
Parallel Culling and Sorting based on Adaptive Static Balancing

Lucas Machado Bruno Feijó
VisionLab/ICAD/IGames, Dept. of Informatics, PUC-Rio

{lmachado, bfeijo}@inf.puc-rio.br

Abstract

This paper presents a new and effective method for
parallel octree culling and sorting for multicore
systems using counting sort and based on a new
balancing algorithm, called adaptive delayed static
balancing. The adaptive nature of the method is
governed by a dynamic split level that can adjust the
algorithm to new camera positions keeping a well-
balanced workload amongst the processors. Also this
paper introduces the concept of n-dimensional
resource space as a discrete Euclidean space. This
work presents a simple and effective thread
management system called MinTMS.

1. Introduction

Octree culling is a classical algorithm for reducing
the amount of data sent to the GPU for rendering. The
technique consists of dividing the 3D space into eight
cubes and repeating the process for each cube until a
certain level of the octree is reached (usually, the
leaves) and objects are stored. Rendering is done by
testing the intersection of the view frustum with the
octree nodes and sending to the GPU only the visible
objects. In this case, if a certain node cannot be seen its
entire subtree is pruned from the octree. This process
can be easily parallelized, but the balance of the
workload is not trivial. Another aspect of the rendering
process is resource sorting (e.g. Textures, meshes, and
pixel shading techniques). There is always a cost
associated to resource changes. Therefore, these
changes should be reduced by sorting and grouping
objects with common resources. Most of the methods
for parallel rendering is concentrated on PC clusters
and grids, while the literature on parallel culling for
multicore systems is scarce. This paper presents a new
and effective method for parallel octree culling and
sorting for multicore systems using counting sort
(which is O(n) time) and based on a new balancing
algorithm called adaptive delayed static balancing.

Tests revealed a performance improvement of the
culling process between 3 and 4 times in relation to the
classical single threaded octree culling process.
However, the most important performance analysis
concerns the capability that the proposed method has to
adapt itself to new camera positions, which are
continuously changing over time.

This paper is organized as follows. In the next
section, previous works are analyzed. In section 3, we
present the concept of the adaptive delayed static
balancing for parallel culling. The algorithm for node
rendering is presented in section 4. Section 5 presents
the adaptive nature of the proposed method. In section
6, we have the entire algorithm. Also this paper
proposes a simple API for thread management called
MinTMS in section 7. Section 8 presents the parallel
sorting method that handles the sorting of multiple
resources of the objects. Finally, some results are
described in section 9 and section 10 presents some
final remarks.

2. Related Work

A lot of research on parallel search and sorting
algorithms has already been done and many techniques
exist in the literature [Grama et al. 2003] [Wilkinson
and Allen]. Also several works have been carried out
in the area of parallel rendering using sorting
techniques. Molnar et al. [1994] proposed a
classification of parallel rendering system based on in
which stage of the rendering pipeline the sorting is
carried out (sort-last, sort-middle, and sort-first).
Humphreys et al. [2002] present a sort-first method for
distributed rendering using a cluster of common PCs.
Abraham et al. [2004] propose a load-balancing
strategy for sort-first distributed rendering using PC-
based clusters. Baxter et al. [2002] present a parallel
rendering architecture using two graphics pipeline and
one processor, including occlusion culling, LOD and
scene graph hierarchy. However, these works
concentrate on distributed rendering using PC clusters

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9204-X 16

and/or on global aspects of parallel rendering. The
literature has few works concentrated on algorithms for
parallel culling and sorting using multicore systems.

Octree is a classic data structure used in many
computer graphics applications [Foley et al. 1995],
[Dalmau 2003]. However, parallel occlusion
algorithms using octrees are not usual. Greene et al.
[1993] are the first authors to propose an octree
hierarchy for visibility computation with some
potential to parallelize. Their work had a great
influence on graphics hardware design. Xiong et al.
[2006] present an algorithm for parallel occlusion
culling on GPUs clusters using the occlusion query
function provided by current GPUs. As far as the
authors of the present papers are aware, there is no
previous work on parallel octree occlusion and sorting
for multicore systems based on simple and efficient
static balancing and O(n) time sorting algorithm.

3. Initial Concepts

One of the main problems in parallel culling using
octrees is how to balance the workload amongst the
processors. The simple strategy of equally distributing
the top level nodes between processors (called static
balancing) may result in long idle times in some
processors at certain camera positions. An alternative
solution to the problems of static balancing is the use
of a dynamic balancing strategy, where a processor
asks another one for working when it becomes idle.
The drawback of this solution is the addition of
increasing communication overheads. In this paper, we
propose a new and effective strategy called “adaptive
delayed static balancing” that has the following
characteristics:

1. Instead of distributing the nodes equally
amongst the processors at the start of the
processing, the algorithm waits until a certain
level d (called “split level”) in the octree is
reached and only then it distributes the work as
a static balancing procedure. This characterizes
a “delayed” static balancing strategy.

2. Irrelevant nodes are pruned from the tree before
the work is distributed amongst the processors.

3. The split level d is dynamically adapted to
changes in the virtual environment. This
characterizes an “adaptive” strategy.

 The reason for the implementation of the above-
mentioned delay is that the frustum usually interacts
with the nodes in lower levels of the octree. In such
lower levels there is a better chance for a more
balanced distribution of work. In the proposed
algorithm, before the split level d is reached, a
sequence of nodes is visited in a breath-first way and a

list of nodes (node_list) is prepared for the distribution
stage of the algorithm. Irrelevant nodes (i.e. branches
of the tree with no intersection with the frustum) are
automatically pruned from node_list. The nodes from
node_list are distributed amongst the processors by
creating a list of nodes for each processor and storing it
in a vector called working_list. The implementation of
this strategy requires the following main tasks:

• To visit the nodes until the split-level is reached
• To set up the list of nodes to be distributed

(pruning the octree adequately): node_list
• To expand nodes in node_list
• To render the leaf nodes of the octree that are

intersected by the frustum

4. Rendering Nodes

The tasks presented in the previous section can be
accomplished by the function RenderNodes(idx, n,
node_list, frustum). In this paper, “to render nodes”
from an octree means to add the objects from a leaf
node to a data structure that should be processed by the
processor idx considering resource optimizations and
GPU communications. The function RenderNodes can
transverse the octree completely or stop after n nodes
(n = 0 means no limit to transverse the tree). In the case
of having a limit (n > 0), this function returns a non-
empty node_list containing the nodes to be distributed
amongst the processors (including the main processor
that is currently setting node_list up). Figure 1 presents
the pseudo-code of the function RenderNodes, where
frustum is a structure containing the coordinates and
orientation of the frustum (which are constantly
moving at each frame in time).

RenderNodes(idx, n, node_list, frustum)
 set node_count to 0
 while node_list is not empty
 node = first node of node_list
 eliminate first node of node_list
 if frustum intersects node
 if node is a leaf
 add all objects of node to idx data
 else
 put children of node at the end of node_list
 if n > 0 // i.e.: render must stop after n nodes
 increment node_count by 1

 if node_count is equal to n
 break the loop of while

 return node_list

Figure 1 The function to render nodes

The function RenderNodes can be executed by the main
processor (e.g. P1) or one of the secondary processors
(e.g. P2, P3, or P4). In the case of secondary

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9204-X 17

processors, RenderNodes is executed by another
function that is controlled by a thread management
system. This later function is
RenderNodesProcessorTask(idx, working_list[idx]), where
idx is the processor index and working_list is the list of
nodes to be processed, as shown in Figure 2. The
global vectors startTime[idx] and endTime[idx] are used
to calculate the idle time of the processors. The task
RenderNodesProcessorTask is controlled by using a new
and simple API for thread management proposed in the
present paper.

RenderNodesProcessorTask (idx,working_list[idx])
 get current time and save it as startTime[idx]
 RenderNodes(idx,0,working_list[idx],frustum
 Get current time and save it as endTime[idx]

Figure 2 Calling RenderNodes for processor idx

5. Dynamic Adaptation of the Split Level

Before presenting the complete algorithm proposed in
this paper, we should consider the dynamic adaptation
of the split level. The best split level (d=0, d=1, d=2,
…) is the one that minimizes the sum of the idle time
of all processors. Our algorithm employs an adaptive
strategy that constantly changes the split level. This
strategy is based on the fact that deeper levels tend to
reduce the total idle time. Therefore, we expect that
each new time frame should increment the split level d.
However, depending on the movement of the camera
through the virtual environment, the tendency for
decaying idle time is broken and decrements in the
value of the split level should be tried until the normal
trend is recovered (i.e. the increase of d causes the
decay of total idle time). This is a process that searches

for the optimum value of d. There is no way of
deducing a function relating d and total idle time.
Experiments have suggested us that trends (solid lines
in Figure 3) can be eventually disturbed by adjustment
periods (dashed lines in Figure 3). This behavior

inspires us to propose the function split_level to
dynamically adapt d to changes in the virtual
environment based on trends, as shown in Figure 4.

Last sum of the idle time of all processors as a global
variable: last_total_idle_time = 0
Current trend as a global variable: trend = false
Number of levels of the octree as a global variable (already
calculated): num_levels

split_Level(d, total_idle_time)
 if total_idle_time is greater than last_total_idle_time
 reverse trend // e.g. trend = not(trend)
 if trend is true
 if d is less than (num_levels – 1)
 increment d by 1
 else
 if d is greater than zero
 decrement d by 1
 last_total_idle_time = total_idle_time
 return d

Figure 4 Function split_Level to dynamically adapt
d to changes in the virtual environment

6. The Proposed Algorithm

Considering the explanation presented so far, the
adaptive delayed static balancing algorithm can be
described by the pseudo-code of the function
ADStBalancingRender(d, octree, frustum) in Appendix A,
where d is the split level (initially zero), octree is a
structure containing the octree of the scene, and frustum
is a structure containing the coordinates and orientation
of the frustum (which are constantly moving at each
frame in time). The function ADStBalancingRender is
called by the main program at each time frame. This
function calls CalculateTotalIdleTime() that is presented
in Figure 5.

7. MinTMS

The proposed algorithm considers that the threads are
initialized by the main program. This initialization
procedure together with three other procedures (used in
ADStBalancingRender, Appendix A) are proposed as a
simple API for thread management that hides the
difficulties of using low level system functions. This
API, called MinTMS (for Minimum Thread
Management System) (see Appendix A), is described
as follows:

Init(n)
This method creates n threads that remain blocked
until StartWorking() is called.

SetTask(idx,task,data)

Figure 3 Trends (decaying idle time with increasing
d) and adjustment periods

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9204-X 18

This method sets a task and the data to be processed
by the thread idx. The task is executed when
StartWorking is called.

StartWorking(idx)
This method unblocks the thread idx. The thread idx
returns to a blocked state after processing its task.

WaitUntilWorkFinished()
This method implements a barrier and blocks the
main processor until all threads have finished their
tasks.

The starting processing time of each processor as a global
vector: startTime[]
The ending processing time of each processor as a global
vector: endTime[]
Total number of processors as a global variable:
num_processors

CalculateTotalIdleTime()
 min = stratTime[0]
 max = endTime[0]
 for i = 0 to (num_processors -1) stepping by 1
 if startTime is less than min
 min = startTime[i]
 if endTime[i] is greater than max
 max = endTime[i]
 idle = 0
 for i = 0 to (num_processors -1) stepping by 1
 increment idle by (startTime[i] – min)
 increment idle by (max – endTime[i])
 return idle

Figure 5 Function to calculate the total idle time

8. The Proposed Counting Sort Method

8.1 Sorting Algorithms

 The main feature of a sorting algorithm [Cormen et
al. 2001] is the amount of time required to reorder n
given numbers into increasing order. However, there
are other features to be considered. A sorting algorithm
is called in-place if it uses no additional array storage
(buffer) and is called stable if duplicate elements
remain in the same relative position after sorting.
Mergesort is a stable O(n log n) sorting algorithm but it
is not in-place. Heapsort is an in-place O(n log n)
sorting algorithm, but it is not stable. Quicksort is
regarded as one of the fastest sorting algorithm, but it
is not stable and, stickling speaking, it not in-place.
 It is a well-known theorem that is not possible to
sort faster than O(n log n) time for algorithms based on
2-way comparisons. Sorting numbers faster than this
lower bound must be done without the use of
comparisons, what is only possible under certain very

restrictive circumstances. Under these special
conditions, an entire class of linear time sorting
algorithm arises. For instance, counting sort is a stable
O(n) sorting algorithm, but not in-place, which can
only be used in applications that sort small integers. In

this algorithm, for each integer k found in the input list
A, we increment the value of C[k] by 1 (the size of C is
determined by the largest integer in A), as shown in
Figure 6. C[k] is called counting array. In the next
section, counting sort is presented as the best algorithm
for resource sorting in parallel rendering.

8.2 Resource Sorting

 Resources are data, properties, components,
techniques, and programs used by the 3D objects in
order to be rendered properly. Textures, meshes, and
pixel shading techniques are common resources used in
the rendering processes of real-time applications. Each
type of resource defines a discrete axis (i.e. an axis
with integer coordinate values) called dimension (e.g.
textures are identified by the integer values 0, 1, 2, …
in the texture axis). Resource space is a discrete
Euclidean space defined by one or more dimensions.
Therefore, the texture dimension and the mesh
dimension form a two-dimensional resource space. An
efficient rendering strategy is the one that groups
objects sharing the same resources (i.e. it groups the
objects in the same point of the resource space). This
strategy minimizes the costs associated with every
resource change during the rendering process (there is
always a great cost associated to jumps within the
resource space). In this paper, for each point (i,j,k,…)
of the resource space, we define the n-dimensional
resource data array R[i,j,k,…] containing the
following data:

• The number c of objects sharing the same set of
resources i,j,k, …;

• A list L of these objects.
 We use the following notation to present this n-
dimensional array:

Figure 6 Example of counting sort

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9204-X 19

},{,...],,[,...,,,...,, kjikji LckjiR = (Eq.01)

Figure 7 illustrates the simplest cases for R[i,j,k,…]:
one, two, and three-dimensional resource data arrays.
In Figure 7(b) the two dimensions are texture and
mesh. In this 2-dimension example, the rendering
process can fix a mesh and render objects per texture
(e.g. it fixes mesh 0 and renders 1 object with texture 0
and then 3 objects with texture 4).
 In the case of one dimension represented by
textures (Figure 7(a)), we can easily identify R[i] as
being an extended version of the counting array C[k]
in the counting sort algorithm (Figure 6). The main job
of the function RenderNodes (Figure1) is to add
objects to the resource data array R of each processor.
Therefore, this job is a counting sort process. As
resources can be represented by small integer numbers
(complex 3D scenes hardly go beyond 300 different
textures), the most appropriate sort algorithm for
parallel rendering is counting sort. In this way, we have
the fastest and convenient option: a stable O(n) sorting
algorithm. We should notice that the in-place nature of
counting sort (presented in the previous section) is not
relevant in the present application, because we need a
storage array to distribute work amongst the processors
anyway.
8.3 The Sorting Process

The function RenderNodes (Figure1) builds the
resource data array R of each processor Pi, in such a

way that the objects are distributed amongst the
processors and grouped according to the resources they
use. In this paper, the proposed algorithm merges the

arrays R into a single n-dimensional array M, called
merged resource data array, by performing the sum of
the corresponding ci,j,k,… and transferring the references
to the lists Li,j,k,… . Figure 8 illustrates the entire
merging process for the two dimensional case and four

Figure 7 Simple cases of the n-dimensional resource data array R, where c is the number
of objects and L is the list of the objects. The discrete resource spaces are also illustrated.

Figure 8 The merged resource data array M

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9204-X 20

processors. We should notice that Pi data is not inside
each processor (in fact the sets of Pi data are in a
common structure that each processor can freely
access).
 Once the merged data array M is completed we can
scan it and whenever c is greater than zero the list of
sorted objects L can be rendered using the resources
identified by the integer coordinates (i,j,k,…).

9. Some Results

 The computer used for tests is a quadcore machine
(Intel Core 2 Extreme Q6850 3.00GHz). The GPU
rendering performance should be isolated from the
performance analysis of the proposed parallel culling
method. Therefore, no fps figures are presented.

 The first test compares the proposed method with a
classical single thread octree culling for an octree with
8 levels (2.396.745 nodes). The result in Table 1 shows
an improvement of 3.16.

Table 1 The proposed method (4 threads) vs
standard Single Thread for an 8-level octree

ADStBalancing (4 Threads) Single Thread
milliseconds milliseconds

19 60

 The second type of test analyses the adaptive nature
of the proposed method by investigating its
performance at several values of the split level (d) and
the number of nodes processed by each processor. The
tests use a camera with FOVy = 30 degrees with a 9-

Figure 9 Two different camera positions used in the tests of Table 2 and Table 3

Table 2 The proposed method with the camera at the centre of a 9-level octree and FOV=30
(intersecting all main nodes right below the root). GPU time is not included.

Split Level number of nodes Average Culling Time

d P1 P2 P3 P4 microseconds

0 2019 482 482 2018 360

1 2025 480 480 2016 362

2 2073 464 464 2000 365

3 897 1880 1880 344 202

4 4761 80 80 80 304

Table 3 The proposed method with the camera at the corner of a 9-level octree and FOV=30
(intersecting only one main nodes right below the root). GPU time is not included.

Split Level number of nodes Average Culling Time
d P1 P2 P3 P4 microseconds

0 4435 2 2 2 288

1 4435 2 2 2 288

2 1945 1888 304 304 214

3 1033 2512 448 448 260

4 4441 0 0 0 292

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9204-X 21

level octree, 4 processors, and 5 values of split levels.
 Tables 2 and 3 show that the split level scheme
adapts the algorithm for different camera positions. In
Table 3, d = 0 is a bad start for both time (a culling
time higher than the one for the camera at the center)
and workload balancing (number of nodes). In both
cases the system stabilizes around d=3 for case 1
(Table 2) and d = 2 in case 2 (Table 3). Figure 9 shows
the final rendering for each camera position.

10. Final Remarks

 This paper presents a new and effective method for
parallel octree culling and sorting for multicore
systems using counting sort (which is O(n) time) and
based on a new balancing algorithm called adaptive
delayed static balancing. Tests revealed a time
performance improvement of the culling process
between 3 and 4 times in relation to the classical single
threaded octree culling process. However, the most
important result is the effectiveness of the adaptive
mechanism based on the dynamic split level that can
adjust the algorithm to new camera positions and keep
a well-balanced workload amongst the processors. The
tests do not consider GPU time and also avoid any
connection with the number of resources (i.e. number
of textures, meshes, …).
 Also this paper introduces the concept of n-
dimensional resource space as a discrete Euclidean
space, in which the resource array is identified with the
counting array of the counting sort algorithm. No other
sorting algorithm can be faster than this O(n) time
algorithm for the culling process. The proposed
adaptive delayed static balancing method naturally
generates points in the n-dimensional resource space in
a counting sort way.
 Another important result is the proposed thread
management system MinTMS, which reveals itself as a
simple and effective API.
 Future works should cover extensive statistics and
comparisons, including plots of time vs number of
nodes, time vs number of resources, total idle time vs
split level, more complex scenes, and more points in
the camera path. The comparison with related work is
difficult because the literature is scarce on parallel
octree culling for multicore machines and we have no
access to the code of other authors to reproduce the
same test situation. Another future work should be the
investigation of other heuristics and statistics that can
improve the adaptive performance of the method.
Further work should also consider a parallel merging
process (i.e. to mount the array M in parallel, Figure
8).

Acknowledgements

We would like to thank CNPq and FINEP for the
financial support of scholarships and research projects.

References

Cormen, T. H. Leiserson and Charles, E. R. and Ronald, L.,
2001. Introduction to Algorithms Second Edition.
Massachusetts: The MIT Press.

Dalmau, D. S.-C., 2003. Core Techniques and Algorithms in
Game Programming. Indiana: New Riders.

Foley, J. D. V. D. and Andries, F. and Steven, K., 1995.
Computer Graphics: Principles and Practice in C. New
York: Addison Wesley.

Grama, A. and Gupta, A. and Karypis, G. and Kumar, V.,
2003. Introduction to Parallel Computing, New York:
Addison Wesley.

Wilkinson, B. and Allen, M., 2004. Parallel Programming
Techniques and Applications using Networked
Workstations and Parallel Computers, New Jersey:
Prentice Hall.

Molnar, S., Cox, M., Ellsworth, D., and Fuchs, H., 1994. A
sorting classification of parallel rendering. IEEE
Computer Graphics & Applications, 14(4), 1994, pp. 23-
32.

Humphreys, G., Houston, M., Ng, R., Frank, R. Ahern, S.,
Kirchner, P.D., and Klosowski, J.T., 2002. Chromium: a
stream-processing framework for interactive rendering on
clusters. Proceedings of ACM SIGGRAPH 2002, acm
Transactions on Graphics, 21(3), 2002, pp. 693-702.

Abraham, F., Celes, W., Cerqueira, R., and Campos, J.L.,
2004. A load-balancing strategy for sort-first distributed
rendering. XVII Brazilian Symposium on Computer
Graphics and Image Processing, Proceedings SIBGRAPI
2004, 17-20 Oct 2004, Curitiba, PR, Brazil, IEEE
Computer Society, 2004, pp. 292-299.

Baxter, W.V, Sud, A., Govindaraju, N.K., and Manocha D.,
2002. Gigawalk: Interactive walkthrough of complex
environments. Proceedings of 13th Eurographics
workshop on Rendering, 2002, pp. 203-214.

Greene, N., Kass, M., and Miller, G., 1993. Hierarchical Z-
buffer visibility. Proceedings of ACM SIGGRAPH 1993,
acm Transactions on Graphics, 1993, pp. 231-238.

Xiong, H., Peng, H., Qin, a., and Shi, J., 2006. Parallel
occlusion culling on GPUs cluster. Proceedings of 2006
ACM International Conference on Virtual Reality
Continuum and its Applications (VRCIA 2006), Hong
Kong, China, 14-17 June 2006, pp. 19-26.

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9204-X 22

APPENDIX A – Algorithm and MinTMS

The index of the main processor as a global constant: MAIN_PROCESSOR_IDX = 0
Last sum of the idle time of all processors as a global variable: last_total_idle_time = 0
Current trend as a global variable: trend = false
Number of levels of the octree as a global variable: num_levels
Total number of processors and processor id vector as global variables: num_processors and p_idx[]

ADStBalancingRender (d, octree, frustum)
 get current time and save it as startTime[MAIN_PROCESSOR_IDX]
 calculate1 the number of nodes up to the current split level d: n = (8d+1 -1)/7
 node_count = 0
 clear node_list
 put the root node of octree in node_list
 node_list = RenderNodes(MAIN_PROCESSOR_IDX, n, node_list, frustum) // n is greater than zero
 set work_size to the size of node_list divided by num_processors
 for i = 0 to (num_processors-2) stepping by 1 // i is the secondary processor executing the rendering task
 transfer work_size nodes from node_list to working_list[i]
 eliminate the transferred nodes from node_list
 set the task RenderNodesProcessorTask(p_idx[i],working_list[i]) // done by the MinTMS method: SetTask
 make processor i to start the task RenderNodesProcessorTask // this is done by calling StartWorking(i)1

 RenderNodes(MAIN_PROCESSOR_IDX,0,node_list,frustum) // remaining nodes in the main processor
 get current time and save it as startTime[MAIN_PROCESSOR_IDX]
 If num_processors is greater than 1
 wait for the other processors finish working // this is done by waitUntilWorkFinished()1

 total_idle_time = CalculateTotalIdleTime()
 d = split_Level(d, total_idle_time)
 return d

SBC - Proceedings of SBGames'08: Computing Track - Full Papers Belo Horizonte - MG, November 10 - 12

VII SBGames - ISBN: 85-766-9204-X 23

