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Abstract:

Exact side effects of subroutine calls are essential for

exact interprocedural dependence analysis. To summa-

rize the side effect of multiple array references, a collec-

tive representation of all the array elements accessed is

needed. So far all existing forms of collective summary

of side effects of multiple array references are approxi-

mate e.

In this paper, we propose an approach for exact in-

terprocedural dependence analysis based on the Omega

test. In particular, we provide a method of represent-

ing the exact image of multiple array references in the

form of integer programming projection and a method

of back-propagation to form the exact side effect on the

actual array.

The representation of the exact side effect proposed in

this paper can be used by the Omega test to support the

exact interprocedural dependence analysis in paralleliz-

ing compilers or semi-automatic parallelization tools.

1 Introduction

One of the challenges to the parallelizing compiler tech-

nology is the accurate interprocedural dependence anal-

ysis. Subroutines or procedures, as the product of

structural and modular programming style, appear fre-

quently in scientific FORTRAN programs. Since almost

all scientific programs operate on large arrays in loops
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and subroutin~es are usually used to operate on subar-

rays, subroutine calls nest ed in loops are very common.

To parallelize loops with subroutine calls, the interpro-

cedural dependence analysis between all statements in-

cluding call statements is needed. The major issue of

interprocedural dependence analysis is to determine the

side eflects of subroutine calls. The side effect of a sub-

routine call is the set of the elements of the actual array

read or written by the subroutine.

There has been considerable work on approximate

summaries of side effects of subroutine calls. Triolet

et al [1] use convex sets to summarize the side effects of

subroutine calls. Callahan and Kennedy [2] use regular

sections for the same purpose. Halvak and Kennedy [3]

extend and sharpen the regular sections with bounded

regular sections. Balasundararn and Kennedy [4] use

simple sections for the side effects summary. All these

forms of summaries are approximate. Approximate

summaries make conservative estimation of the side ef-

fects. They may contain the array elements which are

not accessed by the subroutine and cause false data de-

pendence which do not exist, thus reducing the amount

of parallelism detected. A common belief behind these

approximate summaries is that exact data dependence

tests are too expensive in practice. The recent work on

the exact dependence tests [5,6,7,8] showed that by us-

ing equality elimination, redundant constraints elimina-

tion and modified Fourier-Mot zkin variable elimination,

exact dependence tests can be competitive with inexact

analysis algorithms for real programs. The efficiency of

exact test algorithms has brought the exact interproce-

dural dependence analysis back on the agenda.

In thk paper, we propose WI approach for exact in-

terprocedural dependence analysis based on the exact

Omega dependence ted [5,6]. To smpport the exact in-

terprocedural dependence analysis, an exact represen-

tation of side effects of subroutine calls is needed. The

exact side effects in this paper are obtained in two steps:

(1) An exact image is obtained by merging the multiple
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PROGRAMLOOP1
REAL B(200,100) SUBROUTINETOUCH(A, N, K)

DO 10 J=2 , 100 REAL A(2*N,N)

CALL TOUCH(B,100 ,J) DO 10 1=1, K

DO 20 1=2, J A(2*I, 1) = . . .
. . . =B(2*I, I) A(-2*I+2*K+1,1) = . . .

20 CONTINUE 10 CONTINUE

10 CONTINUE END

END

(b) Subroutine

(a) Loop 1

PROGRAMLOOP2 PROGRAMLOOP3

REAL B(200 , 100) REAL B(I:200,0:IOO)

DO 10 J=2 , 100 Do 10 J=2 , 100

CALL TOUCH(B,100, J) CALL TOUCE(B(l, O) ,1 00, J)

DO 20 1=1 ,J-1 DO 20 1=1, J-1

. . . =B(-2*I+2*J-1 , I) . . . =B(-2*I+2*J-1 , I)

20 CONTINUE 20 CONTINUE

10 CONTINUE 10 CONTINUS

END END

(c) Loop 2 (d) Loop 3

Figure 1. Example of Subroutine Calls in Loops

images of the references of the formal array in the sub- of each loop is of the form

routine and (2) the merged image is propagated back to

the calling subroutine to form the exact side effect on
El

rnax( r~l t““”J~l)
the actual array. Both the merged image and the exact

side effect are represented in the form of a single integer

programming projection.

The organization of the paper is as follows. Prelimi-

naries about program model and integer programming

projection are given in Section 2. The method of merg-

ing multiple images is presented in Section 3. The back-

propagation of the merged image to form the exact side

effect is discussed in Section 4. The exact interproce-

dural dependence analysis based on the Omega test is

presented in Section 5. The method of merging the ex-

act side effect with the images of other references in the

calling subroutine is presented in Section 6. In Section

7, we discuss the degree of merging and its impact on

performance. The acknowledgement in Sections 8 con-

cludes the paper.

2 Preliminaries

2.1 Program Model

The program in a subroutine can be regarded as a single

nested loop> because the statements not enclosed in any

loop can always be put in a dummy outermost loop with

the both lower and upper bounds equal to 1. We can

also assume that the loop stride of each loop is 1 because

any loop can be normalized as such. The lower bound

where kl,.-., k. are positive integers and each of

El,..., E. is an tine function of the loop index vari-

ables of the enclosing loops. The constant term of the

affine function may contain integer formal parameters

of the subroutine, but the coefficients of the index vari-

ables are integer constants. Similarly, the upper bound

of each loop is of the form

min(l~], . . “?1:1)

where ~l,. ... H. are affine functions of the index vari-

able of the enclosing loops. Although the loop bounds

of such form are rare in real programs, they are common

after the loops are transformed by unimodular transfor-

mation [9,10].

A statement enclosed in n loops has as many instances

as the integer grids in the n-dimensional convex set de-

fined by the lower and upper bounds of the enclosed

loops. Let ; = (ii,... ,Zn )1 be the indez vector of the

index variables of the enclosing loops. The convex set

can be represented by

1All vectors in this paper are column vectors, although we use
tulples to denote them in the text,
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where B is an integer matrix with n columns called

bound matrix and+b is an n-vector called bound vec-

tor. Both B and b are extracted from the upper and

lower bounds of the enclosing loops. The bound vector

may contain integer parameters. In this paper, we as-

sume that each convex set defined by the nested loops

is non-empty.

For instance, the index vector of the loop in subrou-

tine TOUCH in Figure 1(b) is ~ = (1) and the convex set

for the loop body is {(1) c 21 II <1< K}. The bound

matrix and vector of the convex set are

‘=(3’=(:)
A reference of a d-dimensional array, say A, enclosed

in n loops is of the form

A(#l,..., @~)

where ~~(k = 1,... , d) is an affine function of the index

variables of the enclosing loops:

The constan~term, C/c, may contain integer parameters.

The vector # = (+1,.. c , #~) is called subscripts of the

reference and can be expressed in the matrix form

where F is a d x n integer matrix F = ( fk.j), called

coefficient matriz, and F is a d-vector F = (cl,”” 0, cd),

called displacement vector.

For instance, the coefficient matrices and displace-

ment vectors for the two references in subroutine TOUCH

are:

‘l=(OC’=(O
‘2=(~2)c’=(2K:1)

Now we can define the image of an array reference in

nested loops as follows:

Definition 1 (Image of Array Reference)

The image of an array reference in a nested loop is the

set of the array elements accessed by all instances of the

reference:

where ; is the index vector of the enclosing loops, B

and $ are the bound matrix and vector, and F and E

are the cmficient matrix and displacement vector of the

reference.

2.2 Integer Programming Projection

The exact Omega dependence test is based on an effi-

cient integer programming projection algorithm. The

form of integer programming problem in data depen-

dence analysis is the set of linear equations and inequal-

ities. Suppose 2 = (zl, . . . , Xn) is the vector of integer

variables. The set of equations and inequalities can be

represented by G2 = ij and H2 S ~, where G. and H

are integer matrices with n columns and @ and h are in-

teger n-vectors which may contain integer parameters.

The set of feasible solutions of the integ$r programming

problem is {3 c Z“IG7 = ~ A Hfi < h}. The projec-

tion of the problem onto a subset of the variables, say

(x,,..., Zk) (k < n), is the set

The basic problem of dependence test is to determine

whether the set of feasible solutions of an integer pro-

gramming problem is non-empty. The basic technique

of the Omega test is to project the problem onto one

variable by eliminating all the other variables and then

determine whether the projection is non-empty.

The image of an array reference defined in Definition 1

is, in fact, the projection of the integer programming

problem in the space spanned by (#l,. 00, d~, il, ””” , in)

onto the subspace spanned by (41,. ... d~).

Since our method of interprocedural dependence anal-

ysis is based on the Omega test, the integer program-

ming projection of the form above will be used through-

out thk paper.

3 Merged Image of Multiple

References

If there are multiple references of an array in the sub-

routine, we need to find a collective representation for

the union of the images of all the references.

Let us concentrate on write references and assume

tha~ there are p write references of formal array A,

A(~j)(~ = l)... , p), in the subroutine. Let the co-

efficient matrix and dkplacement vector of the j-th (

1< j <p) reference be Fj and c;, and its bound matrix

and vector be Bj and b;. The image of the ~-th refer-

ence is denoted by Zj. Clearly, the exact image of the

multiple references is

M can be expressed as a disjunction of projections as

follows:
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Vv. . .

3i;s.t.BPi; < & A ~ = C;+ FPi;}

where i; is the index vector of the j-th reference.

While thk representation is exact, it is not collec-

tive. Ancourt and Irigoin [11] proposed a method to

merge the images of the references with constant depen-

dence distances between them. In our terminology, their

method can only merge the images of the references with

the same coefficient matrix Fj, k FI = “” o = Fp. Our

method is for general subscript functions with different

Fj.

Before going further, we need to clarify the notations

for the loop index vectors. If two array references be-

long to the same loop body, they share all their enclos-

ing loops and, therefore, belong to the same convex set.

Let there be T(T g p) different convex sets $fined ~y

the nested loops of the subroutine. We use tjl, . . . , t ~T

to denote the index vectors of the corresponding con-

vex sets. These vectors are independent although some

of them may share some outer common loops. In the

following discussion, we also use i; for the index vector

for the j-th reference and each i; (j = 1,--- ,p) is one

Of ljl , . . . . ;jr. For instance the two references in sub-

routine TOUCH belong to the same loop body and there

is only one convex set defined by the loop. Therefore,

i; and i; are actually two notations of the same vec-

tor: ~j,. We use nj, (k = 1,..0, r) to denote the number

of elements in vector ~j~. We also use (Zjl,. 00, ~jr ) to

denote the concatenation of vectors ~jl, u. . . ;jr.

Let ~min and ~max be a pair of vectors such that the

following is true for every reference (i.e. j = 1,..0 ,p),

&min s Fji~ + C~ < ~m’x, V<S.t. Bj~ 5 ~ (1)

We call ~min and ~max the common bound vectors of the

references.

The images of multiple references can be merged and

represented by a single integer programming projection

as shown in the following theorem.

Theorem 1 Given p images of array references,

Zl,..., 1P, defined in Definition 1, if each convex set

of enclosing loops is non-empty, the union of the im-

ages, ZI U 00s U ZP, can be Represented by the following

integer programming projection:

s = {Jezdl

~(;j, , . . . , ljr, Z) c Zn~l+”””+n~. +Ps.t.

~l+... +~p=l Aij<i!<i AiA—

A~=l Bj< < ~ A

Af=l~ – Fji~ _ C; < (fmax – ~min)~j A

Afzl~ – Fji~ – C; > (~min – ~max)~j}

where 3 = (zl, . . . , Xp) is an auzilliary integer vector,

Bj and ~ are the bound matrix and vectoT of the j-th

reference, F3 and c; are the coefficient matrix and dis-

placement vector of the j-th refeTence, $max and ~mi”

are a pair of common bound vectors of the References.

The idea is to introduce p integer variables ,

Zl>. ... zp, between O and 1 [12]. In any feasible so-

lution of the projection, only one of xl,... , Xp is O and

the remaining are 1. Thk fact leads to S C 21 U o.. UZP.

Zlu... U Zp G S can be established from the condition

that each convex set of the nested loops is non-empty.

The details of the proof of the theorem can be found in

[13].

No~ice that we dld not specify the contents of $max

and C#Jm’nin Theorem 1. This means that we can use

any pair of vectors that satisfy (1) to replace ~max and

‘min. One convenient choice is the array limits de-4

clared in the subroutine. Let the array be declared as

A(ll:ul,. . . 1 )Y d : Ud in the subroutine. Each of the
limits, lk or uk (k = 1,..0 , d), can be an affine function

of integer parameters. The vectors ~= (11,. 0., Zd) and

d=(ul, ..., Ud) are called Zowe?’ and upper limit vectors

of the array. We can assume that FORTRAN programs

at whkh parallelizing compilers are targeted are always

correct and well-behaved. In particular, there should be

no array referen~es outside the array limits, and, there-

fore, we can use 1 and ii for ~min and ~max, respectively.

For instance, the lower and upper limit vectors of ar-

ray A in subroutine TOUCH are

‘=(w=ro
and, according to Theorem 1, the merged image of the

two references in the subroutine is represented by

$ = {(41,42) [3( I,XI, Z2) E z3s.t.

0< Z1<1AO<Z2 <1A

Z1+Z2=1A1<I<KA

(1 – 2N)Z, <#, – 21< (21V – l)zI A

(l–iV)Z, ~r#, -l<(jV-l)ZIA

(1–2A7z, <@, +21–2K–l A

41+2~–2~– 1<(2~–l)z, A

(1 - N)z, < ~, - I ~ (N - l)Z,}

Note that there is only one convex set, 1< I < K, in

the constraints, because both references belong to the

same loop body. In other words, we have i; = i; = (1),

B1 = Bz and b; = b; in this example.

2The upper limit of the last dmension, ‘Ud, can be an assumed

size denoted by a * in FORTRAN [14]. The assumed upper limit

can be regarded as a special parameter, which will be replaced by

the corresponding upper limit of the actual array.
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4 Back-Propagation of Merged

Image

The merged image obtained from Theorem 1 only de-

fines the elements of the formal array accessed by the

subroutine. It is also symbolic because the integer pro-

gramming problem may contain formal parameters. To

obtain the exact side effect on the actual array, the

merged image needs to be propagated back to the calling

subroutine according to the execution context of the call

stat ement. Back-propagation is the process of mapping

the exact merged image to the exact side effect on the

actual array in the calling subroutine. The execution

context is the environment of the call statement in the

calling subroutine and is defined by the values of the

actuals in the call statement. The formal parameters of

a subroutine can be divided into three categories:

Category 1: Array names.

Category 2: Integer parameters used in the con-

straints of the merged ~mage: These parameters

may appear in vectors bj, c?, 1 and d.

Category 3: Other parameters. We do not consider

them here, because they do not affect the back-

propagation of the image.

The back-propagation of the image consists of two

steps as follows:

1. Integer Parameter Substitution. In this step, the

integer parameters in the constraints are replaced

by the actuals and the merged image becomes a

template of the image.

2. Subscript Translation. The template is translated

to the exact side effect on the actual array accord-

ing to the actual for the array name.

4.1 The Template of the Merged Image

Let Z=(zl,... , xv) be the integer parameters used in

the constraints of the merged image (Category 2). The

actual for each integer parameter can be an integer con-

stant or an affine function of variables and parameters in

the calling subroutine. Let these variables and parame-

ters in the calling subroutine be if= (vi, . . 0, vt). Then,

the actuals in the call statement can be represented by

where Fz is a w x t constant integer matrix and g; is

a constant integer w-vector. For the parameters whose

actuals are constants, the corresponding rows of F= are

simply zero vectors. For instance, the integer parame-

ters of subroutine TOUCH are 2? = (K, IV). In the call

statements in all the three programs (LOOP1, LOOP2

and LOOP3) in Figure 1(a)(c)(d), the actual for IV is

a constant and the actual for K is variable J. Thus, we

have

()Kz=
iv

,;=(J)

In the constraints of the merged image, the in~eger

parameters i? = (21,.. c , ZW) can only appear in bj, c;,

Land tij In thk paper, we assume that each element of

bj, c>, 1 and ii is an affine function of these parameters.

By substituting FZO + g> for parameters 2, vectors b;,

c;, r and ii become vectors of affine functions of ii. Let

them be denoted by ~’, C;l, ? and C’, respectively.

For instance, these vectors in our example are as fol-

lows:

“=& ’=(~Jci’=(O

The formal array now is confined by the lower and

upper limit vectors ? and i?. We use @ to denote the

subscripts of the formal array within these limits. Then,

the exact set of the elements of the formal array accessed

for a particular set of integer actuals can be represented

by the following template of the image.

Definition 2 (Template) The tempiate of the merged

image is the set defined by

s’= { q?ez~l

~(;j,, “ . . ,;jn,q● jj%+”””+njr +P+w~&

The formal array with the limit vectors ? and ii’ is

called the template formal array.

4.2 Subscript Translation

To find the exact side effect on the actual array, we need

to translate the subscripts of the template formal array

to those of the actual array according to the actual for

the array name (Cat egory 1). In general, the shapes

of the formal and the actual arrays are allowed to be

different in FORTRAN and the subscript translation

between them could be complicated. However, in most

real FORTRAN programs, formal arrays are subarrays

of the actual arrays. We have the following assumption

with regard to the shape of the actual array.
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Assumption 1 (Shape of Actual Array) Given

the actual array B for the template formal array A,

1. the number of dimensions of B is equal to OT greater

than that of A, and

2. the sizes of the first d – 1 dimensions of B are the

same as those of A. The size of the d-th dimension

of B is no less than that of A.

This assumption should be satisfied in most real FOR-

TRAN programs. Let the actual array be declared as

B(G:ziI,... ,&: tici, . ..) in the calling subroutine. Let

the actual for the array name be B(sl, ””” ,.%, sd+l,”” “).

Then F= (sl, ---- , sd) ~re the-first d subscripts of the

actual. We use @ = (@l, . . . , @d) to denote the first d

subscripts of the actual array. If Assumption 1 is sat-

isfied, the subscript translation between the formal and

actual arrays is very simple as shown in the following

lemma.

Lemma 1 If the conditions in Assumption 1 are satis-

fied, the subscripts of the template, $, can be_translated

to the first d subscripts of the actual array, @, by

where $ = S — ?, and ? is the lower limit vector of the

template formal array and ; is the first d subscripts of

the actual for the array name.

The proof of the lemma can be found in [13].

In our example, Assumption 1 is satisfied in all the

three programs in Figure 1. F~r the subroutine calls

in programs LOOP I and LOOP2, 6 = 6, but for program

LOOP3, it is

Based on the template of the merged image and the

subscript translation scheme, the exact side effect of a

subroutine call can be represented by an integer pro-

gramming projection shown in the following theorem.

Theorem 2 If the conditions of Assumption 1 are sat-

isfied, the side effect on the actual array of an instance

of the call statement is the set of the elements of the ac-

tual array, whose subscripts for the dimensions higher

~han t~e d-th gre (sd+l, . ..) and whose first d subscripts,

C#= (@l,..- , qb), are specified by the following projec-

tion:

where $ is the same as in Lemma 1, b;’ and c;’ are

the same as in Definition 2, and i and ti are the lower

and upper limit vectors for the first d dimensions of the

actual array.

Note that the common bound vectors, ii’ and ?, in the

constraints of the template are replaced by ii and i, the

upper and lower limit vectors for the first d dimensions

of the actual array. The replacement can be justified by

the assumption that there are no references outside the

limits of the actual array. The details of the proof of

Theorem 2 can be found in [13].

For instance, in program LOOP3 the exact side effect

on the actual array B of the call statement for a partic-

ular J is

Note that limit vectors of the actual array are ~ = (1, O)

and ii = (200, 100).

5 Exact Interprocedural

Analysis

The purpose of representing exact side effects in the

form of integer programming projection is to use the

Omega test for exact interprocedural dependence anal-

ysis. The exact Omega dependence tests between ar-

ray references are covered in [5,6,7]. In this section, we

discuss the exact Omega dependence tests between call

stat ements and array references.

If a call statement is enclosed in loops, there could

be many instances of it. The exact side effect specified

by Theorem 2 is only for one instance of the call state-

ment. Recall that the actuals for the integer parameters

of the subroutine, ,2 = (,z1, 0.0, ZW), are afline functions

of variables and parameters of the calling subroutine,

?7= (VI, . . . ~ZIt). Let the first S(S s t) elements of v ,

V;= (v,,,.. , us), be the variables and the rest the pa-

rameters. The variables are usually the index variables

of the enclosing loops. Let us use ~(v~) to denote the

exact side effect of the instance of the call statment for

a particular v;. We also assume that the bound ma-

trix and vect~r of the loops enclosing the call statement

are BY and bv, respectively. Hence, all the instances of

the call statement can be represented by the following

convex set:
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We concentrate on the dependence test between a call

statement and an array reference in the calling subrou-

tine. The dependence test between two call stat ements

can be worked out similarly. Suppose that the sub-

scripts of the array reference for the first d dimensions

; and the subscripts for the remainingare @ = F~tL +CZ

dimensions are ~2 = F$vl + c~. Let the bound matrix

and vector of the enclosing loops of the reference be BZ
+

and bc, respectively.

There is a data dependence (flow, anti, or output)

between the call statement and the array reference if

and only if there is an element accessed by both and at

least one access is write access 3. Formally, we can have

the following definition:

Definition 3 (Data Dependence) There is a data

dependence between a call statement and an array ref-

erence if and only if

1. there exist ~, v; and v; such that

Bzv; < b; A Byvi < b; A

~ E ~(v;) A

$=F~v;+~A

>_ 3s — F;v; + Cz

.
where S2 = (s~+l, . ..) are the subscripts from the

(d+l)-th dimension in the array name actual of the

call statement, and everything else is as described

in the above discussion, and

Z. either ,Qhe reference is a write reference OT the side

effect S is the write side effect.

The following theorem shows how to form an integer

programming projection to test the existence of depen-

dence.

Theorem 3 There is a data dependence between a call

statement and an array reference if and only if

1. the set defined by the following projection is non-

empty:

{ 6 E zdl~(v;, v;, zjl, ”””,;jr, z) St.

BYV; < ~ A

Zl +... +xP=p–l A6~~< iA

A~=lBji~ < ~’ A

A~=l$ – $– Fji~ – c;’ < (ii – f)xj A

Af=l~ – ;– Fji~ – c;’ > (i– fi)xj A

BZV; ~ b; A

3To simplify the discussion, we do not distinguish between di-

rect and indirect data dependence [7] in this paper.

$=F~v;+c~A

s> = F:v; + Cl}

+ . . .

1 F:, c;, and SZ arewhere Bv, bu, Bx, b~~ F~~ cz~

the same as in Definition 3 and everything else is

the same as in Theorem 2, and

2. either ~he reference is a write reference or the side

effect S is the write side effect.

For instance, to find out whether there are depen-

dence between the call statement and the read refer-

ence in program LOOP3, we can test whether the follow-

ing projection is non-empty:

{ (ii, J2)13(~, ~1,32, J, Jl, Il) e -@s.t.

0< Z1<1AO<Z2<1AZ1+Z2= 1A

15 I5JA25J51OOA

–199zI < & – 21< 199x1 A

–lOOZ1 < ~2 +1 – 1< 100z1 A

–199w, < & + 21– 2J – 1< 199zz A

–100z2 < ;2 + 1 –I < 100xz A

2< JI<1OOA1<II<J1–1A

&=-211 +2 Jl-l Aj2=ll}

To find distance vectors of the dependence, we only

need to project the integer programming problem onto

the differences of the index variables of the common en-

closing loops. In the above example, the dist ante vector

is defined as (A), where A = J1 – J, because the call

statement and the assignment statement share only loop

J. The integer programming projection for the dist ante

vector is

‘D = { (A) I 3(&, i2,1, zl, x2, J, J1, L) E Z8S.~.

O< Z1<l AO<ZZ<l AZ1+ZZ=l A

1< I< JA2<J<1OOA

–199z1 < & – 21< 199x1 A

–lOOZ1 < rj2 + 1 – 1< 100w A

–199x2. < & + 21– 2J – 1< 199zz A

–100x2 < ~2 + 1 –I< 100z2A

2< J151OOA1<I1<J1–1A

&=-211 +2 Jl-l A~2=11A

A= JI– J}

The integer programming projections for dkitance vec-

tors for programs LOOP I and LOOP2 can be formulated

similarly. We have run the exact Omega tests for these

projections and the results are:

1. There are no dependence

ment and the assignment

between the call state-

statement in program
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:L, ;L. lLLL.
(a) test ;or loop 1 (b) test’for loop 2 (c) test ;or loop 3 ‘0

Figure 2. Interprocedural Omega Tests

LOOPI. Therefore, loop J can be executed as a such a situation: program MAIN calls subroutine LOOP

DOALL 100P4. whkh, in turn, calls subroutine TOUCH.

Basically, we have two choices:
2. There are data dependence between the call state-

ment and the assignment statment in program ●

LOOP2. The distance vector is (A) = (l).

3. There are data dependence between the call state-

ment and the assignment statment in program

LOOP3. The distance vector is (A) = (0). Since

the dependence do not cross iterations, loop J still
●

can be transformed to a DOALL loop.

These Omega tests were run on a Spare IPC Worksta-

tion based on the 15.8 MIPS Sun Spare CPU. The times

for the three tests are 68.164 msecs, 80.830 msecs and

93.029 msecs, respectively.

Figure 2 (a), (b) and (c) show the elements of array AI

We can further propagate the exact side effect back

to the subroutine that calls thk subroutine. In the

example of Figure 3, the side effect of the call state-

ment for TOUCH in (b) can be further propagated

back to the main program in (a).

We can merge the side effect with the images of

array references or other side effects of call state-

ments before the further back-propagation. In the

same example, the side effect of the call statement

can be merged with the image of the write reference

of B in (b) and, then, propagated back to the main

program in (a).

B accessed in programs LOOPI, LOOP2 and LOOP3, re-
. .:cordlng to the discussions in Sections 3 and 4, the

spectively, for J = 5. The shaded small squares show
exact side effect on array B of an instance of the call

the side effects of the subroutine call for J = 5 and
statement for TOUCH is

the dark dots show the elements read by the assign-

ment statement for J = 5 (some squares and dots are

overlapped in Figure 2(c)). It can be seen from these

figures that these interprocedural dependence tests are

accurate. Notice that the accuracy of these tests cannot

be achieved if any of the approximate summaries of side

effects in [1,2,3,4] was used.

6 Multi-Level Subroutine Calls

We have shown how to merge the images of multiple

array references in a subroutine (say, AA) and propagate

them back to the calling subroutine (say, BB) for data

dependence tests. If subroutine BB is called by another

subroutine (say, CC), there is the question of how to

process the side effect of subroutine call for AA for the

data dependence tests in subroutine CC. Figure 3 shows

4A DOALL loop is a parallel loop whose iterations can be
executed in any order without cross-iteration synchronization or
communication. If a loop does not have dependemes across its
iterations, it can be transformed to a DOALL loop.

In this integer programming projection, J is a parame-

ter and has different values for different instances of the

call statement. It is also a variable in the calling subrou-

tine LOOP and the convex set for its values is 1< J < L.

To obtain the side effect of the all instances of the call

statement, all we need to do is to add 1 ~ J < L into the

constraints of the projection and treat J as a variable

as follows:
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PROGRAMMAIN
REAL C(2OO,1OO) SUBROUTINELOOP(B,M,L)
DO 10 1=2, 100 REAL B(2*M, M) SUBROUTINETOUCH(A, N, K)

CALL LOOP(C,lOO, I) DO 10 J=l, L REAL A(2*N, N)
DO 20 J=2 , I CALL TOUCH(B, M, J) DO 10 1=1, K

DO 30 K=2 , I DO 20 1=1, J A(2*I, 1) = . . .

. . . =C(2*J, K) B(2*J-1,1) = . . .

30 CONTINUE

A(-2*I+2*K+1,1) = . . .

20 CONTINUE iO CONTINUE
20 CONTINUE 10 CONTINUE END
10 CONTINUE END

END

(c) Subroutine TOUCH

(b) Subroutine LOOP

(a) main program

Figure 3. Multi-level Subroutine Calls

Z1+ZZ=l A1<I<JAISJ< L (1- W(X2+Y2) < i2 -~

(1– 2M)Z, < & – 21< (2M – 1)31 A < (M– l)(zz+yz)}

We can propagate this side effect of all instances of the

call statement back to program MAIN using the same

technique described in Section 4.

Alternatively, the above side effect can be merged

with the image of the reference of array B to form a

single projection before the back-propagation. What

we need is to introduce yl and y2 such that I/l + 112= 1

and O ~ yl, y2 ~ 1. We use yl for the reference and yz

for the call statement. The merged image is

s = {( fL, i2)l

3( I, J,zl, z2, Jl, 11, yl, y2) e z8s.t.

05y151A05y251A

yl+y2=l A

l<~l<~Al<ll<~lA

(1 – 2M)g, <J, – 2J, + 1

< (2A4 – l)yl A

(1–iVf)y15 ;2-ll<(kf-l)gl A

l< J<LA

05 XI<1A05X251A

X1+ X2=1 A1<I<JA

(1 -2M)(X, +y,) < & -21

< (2M– l)(x1 +y2)A

(1 –M)(l!, +y,) < & -1

~ (M– l)(zI +y2) A

(1–2A4)(x2 +vz)s;1+21-2J-I

~ (2A1– 1)(x2 +Y2) A

Notice that the index vector for the array reference is

(JI, II).

7 Discussion and Related Work

We have presented a method of exact interprocedural

dependence analysis based on the Omega test. We de-

scribed how to represent the image of an array refer-

ence in the form of integer programming projection and

how to propagate the image back to the calling sub-

routine for the exact side effect on the actual array.

To represent the images of multiple references collec-

tively, we offered a method to merge multiple images

to a single integer programming projection. The ad-

vantage is that the number of pairs of array references

(inclu~ing call statements) for dependence tests can be

reduced, because the exact side effect of a call state-

ment is represented collectively as in most approximate

side effects summaries. We believe that the number of

pairs of references for dependence tests is important.

According to [5,6], the time of running the integer pro-

gramming projection for a dependence test is roughly

the same as the time for scanning array subscripts and

loop bounds, and forming and copying the integer pro-

gramming problems A potential problem is the size of

the integer programming problem, because we introduce

extra variables when merging the multiple images. The

degree of merging can vary. Merging images of all ref-

erences including side effects of call statements and not

merging at all are the two extremes on the spectrum.

For the best performance, the balance between the num-

5It is mentioned in [5,6] that the dependence test time is about

2-8 times the copying time. The time of scanning array subscripts

and loop bounds to build the dependence problem is typically 2-4

times the copying cost. For many pairs, the time of building the

problem is larger than the time of analysis.
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ber of pairs of dependence tests and the size of integer

programming projection needs to be determined. While

the performance of the Omega tests for the examples

in this paper is acceptable, we need more experiments

on real programs. We are currently incorporating the

Omega test into our system and implementing the in-

terprocedural dependence test of this paper. It is hoped

that the experiments on real FORTRAN programs will

show us the best degree of merging in the near future.

In [15,16], Li and Yew proposed to use atom images

and atoms to carry the information about array ref-

erences and loop bounds for exact interprocedural de-

pendence analysis. Their work is equivalent to the “no

merging” extreme on the spectrum of degree of merging.

Our work is also in the framework of the exact Omega

dependence test.
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