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Abstract

The CMAX translator converts applications written in

scalable Fortran 77 to parallel Connection Machine For-

tran. The most obvious part of the translation problem,

and one addressed by a number of previous translators

as well as CMAX, is loop vectorization: the substitu-

tion of array syntax and intrinsic for Fortran 77 DO

loops. A less obvious (but equally important) part of

the translation problem is the conversion of constructs

arising from Fortran 77’s linear memory model into

code which does not rely on storage or sequence asso-

ciation. Most such constructs can only be detected and

repaired through interprocedural analysis and transfor-

mation; CMAX is the first translator to perform such

repairs. This paper describes the CMAX translator and

some of the more important transforms that we have

distilled from our users’ porting experiences.

1 Introduction

Fortran 77, which is available on almost all comput-

ing platforms, has served as the standard language of

scientific computing. Its universality allows programs

to be ported simply by recompiling, but Fortran 77

codes are often tuned to the details of a particular ma-

chine architecture and may not perform well after be-

ing recompiled for a new target machine. The wide

variety of architectural features that appear in vari-

ous high-performance target machines (highly pipelined

functional units, multiple function units, massive paral-

lelism, and distributed memories) make demands that

often are not met by “dusty” Fortran 77 applications,

The portability of a code’s performance across different

architectures—its scalabiiitwis not guaranteed, and

must be engineered in. Serendipitously, the process of

modernizing a code to make it scalable often will im-

prove its performance on the original target machine.

One extreme example of this was encountered while
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modernizing a Fortran 77 astrophysics code

ration for a port to a Connection Machine@

in prepa-

computer

(CM). Although the original authors believed that they

were running as fast as was possible on the original tar-

get machine, a Cray Y-MP, modernizing the code and

simplifying its loop structure (not changing the under-

lying algorithm) sped the code up over 40 times on the

Cray [2]!

The CM Automated X-later (CMAX) is a tool that

converts standard Fortran 77 (F77) into CM Fortran

(CMF), a modern Fortran which incorporates the array

expression syntax of Fortran 90 (F90). When applied

to a program written in scalable F77, the output of

CMAX has good performance on distributed-memory,

massively parallel systems like the CM. 1 Thus, CMAX

provides a migration path for serial programs onto the

CM.

CMAX can be used to assist in a one-time porting

effort, at the conclusion of which the user discards the

old F77 and maintains the CMF output. Alternatively,

CMAX users can continue to maintain their scalable

software in F77 for maximum portability to multiple

platforms and can run CMAX as a preprocessor before

regular compilation by the CMF compiler. Develop-

ment of new scalable code might also be done in F77

using CMAX either for portability or because develop-

ers familiar with F77 prefer to continue using it rather

than CMF.

This paper describes the CMAX translator and some

of the experiences of initial CMAX users. Figure 1 il-

lustrates the two separate code transformation steps in-

volved in running a scalable F77 code on a Connection

Machine system (a CM-2, CM-200, or CM-5). This pa-

per focuses on the first step, in which code is converted

into CMF by using CMAX. The second step of the

conversion process involves compiling CMF for execu-

tion on the parallel target machine. That compilation

process is described elsewhere [17, 18].

CMAX is based on Forge technology from Applied

Parallel Research (APR) [12]. Thinking Machines Cor-

poration (TMC) identified a number of capabilities lack-

1While some contructs have slightly different performance

characteristics across the Correction Machine family, CMAX

does not distinguish between these different machines.
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Figure 1: Conversion process using CMAX.

ing in existing vectorization tools and contracted with

APR to implement them. TMC is currently continuing

development of the code in-house with consulting help

from APR. At present, the system consists of 340,000

lines of C code, of which over 60,000 lines are new and

CMAX-specific. In addition, TMC’S CMAX Quality

Assurance test library contains over 100,000 lines of F77

code.

2 Scalable Fortran

A useful definition of a scalable code is one that at-

tains respectable performance over a range of problem

sizes and over a range of target machines (including con-

vent ional serial processors, vector computers, and mas-

sively parallel computers). Said another way, scalable

code has performance which is portable between plat-

forms. Clearly, scalability is becoming more important

as various high-performance architectures proliferate,

each making demands that break with the conventions

of older serial models. Scalable Fortran is described in

detail in [20]; these two rules capture the essence of the

scalability y conventions described there:

1. Scalable code operates on all (or nearly all) the data

“at once .7’ In F77, this means looping over as much

of as many array axes as possible, with each iteration

of an inner loop corresponding to an array element.

2. Scalable code does not assume a particular memory

model. Multidimensional arrays should be declared

as such and be declared consistently throughout the

program. For example, it is not scalable to pass a 3D

array to a routine that zeros out a 1 D array, even if

the linear sizes match. Scalable code does not make

use of the linear memory model, and it therefore must

avoid relying on:

● Sequence association: The linearization of multi-

dimensional values to unidimensional objects in

column-major order.

. Storage association: The sharing of storage be-

tween two or more variables or arrays, caused

by EQUIVALENCE and by some usage of COM-

MON.

Non-scalable constructs in an application reduce the

output code’s performance on powerful target machines.

For example, a use of storage association (if it is not

recognized as an idiom and translated away) can force

an array to be stored on a single processor to preserve

correctness.

Even if a code does not contain non-scalable con-

structs, it may be that the basic algorithm is inher-

ently serial. Unfortunately, rewriting scientific algo-

rithms is beyond the capability of current automatic

tools. What CMAX does is attempt to remove the

drudgery of rewriting the syntax of a code that is al-

ready scalable in nature and is serial at only a superficial

level.

Adhering to scalability guidelines can improve per-

formance on serial and vector computers, as well as en-

abling translation to efficient parallel code. Consider

the two program fragments in Figure 2. The first frag-

ment, (a), uses a nest of four loops to compute a two-

dimensional “stencil” operation. The second fragment,

(b), uses a nest of two loops to compute the same sten-

cil. The second is more scalable than the first, because

each iteration of the inner loop corresponds to a unique

element of the array B. The table! (c), shows times for

the two loops on a serial computer and a vector com-

puter in both scalar and vector mode. On the serial

computer (a Sun 4/490), the scalable code is over three

times faster; on the vector computer (a Cray Y-MP),

the scalable code is over one hundred times faster in vec-

tor mode. Also note that while vectorization helps the

scalable code, it actually hurts the non-scalable code. In

addition to being faster on these platforms, the scalable

loop is easily translated into parallel CMF whereas the

non-scalable loop is not.

3 Translation

There are two major pieces to the problem of translating

scalable F77 into CMF. The first piece involves substi-

tuting array operations for statements that operate on

array elements within F77 loops [1]. This important

and visible piece of the problem has been addressed by

many translators, such as KAP and VAST [4, 13]. Most

such translators operate on a subroutine-by-subroutine

basis with no interprocedural analysis.

The equally important second piece of the problem is

to translate constructs arising from F77’s linear memory

model so that they do not hinder performance on a dis-

tributed memory target machine. Most such constructs

can only be detected and repaired through interprocedu-

ral analysis. Most vectorizing compilers and translators

do not address this problem, which is a major focus of

our CMAX effort.

The distributed memory of many parallel target ma-

chines is non-uniform in that it draws a distinction be-

tween the separate memory spaces of the Processing El-

148



DO J = 2, H-1

DO I = 2, H-1

B(I, J) = 0.0

DO JJ = J-1 ,J+l
DO II = I-1 ,1+1

B(I, J) = B(I, J) + A(II, JJ)
EMD DO

EED DO
EMD DO

END DO

(a) Loop ]

DO J = 2, N-I
DD I = 2,11-1

B(I, J) = A(I-I, J-1) + A(I, J-1) + A(I+l, J-1) +

A(I-l, J) + A(I, J) + A(I+l, J) +

A(I-l, J+l) + A(I, J+l) + A(I+l, J+l)

EliD DO

EED DO

(b) Loop 2

Cray Y-MP Cray Y-MP
sun 4/490 (scalar) (vector)

Loop 1 5.639 2.494 5.282

Loop 2 1.891 0.338 0.052

(c) Times

Figure 2: The two program fragments (a) and (b) perform the same stencil computation. Table (c) shows the times

in seconds of these two fragments for n = 1000.

ements (PEs). For example, the CM-2, CM-5, MasPar

MP-1, and I-WARP machines all consist of processors

with their own local memories. Arrays on such ma-

chines can either be stored on a single processor or be

distributed in some fashion among multiple processors.

The variety of possible distributions means that when

arrays are passed as arguments, the procedures must

agree on how an array is stored. In CM Fortran, a mis-

match between the array distribution of a dummy and

actual argument is treated as a user error unless an in-

terface block describes the dummy to caller mismatch.

Even with an interface block, expensive communication

is required to move arrays back and forth to cover up the

mismatch. Interprocedural analysis allows CMAX to

insert consistent array layout directives program-wide.

Arrays used in vectorized loops are distributed across

the PEs of the CM; others are stored in a single proces-

sor.

The interprocedural analysis required to address the

linear memory model problem has a side benefit in that

it can improve loop vectorization. For example, it en-

ables CMAX to transform a loop with an embedded

subroutine call into a call to a subroutine that contains

the loop. In that form, it is possible that, subject to

dependence analysis, the loop can be vectorized.

One ramification of interprocedural transformations

that push loops and set array distributions is that a

single subprogram might need to be called in multiple

ways: one caller might pass a distributed array and an-

other might not, one might push a loop down into the

~ubprogram and another might not. The solution used

by CMAX is to clone subprograms [7]. For each dis-

tinct transformed version of a subprogram that some

caller requires, CMAX creates a renamed copy of the

subprogram and modifies it appropriately.

In general, the process of compiling many cloned

copies of a subroutine could lead to code explosion.

However, other than loop pushing, the changes that lead

to clones are tied to individual array arguments, and

the number of transforms that can be applied to any

one argument is small. In the case of loop pushing, the

number of pushable loop is generally small. In prac-

tice, code explosion has not happened. For example,

the F77 program X-PLOR started out with 698 subrou-

tines. CMAX’S output contained 83 additional routines

due to variants. Using another measure, CMAX’S in-

put had 75,000 lines and its output had 96,000 lines. Of

the output lines, 7,000 were CMF LAYOUT directives and

2,500 were descriptive comments inserted by CMAX.

The Convex Application Compiler performs inter-

procedural dependence analysis, inlining, and constant

propagation, but because its target machine provides

the illusion of a single flat linear memory space, it does

not need to repair linear memory model constructs [6].

We believe that distributed memory architectures are

much more amenable to scaling into thousands of pro-

cessors than are shared memory architectures, which

must expend hardware resources to provide the illusion

of a single linear address space. In order to use large

numbers of processors it is therefore necessary to replace

constructs which rely on the linear memory model with

those which do not.

The Convex Application Compiler clones subroutines

in order to make possible interprocedural constant prop-

agation (e.g., of loop bounds), but it does not clone

them for other optimization. It ums inlining in order

to perform an optimization equivalent to CMAX’S loop

pushing [8].

The nature of the translation process and the large

numbers of idioms recognized make it impossible to de-
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scribe all CMAX transformations here. Therefore, we

simply list the most important CMAX transformations

and give a few small code examples to illustrate some

of these.

3.1 Standard Vect orizat ion Transformations

DO loops are vectorized using dependence analysis,

scalar promotion, loop fissioning, and idiom recognition.

Nested loops are vectorized into multidimensional array

operations. Idiom recognition allows loops wit h certain

types of dependence to be converted into parallel oper-

ations. Such operations include reductions, such as SUM

and MAXVAL, and more complex computations such as

DOTPRODUCT, MAXLOC, and MATMUL. See Figure 3.

The output program uses array syntax for element-

wise computations, WHERE/ELSEWHERE for conditional-

ized parallel operations, and F90 intrinsic for array

transformations. CMAX decision rules for conversions

can be controlled by CMAX directives at the level of

single loops or whole procedures, or globally through

command-line switches.

Some location-dependent operations are hard to ex-

press in generic F90, and in some cases CMF’S FORALL

(an F90 “removed extension” which is a part of the High

Performance Fortran (HPF) standard [10]) statements

are generated to express succinctly the computation.

Parallel prefix computations (or “scans” ) are recognized

and expressed as calls to CMF Utility Library subrou-

tines.

3.2 Int erprocedural Transformat ions

Without interprocedural knowledge, a translator would

have to make conservative assumptions about storage

and sequence association. On Connection Machine sys-

tems, such conservatism tends to interfere with efficient

execution. CMAX performs extensive interprocedural

analysis and code transformations:

. CMAX generates CMF$LAYOUT directives to control

array distribution. Arrays that are used in vector-

ized loops are distributed across the memories of

the PEs; other arrays are not. The user may in-

sert layout directives in the. F77 source code to over-

ride the default behavior. Both user direct ives and

automatically-inserted directives are propagated con-

sistently throughout the program. In CM Fortran, a

given array has a single layout throughout the life of

the program. CMAX detects layout conflicts (which

can only arise from user errors) and reports them to

the user.

● CMAX detects uses of arrays that are incompatible

with the distributed memory model. For example,

some uses of COMMON (Figure 4) or EQUIVALENCE (Fig-

ure 5) statements can lead to an incompatibility. In

such cases, CMAX generates CMF$LAYOUT directives

to place arrays in the memory of a single processor to

preserve the correctness of the code. Since the arrays

are not distributed among multiple processors, all ac-

cess to them will be serial rather than parallel. The

user is informed of the possible loss of performance

due to specific problem lines in the source code.

. CMAX pushes loops into subprograms. A loop with

an embedded subroutine call can be transformed into

a call to a subroutine that contains the loop, thus

making it possible to vectorize the loop. See Figure 6.

If dependence analysis indicates that it is legal, a loop

can be distributed across each of the contained state-

ments. As a result, even if one statement in a loop

is not vect orizable, it will not inhibit vect orizat ion or

loop pushing involving the other statements.

In the course of passing a number of codes through

CMAX, we discovered that the loop pushing trans-

formation increased CMAX compile time without a

corresponding improvement in the output code’s per-

formance. As a result, by default we have turned loop

pushing off in CMAX; users can turn it on where

needed.

. CMAX passes entire arrays when possible. Calls are

modified to pass whole arrays rather than elements

or sections. This generally leads to more efficient

execution, and often makes it possible to push loops

into subroutines, which in turn makes vectorization

possible. See Figure 7.

. CMAX passes array slices when appropriate. F77

users often pass n-minus-k-dimensional slices of n-

dimensional arrays to subprograms in a way that as-

sumes sequence association. For example, they might

pass a tw~dimensional slice of a three-dimensional

array A as A ( 1,1, n). CMAX recognizes when caller

and callee are cooperating in this manner and pro-

duces CMF that does not depend on sequence asso-

ciation. In this case, the call would pass A (: , :, n).

See Figure 8.

CMAX clones subprograms. Transformations such as

those listed in this section can change the interface

to a subroutine. CMAX generates copies of subpro-

grams before modifying them in cases where multiple

callers need to call a subprogram with different inter-

faces. For example, one caller might push two loops

into a subroutine while another caller does not push

any loops.

CMAX recognizes dynamic memory allocation. Un-

like F90 (and CM F), F77 lacks a dynamic memory fa-

cility, so users often construct their own idiosyncratic

dynamic memory allocation facilities. Often these

operate by carving up a large COMMON block, mak-

ing use of the linear memory model (sequence and

storage association) in a non-scalable way, CMAX

defines a clean, portable F77 interface to a dynamic

memory allocation facility. When passed through

CMAX, these calls are translated into the appropri-

ate F90 dynamic allocation constructs. We provide
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REAL FUMCTIOMDOT(X ,Y ,M)
REAL X(E) , Y(M)
REAL RESULT
RESULT = O CMF$
DO 1=1 ,11 + CHF$

RESULT = RESULT + X(I) * Y(I)
EHDDO
DOT = RESULT
END

Figure 3: Dot product function in F77 and after translation by CMAX.

REAL FUECTIOM DOT(X ,Y ,lJ)
REAL X(M) , Y(M)
REAL RESULT
LAYOUT X(: MEWS)
LAYOUT Y( :MEWS)
RESULT = O
RESULT = RESULT + DOTPRODUCT(X >Y)
DOT = RESULT
EUD

The most notable difference between the

input and output of CMAX is that CMF array operations are substituted for F77 loop iterations and that explicit

directives are generated describing how to lay out arrays across the processing elements. : NEWS invokes a block array

distribution in CMF.

SUBROUTINE KERMEL( TK)

coimom /SPACEI/ u(iool), v(looi), u(iooi),
1 X(1 OO1), Y(1OO1), 2(1001), G(IOOI),
2 DU1(101) , DU2(IOI) , DU3(101) , GRD(IOO1) , DEX(1OOI) ,
3 XI(1OO1) , EX(1OO1) , EX1(1OOI), DEXI(IOO1) ,
4 VX(IOOI) , XX(IOOI) , RX(1OO1) , RH(2048) ,
5 VSP(IO1) , VSTP(IOI) , VXME(1OI) , VXHD(IO1) ,
6 VE3(I01) , VLR(IOI) , VLIIJ(101) , B5(IOI) >
7 PLAli(300) > D(300) , SA(101) , SB(1OI)

.
. . .
SUBROUTINE SUPPLY(i)
. . .
COMMON/SPACEi/ U(19977)
. . .

Figure 4: A major COMMONblock used in the Livermore

loops is declared inconsistently between subroutines in

such a way to inhibit conversion. CMAX detects this

inconsistency and forces the arrays to be allocated in a

single processor.

a serial implementation of our interface so that users

do not have to sacrifice portability when using this

new interface.

3.3 Generating Maintainable Code

In addition to the code transformations described above,

CMAX has a number of features that are impor-

tant for producing CMF output that is readable and

maintainable. These features are missing from most

preprocessor-t ype vectorizers, but are important for

users who plan to use CMAX to produce a maintain-

able output program:

. PARAMETERs are retained as named entities and are

not substituted in-line.

● User statement labels are not renamed or removed.

● INCLUDE files

contain code

rarely do).

are not expanded in-line unless they

that must be modified (which they

comtom /SPACEI/ u(1oo1), v(iool), w(1oo1),
1 X( IOO1) , Y(IOOI) , Z(1OOI) , G(IOOI) ,

. . .
DIMEMSIOE ZX(I023) , XZ(1500) , TK(6)
EQUIVALE!JCE ( 2X(1), Z(l)), ( XZ(l), X(l))

Figure 5: Since X and Z are only given 1001 elements,

ZX and XZ use storage in G and Y as well as X and Z,

respectively. The current CMF compiler does not sup-

port EQUIVALENCE on distributed arrays; even if it did,

this kind of memory use is inherently nonsalable as

it greatly constrains the distribution of the arrays in-

volved. CMAX detects the requirement for contiguous

allocation of X, Y, Z, and G, and forces these arrays to

be allocated in a single processor.

. Output code contains comments describing interpro-

cedural modifications made during conversion, such

as adding arguments to a subroutine.

4 Debugging and Performance Analysis

CMAX is tightly coupled to Prism, a window-based de-

bugger and program analysis tool. Within Prism, users

can develop, execute, debug, and analyze the perfor-

mance of programs written for Connection Machine sys-

tems [19]. Prism has been in use for several years with

programs written in CMF and C*. CMAX piggybacks

onto Prism’s CMF support, and has been extended to

accommodate users working with CMAX-translated ap-

plications. The new Prism environment provides facili-

ties for examining CMAX CMF output and viewing it

along side the input F77 program. All Prism features

work in terms of either (or both) the original F77 or the

CMF, and the user can change the active point from F77

to CMF with a single mouse click. Prism’s new CMAX-

related capabilities are unusual in that most vectorizers

that produce source-level output code require the user

to debug solely in terms of that output code.

CMAX delivers information about the transforma-

tions made to the input program through an auxiliary
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. . .
DO K = l,M

CALL DOTP(A, B, C, K, H)
EMD DO

SUBROUTINE DoTp(A, B, c, K, M)
REAL A(M, M), B(M, M), C(IJ, M) =+’
DO J = 1,11

CMF$

DO I = l,M
CMF$

A(I, J) = A(I, J) + B(I, K) * C(K, J)
CMF$

EMD DO
EBD DO

END

. . .
CALL DOTPll(A, B,C, IO
. . .
SUBROUTINEDOTP~l (A ,B ,C ,M)
REAL A(U, E), B(H, M), C(?I, M)
LAYOUT A( :MEUS, :MEWS)
LAYOUT B( : MEWS, :MEWS)
LAYOUT C( :MEWS,: MEWS)
A = A + MATMUL(B, C)
EHD

Figure 6: CMAX pushes the outer loop into the DOTP subroutine, then vectorizes the subroutine,

MATMUL. The caller is modified to call the new subroutine, DOTP_Pl.

resulting in a

REAL AA(MB)
. . .
CALL CRUBCH(AA(5) , 57)

SUBROUTIIiE cRuMcE(A, s)
REAL A(H)
DO I = 1,X

A(I) = SQRT(A(I)) + 2.0
END DO
END

+’

CMF$

REAL AA(MM)
. . .
CALL CRURCE.V1(AA, 5 ,MM>57)
. . .
SUBROUTINECRUMCH.V1(A , OS,LIJ, M)
IMTEGER DS
IHTEGER LE
REAL A(l-OS+I :LM+l-OS)
LAYOUT A( :MEWS)
A(l:lJ) = SQRT(A(l:M)) + 2.0
EHD

Figure 7: CMAX detects that when the calling routine passes AA(5) to the called routine, the programmer’s intent

is to pass a pointer into the middle of that array. Both caller and callee are modified so that both the whole array

and the index into it are passed.

CMF$

SUBROUTINE CALLER(W,HX ,IiY , MT)
IliTEGER XX, ~Y , HT
REAL W(EX,MY,ET)
LAYOUT W( :MEWS, :HEWS,: SERIAL)
CALL ZER02D-SLICE(W(l ,1 ,8) ,lJX >MY)
RETURN
END

SUBROUTINE ZER04DSLICE(W, MX,MY)
IHTEGER MX, MY, I >J

+

REAL W(MX,NY)
DO 1=1 ,MX

DO J=l ,IfY
W(I, J) = O

EHDDO
ENDDO
RETURR
EMD

CHF$

CHF$

SUBROUTIlfE CALLER(W, liX , BY, MT)
IMTEGER EX, UY, HT
REAL R(ltX ,lfY ,HT)
LAYOUT M( :MEWS, :MEUS, :SERIAL)
CALL ZEROS?D-SLICE(U( :, : ,8) ,IiX,HY)
RETURN
END

SUBROUTINEZERO-ZD_SLICE(W, MX, MY)
IHTEGER MX, HY, 1, J
REAL W(MX>EY)
LAYOUT W( :HEWS, :MEUS)
U=o
RETURN
END

Figure 8: CMAX recognizes that a two-dimensional slice of a three-dimensional array is being passed to the subrou-

tine. By recognizing this idiom, CMAX removes the constraint of sequence association. Note that user has tuned the

F77 input by inserting an explicit CMF layout directive. Because the dimension to be removed is serial rather than

distributed across processors, no interprocessor communication will be needed when the output code is executed.
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Prism I@Iava.think.com ~ @

le &ecute Qebug ~erformance Eyents utilities D9c Help

Ei!IlmmmnmBnm~-Contmue Step Next Interrupt Up Down Kl Collection

)gram: a.out Status: not start~c

.ine Source File: Iprojlcmaxhestidemohlfoo-zn.fcm

83 C Create mask for accept/reject
84
85
86
87E
88
89 #
90
91

work = exp (b * (enern - enero) )
mask2 = mask +RND. (work +GE+ rand)
iacc = iacc + count {mask2)
WHERE (mask2}

spin = spin_n
enero = enern

ENDWHERE

:: IC Create mask For accept/reJect

85 # do iq = 1.lu
8!5#i d; ix = ~.lx
85
86

87B
88
89 #
90

92

work(ix.iy) = exp(b*(enern(ix.iy) -enero(ix.iy)))
mask2{ix.iy) = mask(ix.iy) +and+

(work(ix.iy} ,ge, rand(ix.iy}}
if (mask2{ix,iy}) iacc = iacc + 1
if (mask2{ix.iy)) then

spin(ix.iy) = spin_n(ix.iy)
enero(ix.iy) = enern(ix.iy)

end if
mask(ix.iy) = ●ot. mask(ix,iy)

end do

C Create mask For accepti’reject

work = exp(b * (enern - enero)) g5.7 %

mask2 = mask +PIND. (work .GE. rand) f15+7 2

iacc = iacc + count(mask2) io.1 %

WHERE (mask2) io+2 z
spin = spin_n 90.2 %

enero = enern 30+2 %
ENIIWHERE
mask = .NOT.mask #o.2 %

Figure9: Prism screen when workingon aCMAX-translated application. Note that there is a breakpoint set atline

87 which is shown with a’’B”in both source panes. Also, the user has clicked online 890fthe CMFsource tofind

out which F77 lines gave rise to it. In response, Prism displays a “#” next to three F77 source lines.
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file. The first part of this file details how lines from the

F77 and CMF code map into each other. This includes

line number mapping information, original names for re-

named cloned subprograms, original names for variables

such as arrays that are promoted versions of scalar vari-

ables, and so on. Using the line mapping table, Prism

allows the user to point at a line in one code (either the

F77 or CMF) and then can show what lines correspond

to it in the other code. Note that this is not a one-

to-one mapping. An array assignment may correspond

to several DO statements and an assignment statement

in F77. Similarly, when a loop body contains several

assignment statements, the F77 DO statement may give

rise to several array assignment statements.

With the line mapping information, the Prism capa-

bilities work on either of the two source code windows.

For example, a user can ask Prism to set breakpoints

and create other events by pointing at lines in either

the F77 or F90 window. The call stack can be viewed

in terms of either source code. If a user scrolls through

one source code, the other pane of source code can au-

tomatically scroll and display the corresponding code.

Finally, all of Prism’s performance profiling tools also

work on either window. For example, a histogram of

the time spent at each line of a program can be dis-

played for either version of the source code. Figure 9

shows how Prism displays a source window with a pane

for each of the two source codes, as well as an underly-

ing window at the bottom showing profiling information

presented in terms of the original F77.

The second part of the auxiliary file contains CMAX-

generated efficiency notes. By pointing at lines of the

Fortran code or individual variables, the user can dis-

play these. Statement-by-statement efficiency notes ex-

plain what happened to each statement (e.g., “Turned

into parallel assignment”, or “DO statement vectorized

away” ) or just why it did not vectorize. Notes on ar-

rays explain how the array is allocated (on the control

processor or distributed across the PEs) and why (e.g.,

“Not distributed because there was no vector usage”).

5 The Porting Process

In a typical port, a CMAX user takes a working F77

code that has at its heart a parallel algorithm expressed

in scalable Fortran. The user passes the code through

CMAX and examines the CMAX-generated listing file

to determine which arrays did not get distributed to PE

memories and which loops and statements did not par-

allelize. The user modifies the F77 code by replacing

non-scalable constructs with scalable constructs and by

adding directives where necessary to more precisely di-

rect what transformations CMAX should perform. The

modified code can be executed and its performance pro-

filed, and the user can iterate again to modify the F77

code to produce a better translation. If a portion of the

program is inherently serial, perhaps a part of program

initialization or data setup, the user can either leave it

as serial or rewrite it, depending on how much it affects

overall application performance.

When the goal of translating an application is a CMF

program which will be maintained instead of the orig-

inal F77, a highly interactive tool would be sufficient.

However, when the goal of translation is a new F77 pro-

gram, then conversion needs to occur repeatedly as part

of the compilation process, and only a command-line in-

terface callable from make or a similar tool is appropri-

ate. Therefore, we chose to first provide a command-line

interface to CMAX; a motif-based windowing interface

is under development by APR. For debugging and per-

formance tuning on the Connection Machine, CMAX

users can use the window-based Prism programming en-

vironment (see Section 4).

6 Preliminary Results

CMAX recently went into beta release, and therefore

only preliminary results are available.

The Livermore Fortran Kernels provide a simple mea-

sure of CMAX’S vectorization capabilities as well as an

example of how a program can dependend on a linear

memory model [14]. Once the COMMON and EQUIVALENCE

problems metioned in 3.2 were worked around, CMAX

vectorized 14 of the 24 Livermore Fortran Kernels, in-

cluding Kernel 11 (a CMF-SCAN_ADD) and Kernel 21 (a

MATMUL). Kernel 24 is a MIIJLOC coded in a way that

CMAX does not recognize; a small change to the code

would make recognition possible.

Among the more notable real applications which have

been or are currently being ported with CMAX are:

FL067 This is a computational aerodynamics code de-

veloped by Antony Jameson of the Department of

Aerospace Engineering, Princeton University. The

program simulates three-dimensional airflow past a

swept wing, and was originally implemented in ap-

proximately 5,000 lines of Fortran 77 code. As a

proof-of-concept for the idea of scalable program-

ming, the program was rewritten at TMC in scal-

able F77. The scalable F77 performs within 107o of

the original code on serial machines (Sun 4/490 and

IBM RS/6000), and the CMAX-translation of this

scalable code into CMF performs within 10~o of a

hand-ported CMF version on a CM-200 [20].

ARPS This atmospheric model from Kelvin Droege-

meir at the Center for Analysis and Prediction

of Storms, University of Oklahoma, contains over

50,000 lines of modern, well written F77 [9]. It

was implemented by programmers who had a mental

model of a parallel machine and avoided making as-

sumptions about the underlying memory model. It

took four days to port version 3.1 of ARPS from the

RS/6000 to a Connection Machine system, at which
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point the code ran. A partially tuned version has

a kernel update time on a 32 processor CM-5 of 4

seconds, compared to to 90 seconds on the RS/6000.

About 500 lines were changed or added in the initial

port, most of which involved manually specifying the

distribution of arrays. The CMAX user commented

that 99% of the work was done by CMAX, and most

of the user’s time was devoted to iteratively running

the application through CMAX and making improve-

ments to the F77 based on the efficiency notes. Fur-

ther performance tuning of the working code is in

progress.

X-PLOR This software package for structure determi-

nation of biological macromolecules was written by

Axel T. Brunger of Yale University [5]. The code con-

sists of 70,000 lines of F77 that have been optimized

for vector machines, and it can perform a wide range

of the computations needed for x-ray crystallography

and nuclear magnetic resonance studies. This code

is only slightly larger than ARPS, but because of its

age it presented a much greater challenge to CMAX.

After 3 months of effort, the entire application has

successfully passed through CMAX, and testing is in

progress.

CYCLONE This data assimilation package from An-

drew Bennet and Carl Hagelberg at the College of

Oceanography, Oregon State University, iteratively

produces an estimate of the initial state of the at-

mosphere based on meteorological observations, then

integrates forward to forcast tropical cyclones [3]. It

contains about 10,000 lines, and about 100 had to

be changed in the initial port, and it is estimated

that another 2,000 will have to be changed in order

to get good parallel performance. The CMAX user

commented that CMAX does 7570 of the work in-

volved in porting, leaving 25% to do by hand. The

25% is spent modifying the Fortran 77 input code in

ways that do not hurt scalar performance, but are

necessary for good CMAX performance.

7 Future Work

CMAX currently accepts standard Fortran 77 as input,

along with direct ives to control CMAX operation. We

are in the process of extending CMAX to accept a more

general input language: CMF. Thus, the input can con-

tain mixed DO loops and array syntax, and the output

of CMAX can be fed back into CMAX iteratively.

CMF is expected to converge with HPF (High Perfor-

mance Fortran), an emerging industry standard, so the

CMAX’S input and output languages will move toward

HPF as well.

We also expect to add more transformations to assist

in converting programs which rely on storage and se-

quence association. The particular transformations we

add will be based on feedback from our users.

8 Related Work

There is a large body of research work on compilers that

focus on restructuring loops, Good places to start in-

clude [1], [21], and [16]. In the commercial domain,

KAP [11] and VAST [15] are the main programs of in-

terest.
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