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Abstract 

This paper presents a new and effective method for 
parallel octree culling and sorting for multicore 
systems using counting sort and based on a new 
balancing algorithm, called adaptive delayed static 
balancing. The adaptive nature of the method is 
governed by a dynamic split level that can adjust the 
algorithm to new camera positions keeping a well-
balanced workload amongst the processors. Also this 
paper introduces the concept of n-dimensional 
resource space as a discrete Euclidean space. This 
work presents a simple and effective thread 
management system called MinTMS. 

1. Introduction 

Octree culling is a classical algorithm for reducing 
the amount of data sent to the GPU for rendering. The 
technique consists of dividing the 3D space into eight 
cubes and repeating the process for each cube until a 
certain level of the octree is reached (usually, the 
leaves) and objects are stored. Rendering is done by 
testing the intersection of the view frustum with the 
octree nodes and sending to the GPU only the visible 
objects. In this case, if a certain node cannot be seen its 
entire subtree is pruned from the octree. This process 
can be easily parallelized, but the balance of the 
workload is not trivial. Another aspect of the rendering 
process is resource sorting (e.g. Textures, meshes, and 
pixel shading techniques). There is always a cost 
associated to resource changes. Therefore, these 
changes should be reduced by sorting and grouping 
objects with common resources. Most of the methods 
for parallel rendering is concentrated on PC clusters 
and grids, while the literature on parallel culling for 
multicore systems is scarce. This paper presents a new 
and effective method for parallel octree culling and 
sorting for multicore systems using counting sort 
(which is O(n) time) and based on a new balancing 
algorithm called adaptive delayed static balancing. 

Tests revealed a performance improvement of the 
culling process between 3 and 4 times in relation to the 
classical single threaded octree culling process. 
However, the most important performance analysis 
concerns the capability that the proposed method has to 
adapt itself to new camera positions, which are 
continuously changing over time. 

This paper is organized as follows. In the next 
section, previous works are analyzed. In section 3, we 
present the concept of the adaptive delayed static 
balancing for parallel culling. The algorithm for node 
rendering is presented in section 4. Section 5 presents 
the adaptive nature of the proposed method. In section 
6, we have the entire algorithm. Also this paper 
proposes a simple API for thread management called 
MinTMS in section 7. Section 8 presents the parallel 
sorting method that handles the sorting of multiple 
resources of the objects. Finally, some results are 
described in section 9 and section 10 presents some 
final remarks. 

2. Related Work 

A lot of research on parallel search and sorting 
algorithms has already been done and many techniques 
exist in the literature [Grama et al. 2003] [Wilkinson 
and Allen]. Also several works have been carried out 
in the area of parallel rendering using sorting 
techniques. Molnar et al. [1994] proposed a 
classification of parallel rendering system based on in 
which stage of the rendering pipeline the sorting is 
carried out (sort-last, sort-middle, and sort-first). 
Humphreys et al. [2002] present a sort-first method for 
distributed rendering using a cluster of common PCs. 
Abraham et al. [2004] propose a load-balancing 
strategy for sort-first distributed rendering using PC-
based clusters. Baxter et al. [2002] present a parallel 
rendering architecture using two graphics pipeline and 
one processor, including occlusion culling, LOD and 
scene graph hierarchy. However, these works 
concentrate on distributed rendering using PC clusters 
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and/or on global aspects of parallel rendering. The 
literature has few works concentrated on algorithms for 
parallel culling and sorting using multicore systems. 

Octree is a classic data structure used in many 
computer graphics applications [Foley et al. 1995], 
[Dalmau 2003]. However, parallel occlusion 
algorithms using octrees are not usual. Greene et al. 
[1993] are the first authors to propose an octree 
hierarchy for visibility computation with some 
potential to parallelize. Their work had a great 
influence on graphics hardware design. Xiong et al. 
[2006] present an algorithm for parallel occlusion 
culling on GPUs clusters using the occlusion query 
function provided by current GPUs. As far as the 
authors of the present papers are aware, there is no 
previous work on parallel octree occlusion and sorting 
for multicore systems based on simple and efficient 
static balancing and O(n) time sorting algorithm. 

3. Initial Concepts 

One of the main problems in parallel culling using 
octrees is how to balance the workload amongst the 
processors. The simple strategy of equally distributing 
the top level nodes between processors (called static 
balancing) may result in long idle times in some 
processors at certain camera positions. An alternative 
solution to the problems of static balancing is the use 
of a dynamic balancing strategy, where a processor 
asks another one for working when it becomes idle. 
The drawback of this solution is the addition of 
increasing communication overheads. In this paper, we 
propose a new and effective strategy called “adaptive 
delayed static balancing” that has the following 
characteristics: 

1. Instead of distributing the nodes equally 
amongst the processors at the start of the 
processing, the algorithm waits until a certain 
level d (called “split level”) in the octree is 
reached and only then it distributes the work as 
a static balancing procedure. This characterizes 
a “delayed” static balancing strategy. 

2. Irrelevant nodes are pruned from the tree before 
the work is distributed amongst the processors. 

3. The split level d is dynamically adapted to 
changes in the virtual environment. This 
characterizes an “adaptive” strategy. 

 The reason for the implementation of the above-
mentioned delay is that the frustum usually interacts 
with the nodes in lower levels of the octree. In such 
lower levels there is a better chance for a more 
balanced distribution of work. In the proposed 
algorithm, before the split level d is reached, a 
sequence of nodes is visited in a breath-first way and a 

list of nodes (node_list) is prepared for the distribution 
stage of the algorithm. Irrelevant nodes (i.e. branches 
of the tree with no intersection with the frustum) are 
automatically pruned from node_list. The nodes from 
node_list are distributed amongst the processors by 
creating a list of nodes for each processor and storing it 
in a vector called working_list. The implementation of 
this strategy requires the following main tasks: 

• To visit the nodes until the split-level is reached
• To set up the list of nodes to be distributed 

(pruning the octree adequately): node_list
• To expand nodes in node_list
• To render the leaf nodes of the octree that are 

intersected by the frustum 

4. Rendering Nodes 

The tasks presented in the previous section can be 
accomplished by the function RenderNodes(idx, n, 
node_list, frustum). In this paper, “to render nodes” 
from an octree means to add the objects from a leaf 
node to a data structure that should be processed by the 
processor idx considering resource optimizations and 
GPU communications. The function RenderNodes can 
transverse the octree completely or stop after n nodes 
(n = 0 means no limit to transverse the tree). In the case 
of having a limit (n > 0), this function returns a non-
empty node_list containing the nodes to be distributed 
amongst the processors (including the main processor 
that is currently setting node_list up). Figure 1 presents 
the pseudo-code of the function RenderNodes, where 
frustum is a structure containing the coordinates and 
orientation of the frustum (which are constantly 
moving at each frame in time). 

RenderNodes(idx, n, node_list, frustum) 
 set node_count to 0 
 while node_list is not empty 
  node = first node of node_list 
  eliminate first node of node_list 
  if frustum intersects node 
   if node is a leaf 
    add all objects of node to idx data 
   else 
    put children of node at the end of node_list 
  if n > 0   // i.e.: render must stop after n nodes 
   increment node_count by 1 

  if node_count is equal to n 
   break the loop of while 

 return node_list 

Figure 1 The function to render nodes

The function RenderNodes can be executed by the main 
processor (e.g. P1) or one of the secondary processors 
(e.g. P2, P3, or P4). In the case of secondary 
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processors, RenderNodes is executed by another 
function that is controlled by a thread management 
system. This later function is 
RenderNodesProcessorTask(idx, working_list[idx]), where 
idx is the processor index and working_list is the list of 
nodes to be processed, as shown in Figure 2. The 
global vectors startTime[idx] and endTime[idx] are used 
to calculate the idle time of the processors. The task 
RenderNodesProcessorTask is controlled by using a new 
and simple API for thread management proposed in the 
present paper. 

RenderNodesProcessorTask (idx,working_list[idx]) 
 get current time and save it as startTime[idx] 
 RenderNodes(idx,0,working_list[idx],frustum 
 Get current time and save it as endTime[idx] 

Figure 2 Calling RenderNodes for processor idx 

5. Dynamic Adaptation of the Split Level 

Before presenting the complete algorithm proposed in 
this paper, we should consider the dynamic adaptation 
of the split level. The best split level (d=0, d=1, d=2, 
…) is the one that minimizes the sum of the idle time 
of all processors. Our algorithm employs an adaptive 
strategy that constantly changes the split level. This 
strategy is based on the fact that deeper levels tend to 
reduce the total idle time. Therefore, we expect that 
each new time frame should increment the split level d. 
However, depending on the movement of the camera 
through the virtual environment, the tendency for 
decaying idle time is broken and decrements in the 
value of the split level should be tried until the normal 
trend is recovered (i.e. the increase of d causes the 
decay of total idle time). This is a process that searches 

for the optimum value of d. There is no way of 
deducing a function relating d and total idle time. 
Experiments have suggested us that trends (solid lines 
in Figure 3) can be eventually disturbed by adjustment 
periods (dashed lines in Figure 3). This behavior 

inspires us to propose the function split_level to 
dynamically adapt d to changes in the virtual 
environment based on trends, as shown in Figure 4. 

Last sum of the idle time of all processors as a global 
variable: last_total_idle_time = 0 
Current trend as a global variable: trend = false
Number of levels of the octree as a global variable (already 
calculated): num_levels

split_Level(d, total_idle_time) 
 if total_idle_time is greater than last_total_idle_time 
  reverse trend        // e.g. trend = not(trend) 
 if trend is true
  if  d  is less than (num_levels – 1) 
   increment d by 1 
 else 
  if  d  is greater than zero 
   decrement d by 1 
 last_total_idle_time = total_idle_time 
 return d 

Figure 4 Function split_Level to dynamically adapt 
d to changes in the virtual environment 

6. The Proposed Algorithm 

Considering the explanation presented so far, the 
adaptive delayed static balancing algorithm can be 
described by the pseudo-code of the function 
ADStBalancingRender(d, octree, frustum) in Appendix A, 
where d is the split level (initially zero), octree is a 
structure containing the octree of the scene, and frustum
is a structure containing the coordinates and orientation 
of the frustum (which are constantly moving at each 
frame in time). The function ADStBalancingRender is 
called by the main program at each time frame. This 
function calls CalculateTotalIdleTime() that is presented 
in Figure 5. 

7. MinTMS 

The proposed algorithm considers that the threads are 
initialized by the main program. This initialization 
procedure together with three other procedures (used in 
ADStBalancingRender, Appendix A) are proposed as a 
simple API for thread management that hides the 
difficulties of using low level system functions. This 
API, called MinTMS (for Minimum Thread 
Management System) (see Appendix A), is described 
as follows:  

Init(n) 
This method creates n threads that remain blocked 
until StartWorking() is called. 

SetTask(idx,task,data) 

Figure 3 Trends (decaying idle time with increasing 
d) and adjustment periods 
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This method sets a task and the data to be processed 
by the thread idx. The task is executed when 
StartWorking is called. 

StartWorking(idx) 
This method unblocks the thread idx. The thread idx 
returns to a blocked state after processing its task. 

WaitUntilWorkFinished() 
This method implements a barrier and blocks the 
main processor until all threads have finished their 
tasks. 

The starting processing time of each processor as a global 
vector: startTime[]
The ending processing time of each processor as a global 
vector: endTime[]
Total number of processors as a global variable: 
num_processors

CalculateTotalIdleTime() 
 min = stratTime[0] 
 max = endTime[0] 
 for i = 0 to (num_processors -1) stepping by 1 
  if startTime is less than min 
   min = startTime[i] 
  if endTime[i] is greater than max 
   max = endTime[i] 
 idle = 0 
 for i = 0 to (num_processors -1) stepping by 1 
  increment idle by (startTime[i] – min) 
  increment idle by (max – endTime[i]) 
 return idle 

Figure 5 Function to calculate the total idle time 

8. The Proposed Counting Sort Method 

8.1 Sorting Algorithms 

 The main feature of a sorting algorithm [Cormen et 
al. 2001] is the amount of time required to reorder n
given numbers into increasing order. However, there 
are other features to be considered. A sorting algorithm 
is called in-place if it uses no additional array storage 
(buffer) and is called stable if duplicate elements 
remain in the same relative position after sorting. 
Mergesort is a stable O(n log n) sorting algorithm but it 
is not in-place. Heapsort is an in-place O(n log n) 
sorting algorithm, but it is not stable. Quicksort is 
regarded as one of the fastest sorting algorithm, but it 
is not stable and, stickling speaking, it not in-place. 
 It is a well-known theorem that is not possible to 
sort faster than O(n log n) time for algorithms based on 
2-way comparisons. Sorting numbers faster than this 
lower bound must be done without the use of 
comparisons, what is only possible under certain very 

restrictive circumstances. Under these special 
conditions, an entire class of linear time sorting 
algorithm arises. For instance, counting sort is a stable 
O(n) sorting algorithm, but not in-place, which can 
only be used in applications that sort small integers. In 

this algorithm, for each integer k found in the input list 
A, we increment the value of C[k] by 1 (the size of C is 
determined by the largest integer in A), as shown in 
Figure 6. C[k] is called counting array. In the next 
section, counting sort is presented as the best algorithm 
for resource sorting in parallel rendering. 

8.2 Resource Sorting 

 Resources are data, properties, components, 
techniques, and programs used by the 3D objects in 
order to be rendered properly. Textures, meshes, and 
pixel shading techniques are common resources used in 
the rendering processes of real-time applications. Each 
type of resource defines a discrete axis (i.e. an axis 
with integer coordinate values) called dimension (e.g.
textures are identified by the integer values 0, 1, 2, …
in the texture axis). Resource space is a discrete 
Euclidean space defined by one or more dimensions. 
Therefore, the texture dimension and the mesh
dimension form a two-dimensional resource space. An 
efficient rendering strategy is the one that groups
objects sharing the same resources (i.e. it groups the 
objects in the same point of the resource space). This 
strategy minimizes the costs associated with every 
resource change during the rendering process (there is 
always a great cost associated to jumps within the 
resource space). In this paper, for each point (i,j,k,…) 
of the resource space, we define the n-dimensional 
resource data array R[i,j,k,…] containing the 
following data: 

• The number c of objects sharing the same set of 
resources i,j,k, …; 

•  A list L of these objects. 
 We use the following notation to present this n-
dimensional array: 

Figure 6 Example of counting sort 
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},{,...],,[ ,...,,,...,, kjikji LckjiR =   (Eq.01) 

Figure 7 illustrates the simplest cases for R[i,j,k,…]: 
one, two, and three-dimensional resource data arrays. 
In Figure 7(b) the two dimensions are texture and 
mesh. In this 2-dimension example, the rendering 
process can fix a mesh and render objects per texture 
(e.g. it fixes mesh 0 and renders 1 object with texture 0 
and then 3 objects with texture 4). 
 In the case of one dimension represented by 
textures (Figure 7(a)), we can easily identify R[i] as 
being an extended version of the counting array C[k] 
in the counting sort algorithm (Figure 6). The main job 
of the function RenderNodes (Figure1) is to add 
objects to the resource data array R of each processor. 
Therefore, this job is a counting sort process. As 
resources can be represented by small integer numbers 
(complex 3D scenes hardly go beyond 300 different 
textures), the most appropriate sort algorithm for 
parallel rendering is counting sort. In this way, we have 
the fastest and convenient option: a stable O(n) sorting 
algorithm. We should notice that the in-place nature of 
counting sort (presented in the previous section) is not 
relevant in the present application, because we need a 
storage array to distribute work amongst the processors 
anyway. 
8.3 The Sorting Process  

The function RenderNodes (Figure1) builds the 
resource data array R of each processor Pi, in such a 

way that the objects are distributed amongst the 
processors and grouped according to the resources they 
use. In this paper, the proposed algorithm merges the 

arrays R into a single n-dimensional array M, called 
merged resource data array, by performing the sum of 
the corresponding ci,j,k,… and transferring the references 
to the lists Li,j,k,… . Figure 8 illustrates the entire 
merging process for the two dimensional case and four 

Figure 7 Simple cases of the n-dimensional resource data array R, where c is the number 
of objects and  L is the list of the objects. The discrete resource spaces are also illustrated. 

Figure 8 The merged resource data array M  
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processors. We should notice that Pi data is not inside 
each processor (in fact the sets of Pi data are in a 
common structure that each processor can freely 
access). 
 Once the merged data array M is completed we can 
scan it and whenever c is greater than zero the list of 
sorted objects L can be rendered using the resources 
identified by the integer coordinates (i,j,k,…). 

9. Some Results 

 The computer used for tests is a quadcore machine 
(Intel Core 2 Extreme Q6850 3.00GHz). The GPU 
rendering performance should be isolated from the 
performance analysis of the proposed parallel culling 
method. Therefore, no fps figures are presented. 

 The first test compares the proposed method with a 
classical single thread octree culling for an octree with 
8 levels (2.396.745 nodes). The result in Table 1 shows 
an improvement of 3.16. 

Table 1 The proposed method (4 threads) vs
standard Single Thread for an 8-level octree 

ADStBalancing (4 Threads) Single Thread 
milliseconds milliseconds 

19 60 

 The second type of test analyses the adaptive nature 
of the proposed method by investigating its 
performance at several values of the split level (d) and 
the number of nodes processed by each processor. The 
tests use a camera with FOVy = 30 degrees with a 9-

Figure 9 Two different camera positions used in the tests of Table 2 and Table 3 

Table 2 The proposed method with the camera at the centre of a 9-level octree and FOV=30 
(intersecting all main nodes right below the root). GPU time is not included. 

Split Level number of nodes Average Culling Time 

d P1 P2 P3 P4 microseconds 

0 2019 482 482 2018 360 

1 2025 480 480 2016 362 

2 2073 464 464 2000 365 

3 897 1880 1880 344 202 

4 4761 80 80 80 304 

Table 3 The proposed method with the camera at the corner of a 9-level octree and FOV=30 
(intersecting only one main nodes right below the root). GPU time is not included. 

Split Level number of nodes Average Culling Time 
d P1 P2 P3 P4 microseconds 

0 4435 2 2 2 288 

1 4435 2 2 2 288 

2 1945 1888 304 304 214 

3 1033 2512 448 448 260 

4 4441 0 0 0 292 
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level octree, 4 processors, and 5 values of split levels. 
 Tables 2 and 3 show that the split level scheme 
adapts the algorithm for different camera positions. In 
Table 3, d = 0 is a bad start for both time (a culling 
time higher than the one for the camera at the center) 
and workload balancing (number of nodes). In both 
cases the system stabilizes around d=3 for case 1 
(Table 2) and d = 2 in case 2 (Table 3). Figure 9 shows 
the final rendering for each camera position. 

10. Final Remarks 

 This paper presents a new and effective method for 
parallel octree culling and sorting for multicore 
systems using counting sort (which is O(n) time) and 
based on a new balancing algorithm called adaptive 
delayed static balancing. Tests revealed a time 
performance improvement of the culling process 
between 3 and 4 times in relation to the classical single 
threaded octree culling process. However, the most 
important result is the effectiveness of the adaptive 
mechanism based on the dynamic split level that can 
adjust the algorithm to new camera positions and keep 
a well-balanced workload amongst the processors. The 
tests do not consider GPU time and also avoid any 
connection with the number of resources (i.e. number 
of textures, meshes, …). 
 Also this paper introduces the concept of n-
dimensional resource space as a discrete Euclidean 
space, in which the resource array is identified with the 
counting array of the counting sort algorithm. No other 
sorting algorithm can be faster than this O(n) time 
algorithm for the culling process. The proposed 
adaptive delayed static balancing method naturally 
generates points in the n-dimensional resource space in 
a counting sort way. 
 Another important result is the proposed thread 
management system MinTMS, which reveals itself as a 
simple and effective API. 
 Future works should cover extensive statistics and 
comparisons, including plots of time vs number of 
nodes, time vs number of resources, total idle time vs
split level, more complex scenes, and more points in 
the camera path. The comparison with related work is 
difficult because the literature is scarce on parallel 
octree culling for multicore machines and we have no 
access to the code of other authors to reproduce the 
same test situation. Another future work should be the 
investigation of other heuristics and statistics that can 
improve the adaptive performance of the method. 
Further work should also consider a parallel merging 
process (i.e. to mount the array M in parallel, Figure 
8).  
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APPENDIX A – Algorithm and MinTMS 

The index of the main processor as a global constant: MAIN_PROCESSOR_IDX = 0 
Last sum of the idle time of all processors as a global variable: last_total_idle_time = 0 
Current trend as a global variable: trend = false
Number of levels of the octree as a global variable: num_levels 
Total number of processors and processor id vector as global variables: num_processors and p_idx[ ]

ADStBalancingRender (d, octree, frustum) 
  get current time and save it as startTime[MAIN_PROCESSOR_IDX] 
  calculate1 the number of nodes up to the current split level d: n = (8d+1 -1)/7 
  node_count = 0 
  clear node_list 
  put the root node of octree in node_list 
  node_list = RenderNodes(MAIN_PROCESSOR_IDX, n, node_list, frustum)   // n is greater than zero 
  set work_size to the size of node_list divided by num_processors 
  for  i = 0 to (num_processors-2) stepping by 1       // i is the secondary processor executing the rendering task 
   transfer work_size nodes from node_list to working_list[i] 
   eliminate the transferred nodes from node_list 
   set the task RenderNodesProcessorTask(p_idx[i],working_list[i])  // done by the MinTMS method: SetTask 
   make processor i to start the task RenderNodesProcessorTask   // this is done by calling StartWorking(i)1

  RenderNodes(MAIN_PROCESSOR_IDX,0,node_list,frustum)       // remaining nodes in the main processor 
  get current time and save it as startTime[MAIN_PROCESSOR_IDX] 
  If num_processors is greater than 1 
   wait for the other processors finish working       // this is done by waitUntilWorkFinished()1

  total_idle_time = CalculateTotalIdleTime() 
  d = split_Level(d, total_idle_time) 
  return d 
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