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Abstract
An integrated approach for the parallel solution of large

sparse systems arisen in finite element computations is
presented. The approach includes a three-phase p~processor
and a macro dataflow execution scheme. The three phases
of the preprocessor are: (1) Extracting parallelism by means
of an automatic domain decompose; (2) Building the
distributed data structure and (partial) scheduling for parallel
computation during symbolic factorization; (3) Assigning
processes (tasks) onto processors. The proposed approach
has been implemented in the finite element analysis

software package DIANA’. Experimental results show that

this integrated approach is an efficient method for both
shad- and distributed-memory parallel systems.

1. Introduction

The finite element method (FEM) is an important
technique for the solution of a wide range of numerical
simulation problems in science and engineering. Direct
methods for the solution of a sparse system of equations
play a prominent role in (commercial) general-purpose
finite element analysis software packages (such as the
DIANA package). A finite element computation in
structural analysis using a direct method typically consists
of a number of steps: inputimesh-generation, assembly of
element stiffness matrices, ordering to determine the (node)
elimination sequence, solution of the system of equations,
and calculation of stresses with the computed displacement
vector(s). Fig. 1 illustrates the procedures of a FE
computation.
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FEM applications are known to be very computation-
intensive. The most computation-intensive part in a FEM
computation is the solution of a large sparse system of
equations. Therefore, the solution of a large system of
equations must be parallelized in order to speed-up the
FEM computation. DIANA is a large scale general-purpose
FEM software package for structural analysis [1]. In this
paper, we consider the matrix in the sparse system to be
positive definite (the global stiffness matrix is generally
positive definite in structural analysis applications).

I INPUT/Mesh-generation I
*

I Assembly of elem. stiffness matrices
+

=3=
I Calculation of stresses etc. I

t
I Post processing/OUTPUT I

Fig. 1 Illustration of the procedures of a FE computation
for linear static analysis

Recently, a large number of studies on parallel
equation solvers have appeared in literature (e.g. [2-7]).
Many promising results on parallel iterative algorithms
have been obtained. They demonstrate both a high
achievable efficiency and scalability to a large number of
processors. However, pamllelizing direct method for large
sparse systems turns out to be more difficult. Besides,
when it comes to parallelizing an FEM software package
(like DIANA)., other parts of the computations such as
assembly of element stiffness matrices, calculation of
strains/stresses should also be parallelized in order to obtain
a maximal benefit of the parallelization.
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In this paper, parallel direct solution of large sparse
systems is considered. The presented approach is an
integrated approach which starts with a domain
decomposition. The resulting subdomains are assigned to
the processors. In this way, the assembly of element
stiffness matrices and the calculation of strains/stresses
(after the solution of the sparse system) can be performed
in parallel for each of the subdomains. Parallel
computations of the element stiffness matrices and the

calculation of stresses for the subdomains is quite straight
forward, it can be done element by element and independent
from each other. Therefore, we will concentrate on the
parallel direct solution of sparse matrix systems in this
paper.

A number of fundamental problems must be solved
when solving a large sparse system of equations on a
parallel and distributed computen

1.
2.

3.
4.

Identifying parallelism in the problem;
Decomposing the computation into a number of

subcomputations which can be computed concurrently;
Scheduling the subcomputations onto processors;
Distributing the data across the processors.

There are parallelizing compilers for shared-memory
computers which tries to solve the first three fundamental
problems automatically. Successes have been obtained for
regular array operations. However, these vector and parallel
compilers show performance for problems with irregular
computation and/or data structures. E.g. when there are
many gather and scatter operations (i.e. in direct memory

addressing), current automatic vectorizers and parellelizers
can hardly achieve any speed-up. In [8], results of
experiment with the programs in the Perfect Benchmark
problems [9] illustrate the state of achievement.

Because of its irregular computation and data structure
of a Cholesky factorization for a sparse matrix, automatic
vectorization compilers such as those on the current
generation vector supercomputers are unable to achieve
good speed-up. Automatic parallelization compilers for
distributed-memory computers have been just recently put
on the research agenda. For example, activities around High
Performance Fortran [10] is an attempt to define a data
parallel high level (array) language for parallel computers,
to guide the distribution of data some compiler directives
are provided. However, HPF and other array languages are
so far data parallel oriented and support only regular (e.g.
rectangular) array structures,

Dealing with a general-purpose software package such
as the DIANA package adds an extra complexity to the
parallelization problem. Parallelization by means of
compilers has to solve the problem of decomposing a
program into subcomputations during compile-time.
However, the structure of a DIANA computation depends
on the structure of the sparse matrix. and in turn the
structure of the sparse matrix is dependent on the structure
of the problem (the finite element domain). The structure
of the sparse matrix can vary largely to a sky-crabber and
when the element type changes from a linear triangle to a
quadratic prism. Therefore, an optimal decomposition is

only possible at run-time. Consequently, scheduling can
not be done at compile-time, since it must follow the
decomposition.

From the above discussions, we conclude that
parallelization of direct solution of large sparse matrix
systems in a FEM software package can not totally rely on
advanced (future) parallel compiler techniques. Future
development in parallel language and parallel compiler may
ease the parallelization of our problem in considemtion but
special attention like the run-time analysis and run-time
decomposition on each specific application problem will
remain to be necessary.

2. A short review of previous approaches

In designing parallel algorithms, the key issue is
inarguably the distribution of the workload among the
processors. An optimal parallel algorithm usually requires

to resolve the trade-off between a balanced distribution of
workload and a minimal communication- and

synchronization overhead. In the following. we will shortly
review several known approaches to the problem of parallel
factorization of large sparse matrices.

George et al [5] consider sparse Cholesky factorization
on a distributed computer system. They describe a column-
Cholesky factorization scheme, in which columns
corresponding to the nodes at the same level of the

elimination tree are eliminated independently. The
granularity of the parallel algorithm is at the level of
modifying (updating) a column. 10 their algorithm, a large
communication overhead occurs due to the fine granularity
of parallelization at the column level, although the results
obtained on a hypercube simulator show the inter-processor
communication has been quite evenly distributed among
the processors. Also such a fine granularity incurs a large
synchronization overhead. The effects of these two
overheads are clearly reflected in the performance of their
atgorithm, the reported maximal speed-up is only 4.19 for
8 processors and 5.54 for 16 processors.

In [3] Duff et at have considered the implementation of

the multi-frontal method on shared-memory processors.
Good vectorization results have been reported in [7] for the
multi-frontal code implemented with level 3 BLAS
routines. The (multi-) frontal method has the advantage of
requiring only a minimal core storage. But the assembly of
frontal matrices and the factorization of them have to be
intervened with each other. leading to a complicated
computational structure. This drawback becomes more
severe when we want to implement the method on a
distributed system, since elements of a tiontat matrix have
to be transferred and redistributed before and after the
assembly. The multi-frontal melhod is better suited for
shared-memory (super) computers with a small number of
(vector) processors. but less suited to distributed-memory
architectures.

In [6] Gilbert and Schreiber consider fine-grain parallel
factorization of large sparse matrices. In their scheme, the
unit of operation to be distributed across the processors is a
single multiplication or addition of two scalar numbers.
This approach aims at maximally utilizing the parallelism
inherent in the factorization process. However, their
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experiments show that the obtained parallel efficiency is
very low because of the large communication- and
synchronization overhead incurred by this fine-grain
approach. This result confirms with our analysis that
medium- to large-grain approach is the best trade-off in
dealing with parallel factorization of large sparse matrices.
This is certainly the case for distributed parallel systems
with a relative large communication and computation speed
ratio (all current generation of parallel computers do have a
large ratio).

3. Outline of the integrated approach for

parallel finite element computations

Generally, the problem of parallelizing a complex
software package like the DIANA package can be identified
as the following: 1. Extraction of parallelism --- How to
extract parallelism inherent in finite element computations;
2. Data structures --- What sort of data structures are
appropriate for parallel (distributed) computation; 3.
Assigning processes (tasks) onto processors --- How 10
assign tasks to the processors by resolving the trade-off
between load-balance and communication- and
synchronization overhead such that the parallel completion
time is minimal.

When parallelizing a general-purpose FEM software
package like DIANA the design critelia are considered to be
crucial importance:

A. the parallel FEM package should be able to function
without direct user intervention on matters with respect
to parallelization. This is extremely important because
the users of a FEM package (in our case mechanical
engineers) are not interested in the underlying
intricacies of (parallel) computer systems. This implies

that any parallelization generated by the system must
be automatic and ef)cient.

B. the resulting parallel software should be portable. For
reasons of maintainability. the number of versions of
the (parallel) solvers should be very limited. There
should be only one basic version, which can be applied
to sequential- or parallel computers.

With these premises in mind, a preprocessor has been
implemented to free the users (e.g. mechanical engineers)
from the burdens of parallelizing their FEM applications
(remember that nowadays parallel programming is still a
hard job even for an experienced computer programmer).
The preprocessor consists of three parts: 1. An automatic
domain decompose; 2. Symbolic factorization and set up
of concurrent data structures for parallel computation: 3.
Heuristics for assigning tasks onto processors.

Analysis in [11] shows that for a domain consisting of
n nodes linear speed-up can be achieved with this approach
with upto p =O(dn) processors. For example, for an dn by
~n square grid, the best sequential factorization time is

known to be 0(n3’2) [12]. With this approach subdividing
the domain into dn subdornains, the parallel factorization

time is O (n3’2/p), and the communicant ion overhead is

O(p in). Therefore, the linear speed-up performance scales
up to O(Jn) processors.

4. Domain decomposition

In order to handle regular and irregular structured
element domains with different type of elements, the
domain is transformed into a connectivity graph and the
presented domain decomposition algorithm is based on
graph partitioning. The problem of partitioning a graph
into a number of balanced (equal-sized) subgraphs with a
minimum separator length between the subgraphs is
known to be NP-complete [13]. So, heuristics have to be
used for partitioning a graph.

Two of the most populm methods are the dissection
methods [12] and the minimum-degree algorithms [14].
The dissection methods (one-way or nested) are simple and
fast, but give a not very optimal separator length. An
alternative is to use a minimum-degree algorithm to
perform a (sequential) ordering first. Next, a partitioning is
performed on the elimination tree corresponding to this
ordering ([15], [16]). The method using a minimum-degree
algorithm generally gives better results than the dissection
methods in terms of separator length. However, for a graph
with n nodes a minimum-degree algorithm has a time

complexity of 0(n2) as compared to that of O(n) to
O(n.log(n)) for the dissection methods. This means that the
method using a minimum-degree algorithm has a higher
time complexity as the solution of the sparse matrix

system (e.g. 0(u3’2) for a ~n by dn 2-D grid). Moreover,
the graph partitioning algorithm is hardly vectorizable and
difficult to get parallelized. Therefore, in order to avoid the
domain decomposition becoming the most time consuming
part of the whole computation, the graph partitioning
algorithm must be relatively fast (e.g. with a time
complexity less than O(n.logfn)) ).

The automatic domain decompose described in [17] is

similar to the one-way dissection method. It differs only at
two points from the one-way dissection method. The
domain decompose in [17] always returns subdornains of
the same size (with a difference of at most 1 element). The
one-way dissection tirst constructs a level-structure [12] and
cuts at a level resulting in a subdomain with size closest to
the “required” size. This generally results in a smaller
separator. Also, we have found through experiments that
the algorithm in [17] tends to produce scattered subdomains
(i.e. a subdomain consists of more than one separated
subgmph component), This can however be fixed by
changing the near-random “grasping” procedure of taking
elements into a subdomain to an orderly one by grasping
elements into a subdomain line-wise (surface-wise in 3-D
case) instead of hopping from one element to another.

Many other domain decomposition or graph
partitioning algorithms can be found in literature. One of
the classical works in this field is the Kernighan-Lin
algorithm [ 18]. The Kernighan-Lin algorithm begins with

an initial partition of the graph into two subsets A‘ and B’.
which differ in their size by at most one. At each iteration,
the algorithm chooses two subsets of equal size to swap
between A and B, thereby reducing the number of edges
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that join A to B. This algorithm has the so called “hill-
upclimbing” ability to eventually reach the global
optimum, however. the computational time complexity is

very high (each iteration takes a time of O(n3) ). In [19].
Chrisochoides et al present a domain decomposition
algorithm which uses geometrical information
(coordinates). The algorithm produces smaller separators
than the Kernighan-Lin algorithm in some cases. However,
its applicability is merely limited to regular grids with

equidistant grid-points. Another method is the spectral
partitioning algorithm [20]. It has been reported that it
generates partitions comparable to algorithms like Nested
Dissection and Kernighan-Lin. The time complexity for a

bisection is O(n3). Recently, some researchers have
considered using simulated annealing techniques for graph
partitioning [21]. Since these methods are essentially
combinatorial algorithms, their time complexity is very
high. In some applications, when a partition is to be used
many times (e.g. to analyze the structure under a variety of

different loads), it might be profitable to spend more time
on getting a better partition with one of these algorithms.

Our domain decomposition algorithm begins with an
initial decomposition. This initial decomposition is
determined according to a variant of the dissection method.
Then in order to shorten the length of separators between
the subdomains, the initial decomposition is improved by a
bipartite maximum matching algorithm [22]. Measures are
taken to adapt the iterative separator improvement
algorithm for bisection to the general N-partition problem.

Fig. 2 shows the graph partitioning algorithm DD. III
Fig. 2, the following parameters have been used: NRSUBD

= number of subdomains to be partitioned; SUBNL = (total
number of elements in domain) /NRS UBD: MINNL =

minimum number of elements per subdomain; and
MAXNL = maximum number of elements per subdornain.

Al~orithm DD (Domain Decomposition)

domain = initialize with all elements in the finite
element domain;

ISUB = 1;

while ( domain is not empty ) do

select an (peripheral) element L with minimum
degrse;

S(-l)={ CD]; S(0)= {L};

i=o;

domain = domain\{L };

while ( I lS(i)I - SUBNL I < I lS(i-1)1 - SUBNL I and
NOT stop ) do

construct the (i+ 1)-th level S(i+ 1);

i+l
if ( ~ lS(k)l < MAXNL ) then

K=O

Sort S(i) into an ordered elements of
line/surface;

i=i+l:

else

stop = TRUE:

endifi

enddcx

Adjust the ISUB-th subdomain’s size; subject to the
constraints of MINNL and MAXNL;

call refinement procedure IMPROVO (local);

call refinement procedure IMPROV 1 (non-local);

domain = domain\ subdomain(ISUB);

Adjust SUBNL; try to make the number of partitions
as close to the original NRSUBD as possible, while
satisfying the conditions MINNMSUBNIXMAXNL:

ISUB = ISUB+I; /* next subdomain */

Figure 2 A description of the domain decomposition
algorithm (DD).

One important feature of our domain decomposition
“algorithm is that the optimal number of subdomains is

chosen on the fly, depending on the expected ratio between
computation- and communication speed, and the
minimization of the number of fill-ins. In literature, a
domain decomposition, if applied for a p processors
system, always focus on partitioning the domain into p
subdomains of the same size. The aim is to obtain a good
load-balance among the p processors. While this is often
adequate for a good load-balance for many iterative methods
(for solving the sparse system of equations), our
experimental results show that having p subdomains for p
processors does not guarantee a good load-balance in
solving the sparse system by a direct method. For instance,
in a 2-D rectangular domain the workload corresponding to
a subdomain in the corner or along the border can differ
significantly from that of a subdornain in the centre. Fig. 3
illustrates the relationship between load-balance and the
number of subdornains. So, for a good load-balance it is
preferred to have k.p subdomains with k is an integer and
larger than 1. The optimal number of subdomains depends
on the ratio between computation- and communication
speed, and the minimization of the number of fill-in’s. As
the increase of the number of subdomains will increase the
communication- and synchronization overhead, the break-
even point is a function of the size of the element domain.

Another feature of our domain decomposition
algorithm which differs from the most othel- domain

decomposition algorithms is that the size of a subdomain
may vary from a nzin size to max si:e and is determined in
the course of the op~mization. Tie requirements of equal
sized subdomains and minimum separator length are two
conflicting goals. An optimal decomposition requires to
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resolve the lmte-off between Ihcsc two conflicting goals.
To allow the size of a subdomain vary from nlit/_size to

nlux size leaves more choices for ihc decomposition

algofilhrn 10 minimize the separators. At [hc same (imc.
the load-imbalance caused by this relaxation is limilcd,
because now wi[h k.p (k>l ) subdomains combinations can
bc made to corrccl the imbalance. This relaxation is
especially cffcclivc in the case that a direct method is used
10 solve the sparse system of equations.

3

Pt

t
2

1

34834 104502 174170 + t

(a)

(b)

Fig. 3. (a). Execution profile of an example problem
divided into 3 subdomains mapped onto 3 processors. PL is

(he number of tasks which arc cxccutcd in parallel at a
time. (b) idcm as a. now for 6 subdomains muppcd onto 3
processors.

In algorithm DD, the procedures IMPROVO and
IMPROV 1 arc called. These arc the procedures performing
[he “iterative” separator improvement based on lhc
principle of maximal maiching of a bipartite graph. Liu
[22] has described a method for improving the separators of
a bisection for a 2-D grid problem. In IMPROVO [his
method is gcncralizcd to an N-partition problem.
IMPROV 1 uscs (he idea of maximal matching of a
bipartite graph to ob[ain some global improvement of the
separators [11].

The time complexity of our domain dccomposcr is
O(n) to O(n .Io,g(n)). Fig.4 shows two examples of domain
decomposition produced by lhc algorilhm DD. Fig.4a
rcprcscnts a masonry wall subdivided into 5 subdomains,

and Fig.4b represents a (fccclcra[ion top (3-D) subdivided
into 6 ~ub(tolnains.

\ / / / /
I / / /

\ \ I / /
I / /

\ I / ,/,/.— 1.. —

(a)

(b)

Figure 4. (a). A masonry wall subdivided into 5
subdomains; (b) A dccelcro(ing lop (3-D) subdivided into 6
subdomains.

5. A block storiig~ scheme for sparse matrices

An ctlicien[ (takr structure for sparse matrices should
have a minimal s(orage rcquircmcnl and at lhc same lime
support fast computation and communication in a pmallcl
and vector compuling environment. Three basic

rcquircrncnls on the Uala Wucturcs arc:

(1). Efficiency --- the dala structure should only s(orc those
entries which arc logically nonzcro in a sparse matrix;
(2). Distributablc --- the data structure should supporl the
distribution of par(s of IIIC sparse matrix in terms of block-
rna(riccs in a natural way;
(3). Fdst access --- II should provide fasl row-wise access to
[hc block malriccs. For example, the consecutive clcmcnts
of a (sparse) row should bc acccssihlc conscculivcly
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without performing indirect addressing. This will provide
good vectorizability of the basic operations.

Fig.5a shows a problem domain decomposed into 4

subdomains. The nodes along the border between two
subdomains are called interface nodes. If we order all the
nodes in the subdomains before the interfaces, a doubly
bordered block diagonal matrix (DBBD-matrix) results [1 1].
Fig. 5b illustrates the block data structure of the sparse
matrix corresponding to a decomposition of a problem into
four subdomains as shown in Fig. 5a. In Fig. 5b, a
submatrix on the main diagonat ((1,1), (2.2), (3,3), (4,4))
corresponds to the stiffness matrix of the interior nodes of a
subdomain and it has the structure of a profile matrix. A
submatrix along the border ((5,1), (5,2), (6,2), etc.)
corresponds to the interaction between an interface and a
subdomain and is stored as a collection of sparse (row-
)vectors. The submatrices in the right-bottom corner of the
DBBD-matrix ((5,5),(6,5),(6,6), etc.) correspond to the
interactions between the interfaces themselves, they are
dense matrices. During the symbolic factorization phase, it
is determined where the fill-in’s will occur. From this
information, the (static) data structure is built. A block-
oriented data structure has the advantage of being well
structured and well vectorizable. A basic set of submatrix-
operations can be defined for this DBBD-matrix. These
basic subrnatrix-operations can be seen as a sparse variant
of the level 3 BLAS routines [23]. The profile matrices and
the border matrices stored as a collection of sparse vectors
can be very well vectorized, this block data structure is thus
suited for both vector- and parallel processing.

Region II R~gion HI

(a) (b)

Figure 5. (a). A problem domain decomposed into 4

subdomains. (b). The structure of the corresponding DBBD-
matrix. An “X” represents a block fill-in.

6. Ordering for parallel factorization and

minimum fill-ins

The solution of a large sparse matrix system with the

direct method usually can be divided into the following
phases: 1. Ordering; 2. Symbolic factorization; 3.
Numerical factorization; 4. Triangular solution (forward-
and backward substitution). In sequential computation,

ordering considers the elimination sequence of the nodes in
order to minimize the number of fill-ins and the number of
arithmetic operations. In parallel computation, ordering
should consider the parallel elimination sequence of nodes

as well. This means that a trade-off between the number of
fill-ins (therefore the number of operations) and parallelism
in the elimination sequence has to be resolved.

As to the parallel elimination sequence in case of
domain decomposition, each of the subdomains (the
submatrices D~) is assigned to one processor and the
factorization of Dj can be computed independently from

each other2. The submatrices in Region II can be computed
parallelly once the corresponding Dj at the same column

has been factorized. Update conflicts may occur when
updating (e.g. the Schur-complement) the submatrices in
Region III. In this section. we consider the sequence of
factorization of the diagonal submatrices, and leave the

sequence of updates to be determined in a later stage. The
ordering is thus a partial scheduling. The subdornains (i.e.
submatrices in Region I) are to be eliminated first (and
independently), so the problem left is how to determine the
elimination sequence of the interfaces.

If we define an inte~face segment or simply an intetface

as a group of connected nodes adjacent to the same set of
subdomains (see Fig. 6a), and if each of the subdomains
and interfaces is considered as an aggregated node. Then a
new graph can be defined with these aggregated nodes as
nodes and the adjacency relation as edges, this is catled a
quotient graph (Fig. 6b). After the elimination of the
subdornains the elimination graph with the interfaces as
nodes results (Fig. 6c), ordering techniques for graphs with
the original node in the finite element mesh can be applied
for the quotient graph. Notice that with this definition of
interfaces, the submatrices representing the interface-
interface interactions (Region III) are dense matrices. This
means that the storage scheme in Region III is very
compact. All nonzero submatrices to be stored are dense
matrices while the zero submatrices are not stored.

In graphical terminology the problem of partial
scheduling can be described as follows. The ordering of the
interfaces transforms a undirected interaction graph into a
directed elimination graph (an interface node can be
eliminated in the next step if all the nodes with outgoing
edges to this node are already eliminated). The procedure of
ordering is as follows. After domain decomposition, an
interaction graph can be defined with the subdomains and
interface segments as aggregated nodes and the adjacency
amen g them are represented by edges. We know a priori

(from the consideration of minimizing fillins) that the
subdomains are eliminated before the interfaces (the
subdomains are independent to each other so no ordering is
required for them). After the elimination of the
subdornains, fill-edges are added among the interfaces. This
results in an interaction graph of the interfaces. Next, the

2 Although the submatrix Dj can be parallel factorized using

more than one processors, we consider here only the case

that Dj is factorized sequentially.
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elimination sequence of the interfaces are determined. In the
following, we will discuss techniques and algorithms for
partial scheduling the elimination of interfaces.

11 12

15 14
(a)

‘1

16

‘4 *5

(b)

11

16

13

13

(c)

Figure 6. a. Illustration of subdomains and interface
segments; b. the quotient graph; c. the (quotient)

elimination graph after eliminating the subdomains.

Minimum degree (MD) algorithm has been one of the
most popular and commonly used technique for ordering to
achieve minimum fill-ins (e.g. [14]). The MD-algorithm
selects a node with the least number of edges connected to
it as the pivot to be eliminated in the next step. The MD-
algorithm can be adapted for ordering the (interface)
quotient graph. In the following, we will describe two
minimum degree approaches for ordering the interfaces.

A. The auotient s!raDh as a uniwei~hted maDh

In a uniweighted quotient graph, each node represents

an interface segment. All the edges are considered to have
the same unit weight. A MD-algorithm for ordering this
uniweighted quotient graph is the same as the conventional
MD-algorithm.

B. The auotient ‘nat)h as a weighted mat)h

The nodes and edges in a weighted quotient graph are

the same as in the uniweighted graph. The difference is that
the edges are each assigned with a weight which may differ
from 1. There are many possible ways to define the weight

of an edge in a quotient graph. An appropriate definition for
the weight of an edge between node i and j form the point
of view of node i is Card(j) (Card(j) is the number of nodal
nodes of interfoce J, and the degree for node i is

~ Card(j), where Adj{i} is the set of neighbors of

jeAdj[i)

interface node i in the elimination graph. The MD-
algorithm selects the node with the minimum degree
defined above.

Besides the MD-algorithms, an alternative is to use the
local minimum fill algorithm. A local minimum fill
algorithm selects the node. whose elimination causes the
least fill-ins, as the pivot for elimination at the next step.
The local minimum fill algorithm generally results in
fewer fill-ins than the MD-algorithms (for details are
referred to [1 l]). So far, the ordering algorithms considered
are for minimum fill-ins. Next, we will consider the
problem of introducing parallelism by ordering.

INPUT G1 = adjacency graph of interfaces after
eliminating the subdomains:

S1 =0; i=l:

while ( Gi # @ ) do
done = false;

determine the minimum degree MinDeg in Gi and

mark all nodes VGi in Gi as schedulable;

while (not done and Gi has at least 1 schedulable
ncde) do

find a schedulable node N with minimum degree
in Gi’;

if ( Degree(N) < [MinDeg(Gi’) + ~] ) then

add N to S1;

mark all neighbors of N in Gi as

unschedulable;
if ( C~d(Si) = p ) then

done = true;
enti,

else
done = true;

endifi
endda
i=i+l;

VGi = VG(i-l)i Si 1

EGi = EG(i-l)J{all edges with an end node ~ S(i-1)}

u ( (nl,nz) I N~S(i.]) A nle Adj(N) A

nve Adj(N) in G(i-l) );

enddu,

OUTPUT: the elimination sequence S 1. SZ, ..... Sk.

Figure 7. A controlled multiple MD-algorithm.

267



Two nonadjacent nodes in the elimination graph can be
eliminated independently”[ 11]. Fig. 7 shows a parallel
e~mination scheduling algorithm, it is called the controlled

multiple MD-algorithm. A node N is selected for (parallel)

elimination only if Degree(N)SMinDeg(Gi’) + a, where Gi’
is the remaining elimination graph, and a is an integer
value. A larger value of a favours parallelism while a
smaller value of a restricts parallelism in favor of
minimizing fill-ins.

Once the elimination sequence Sl, S2, ..... Sk has

been determined, the structure of fill-ins in the factor is
determined. The relative sequence of interface nodes with
the same set Sj only affects the relative positions of the
fill-in submatrices but it does neither alter the number of
fill-ins nor the parallelism, Therefore, the structure of the
factor with fill-ins can now be determined. The
determination of the structure of the factor is usually catled
the symbolic factorization.

7. A macro dataflow implementation

As the ordering is only a partial scheduling (it only
determine the parallel elimination sequence of interfaces),
the computation sequence of the updates in the Schur
complement (Region III) needs yet to be determined. After
the symbolic factorization the structure of the factor with
fill-ins is known. Let So be the set of subdomains, and Sf
(l<t<k) the sets of interfaces which can be independently

eliminated. Further let L the lower triangular factor, C(j)
the set of indices of nonzero submatrices at column j of

(LT -I} (or equivalently row j of (L-Z) ). Then the parallel

block LDLT-factorization algorithm can be described as in
Fig. 8. Notice that in Fig. 8 the product term Li,~D~,&

occurs many times in the computations. In the
implementation we use temporary storage places to keep

these product terms in order to minimize the number of
operations wuired.

for t=O, 1, .... k

do parallel for i in St

do partdlel for j in C(i)

A i,j = Ai,j - ~ Ai,k.Lk!k.L~k

k= C(i)nC@

Li,j = Ai,j.L;:j.D;;j

Od

A i,i = Ai,i- ~ Ai,k.L/k.L~k

kc C(i)

Factorize Ai,i + Li,i”Di,i”L~i

Od;

d

Figure 8. A paratlel LDLT-factorization algorithm.

The computation structure of the parallel LDLT-

factorization algorithm can be represented as a task

dependency graph. A (sub)matrix is considered as an
integral object, and each computational task in de
dependency graph relates to computingJupdating one and
only one object. The factorization of the submatrices
corresponding to the subdomains can be performed as the
first group of parallel tasks.

With the definition of the computational task the
pmxdence relation between tasks can be transformed to data
dependency relations between (data) objects. This data
structure provides a base to implement a macro dataflow
execution scheme. Fig. 9 shows a dependency graph for the
DBBD-matrix in Fig. 7b. On shared-memory systems, the
macro dataflow scheme is implemented by a ready-task
queue, where all tasks ready for execution are placed.
Whenever a processor becomes available, the first task is
picked out of the queue and executed. Because a task only
modifies one object (i.e. a block of data), a single

semaphore is sufficient to resolve the access contention
problem.

t
Ls,l= A5.J~,I@l

I A

Figure 9. Illustration of the task dependency graph for the
matrix in Figure 5b.

On distributed-memory systems, the access to a central
ready-task queue can be a bottleneck, especially for
massively distributed parallel computers. Moreover, since
data are stored in local memories of the processors, a
dynamic task assignment can drastically increase the
amount of communications. l%e~fore, we have chosen the
approach of assigning the computation to processors prior
to the execution. Each processor now has its own ready-
task queue to be accessed and updated. The parallel
programs for both shared- and distributed-memory systems
can be implemented in the SPMD (Single Program
Multiple Data) paradigm [24]. The few differences are
communication statements instead of lock/unIock of
semaphores.

For task assignment, several schemes have been
investigated [25]. A cyclic block column-wise (CBC)
scheme assigns a block column to a single processor, and a
cyclic block (CB) assignment scheme assigns the tasks in a
task graph cyclically among the processors. The CBC
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scheme can lead to a higher load imbalance than the CB
scheme, however, from the communication point of view
CBC is to be preferred above CB. In our current
implementation, the submatrices on the chief diagonal and

along the borders are assigned using the CBC scheme,
while the submatrices in Region III (see Fig. 7b) are
assigned using the CB scheme. This has been shown to be
an efficient heuristic, as it can also be observed from the
results in next section.

8. Some experimental results

In Table I, the performance of the par&el direct solver
(incl. factorization and solution of the triangular systems)
on a Convex C240 is shown. Except the first two
problems, the test problems are taken from real

applications of DIANA users. (1) The problem Mesh 1 is a
2-D mesh consisting of 20 by 40 square elements; (2)
Mesh 2 is a 2-D problem consisting of 30 by 60 quadratic
square elements; (3) A buitding structure consisting of 567
quadratic square elements, 18 quadratic triangular elements,
and 130 beam elements; (4) A 3-D structure modelling the
joint between bricks, it consists of 1400 quadratic
hexahedron elements; (5) A 3-D model of a half of a

(symmetric) stopcock in a gas production installation, it
consists of 388 quadratic hexahedron elements.

It can be observed that efficiency figures of higher than
90% have been obtained. It should also be mentioned that
the parallel solver is faster than the old (sequential) frontal
solver of DIANA when it runs on a single processor (e.g.,
the problem ‘deceleration top’ is solved twice as fast, and
the large 3-D problem of brick-joint can not be solved with
the old solver, but has been solved with 2 processors of the
Convex as fast as the frontal solver running on a Cray X-
MP (with 1 processor). This is merely due to the more

efficient ordering and the efficient block data structure in
the parallel solver.

Table 1. Performance results of the parallel solver on a
Convex C240.

p=l p=2 p=(l
Problem

time (s) time (s) ‘peed- time (s) ‘pee&
up up

Mesh 1 (2D)
10.13

(5038 eqs)
5.33 1.90 3.02 3.35

Mesh 2 (2D)
22.19 11.63 1.91 5.95 3.73

(ll158eqs)

Apartment
10.67 5.65 1.89 3.67 2.91

(3916 eqs)

brick-joint (3D)
2166.82 1103.74 1.96 601.39 3.60

(18883 eqS)

Stopcock (3D)
88.83 46.98 1.89 23.97 3.71

(7425 eqs)

Fig. 10 shows the simulation results of a distributed-
mcmory system with 16 processors. These results are
obtained using a simulator which simulates the execution

of a task graph. Fig. 10a shows an execution profile
without communication overhead, and Fig. 10b shows the
same task graph simulated with the iPSC/2
communication timing characteristics. Communication
overhead typically results in a performance degradation of
less than 5%. An efficiency higher than 85% has been
obtained in Fig. 10. These results conform with the
analysis in [18] that linear speed-up can be attained with a
number of processors upto p=O(I/n), where n is the number
of equations. Currently, the finite element software package
DIANA is being ported for distributed memory parallel
computers.

Pt :

t

1

1

1348028 4044084 6740140-t

(a)

16
Pt ~~

t
12
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8
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4

2

1353948 4061844 6769740~t

(b)

Figure 10. Simulated execution profile of a task graph
resulting from a decomposition of 32 subdomains.

90 Conclusions

An integrated approach for parallel direct solution of
large sparse systems from the finite element computations
has been presented. An automatic domain decompose is

used as a preprocessor for extracting parallelism right from
the problem description (i.e. the element model). We show
that to have p equal-sized subdomains does not guarantee
balanced load distribution in case of dkwct solution. The
presented domain decompose takes this into account in the
optimization procedure. To enable a structured and efficient
data communication, a block data structure for the sparse
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matrix has been proposed. Furthermore. a sophisticated
ordering algorithm, the so-called controlled MD-algorithm,
for (partial) scheduling for parallelism on the one hand and
minimizing fill-ins on the other hand has been presented.

All these, complemented with a macro dataflow execution
scheme, provide an efficient and portable parallel program
for finite element computations.
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