.

[6] Pordes, R., et al., The Open Science Grid, in Scientific Discovery
through Advanced Computing (SciDAC) Conference. 2007

[7] J.M. Schopf, L. Pearlman, N. Miller, C. Kesselman, I. Foster, M.
D'Arcy, and A. Chervenak, “Monitoring the grid with the Globus
Toolkit MDS4,” Journal of Physics: Conference Series, vol. 46,
2006, pp. 521-525.

[8] MDS4, URL: http://www.globus.org/toolkit/docs/4.0/info/
[9] http://www.globus.org/toolkit/docs/4.0/info/webmds/WSMDSWeb

MDSFacts.html
[10] J. M. Schopf, et al., Monitoring and Discovery in a Web Services

Framework: Functionality and Performance of Globus Toolkit
MDS4, in Argonne National Laboratory, Technical Report
#ANL/MCS-P1315-0106, 2006.

[11] Foster, I., et al., A Security Architecture for Computational Grids, in
5th ACM Conference on Computer and Communications Security.
1998. p. 83-91.

[12] http://www.xfront.com/REST-Web-Services.html
[13] http://en.wikipedia.org/wiki/Representational_State_Transfer
[14] The tginfo command line tool, URL: http://info.teragrid.org/tginfo/
[15] http://en.wikipedia.org/wiki/Information_architecture
[16] “CTSS 4 TeraGrid Core Integration Capabilities - TeraGrid Wiki.”
[17] Core Services 2.0 Working Group. "Core Services 2.0: An Integrated

TeraGrid Vision." Core Services 2.0. TeraGrid. 2007.
http://www.teragridforum.org/mediawiki/index.php?title=Core_Serv
ices_2.0 (accessed March 10, 2009).

[18] Hart, David, Ed Hanna, Rob Light, and JP Navarro. “Simplifying
TeraGrid Resource Integration with the Resource Description
Repository.” Submitted to TG’09, 2009.

[19] Oinn, T., et al., Taverna: A tool for the composition and enactment
of bioinformatics workflows Bioinformatics Journal, 2004. 20(17):
p. 3045-3054.

[20] T. Scavo and V. Welch. A Grid Authorization Model for Science
Gateways. International Workshop on Grid Computing
Environments, 2007. See
http://library.rit.edu/oajournals/index.php/gce/article/view/99

[21] OASIS Security Services (SAML) Technical Committee. See
http://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=security

[22] S. Cantor et al. Metadata for the OASIS Security Assertion Markup
Language (SAML) V2.0. OASIS Standard, March 2005. Document
ID saml-metadata-2.0-os. See http://docs.oasis-
open.org/security/saml/v2.0/saml-metadata-2.0-os.pdf

[23] Moab Workload Manager User’s Manual.
http://www.clusterresources.com/products/mwm/docs/moabusers.sht
ml

[24] Master Control Program (MCP).
http://www.sdsc.edu/us/tools/mcp.html

[25] .Frey, J., et al., Condor-G: A Computation Management Agent for
Multi-Institutional Grids. Cluster Computing, 2002. 5(3): p. 237-
246.

[26] Eduardo Huedo and Rub{\a'e}n S. Montero and Ignacio M. Llorente.
The GridWay Framework for Adaptive Scheduling and Execution on
Grids. Scalable Computing - Practice and Experience. 6(3):1-8,
2005.

[27] Zhao, Y., et al., Swift: Fast, Reliable, Loosely Coupled Parallel
Computation, in 1st IEEE International Workshop on Scientific
Workflows. 2007. p. 199-206.

[28] Rajesh Raman, Miron Livny, and Marvin Solomon, Matchmaking:
Distributed Resource Management for High Throughput Computing.
Proceedings of the Seventh IEEE International Symposium on High
Performance Distributed Computing, July 28-31, 1998, Chicago, IL.

[29] Ian Foster. Globus Toolkit Version 4: Software for Service-Oriented
Systems. Proceedings of the IFIP International Conference on
Network and Parallel Computing, Springer-Verlag LNCS 3779, pp
2-13, 2006.

[30] Open Grid Forum (OGF). URL: http://www.ogf.org/
[31] Sergio Andreozzi, et al. GLUE Specification v. 2.0. The Open Grid

Forum, GFD-R-P.147, 2009.
[32] http://hpcsoftware.ncsa.uiuc.edu/Software/user/index.php
[33] M. Dahan, E. Roberts, J. Boisseau, “TeraGrid User Portal v1.0:

Architecture, Design, and Technologies”, Grid Computing
Environments Workshop, November 2006.

[34] GridPort Information Repository, URL: http://www.collab-
ogce.org/ogce/index.php/GPIR

[35] Smallen, S., Ericson, K., Hayes, J., and Olschanowsky, C. 2007.
User-level grid monitoring with Inca 2. In Proceedings of the 2007
Workshop on Grid Monitoring (Monterey, California, USA, June 25
- 25, 2007). GMW '07. ACM, New York, NY, 29-38.

[36] The Australian Research Collaboration Service Web Page,
http://www.arcs.org.au/.

[37] The Distributed European Infrastructure for Supercomputing
Applications Web Page, http://www.deisa.eu.

[38] The National Grid Service Web Page, http://www.grid-
support.ac.uk/.

[39] Speedpage, URL: http://speedpage.psc.edu/

The submitted manuscript has been created in part by UChicago Argonne,
LLC, Operator of Argonne National Laboratory ("Argonne"), a U.S.
Department of Energy Office of Science laboratory, is operated under
Contract No. DE-AC02-06CH11357. The U.S. Government retains for
itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable
worldwide license in said article to reproduce, prepare derivative works,
distribute copies to the public, and perform publicly and display publicly,
by or on behalf of the Government.

