
Parallel Processing Architecture

for the Hitachi S-3800 Shared-Memory Vector Multiprocessor

Katsuyoshi Kitai, Tadaaki Isobe(’), Yoshikazu Tanaka, Yoshiko Tarnaki, Masakazu Fukagawaf*),

Teruo Tanaka, and Yasuhiro Inagami

Central Research Laborato~, Hitachi, Ltd.

1-280, Higashi-koigakubo, Kokubunji, Tokyo 185, Japan.

(*) General Purpose Computer Division, Hitachi, Ltd.

1, Horiyamashi@ Hadano, Kanagawa 259-13, Japan.

Abstract
This paper discusses the architecture of the new

Hitachi supercomputer series, which is capable of achieving

8 GFLOPS in each of up to four processors. This architecture

provides high-performance processing for fine-grain

parallelism, and it allows efficient parallel processing even

in an undedicated environment. It also features the newly-

developed time-limited spin-loop synchronization, which

combines spin-loop synchronization with operating system

primitives, and a communication buffer (CB) which caches

shared variables for synchronization, thus allowing them to

be accessed faster. Three new instructions take advantage of

the CB in order to reduce the parallel overhead. The results

of performance measurements cortfii the effectiveness of

the CB and the new instructions.

1. Introduction

Several supercomputers with vector processors have

been introduced over the last decade. Since vector

multiprocessors first appeared in the Cray X-MP[lJ, more

powerful systems, like the Cray Y-MP/8E[21, Y-MP C9031,

and NEC SX-3[41 have evolved. The Hitachi supercomputer

S-3800[51 series is upwardly compatible with its single-

processor predecessors, the S-810[61 and S-820[7.15-181series.

Permission to copy without fee all or part of this material ia

granted provided that the copies are not made or distributed for

direct commercial advantaga, the ACM copyright notice and the

titla of the publication and its date appear, and notice is given

that copying is by permission of the Association for Computing

Machinery. To copy otherwisa, or to republish, requirea a fee

andlor specific permission.

ICS-7193 Tokyo, Japan
07993 ACM 0.8979 ~.600.x/93/0007 j0288...~~ .50

The four-processor S-3800 model is capable of a state-of-

the-art performance of 32 GFLOPS, and its computing

power is appropriate for the central machine of networked

computing environments. Its system throughput is high not

only because it can execute many programs concurrently,

but because its automatic vectorizing and parallelizing

facilities reduce the execution time of each single program.

In developing the multiprocessor system of the S-

3800, we had hvo major goals. One was to produce a high-

performance parallel processing architecture capable of

supporting fine-grain parallelism down to the level of two-

dimensional loop structures (where each dimension is about

100 elements and the inner loop is vectorizable), while

maintaining binary compatibility with the S-81O and S-820

series. Our other goal was to achieve efficient parallel

processing – even in an undedicated environment –

without wasting vector processor cycles in synchronization.

Figure 1 shows the theoretical effects of running four

processors in parallel. The data plotted here were derived

under the following three assumptions: (1) the granularity of

each parallel operation is neither vectorized nor parallelize~

(2) the vectorizable part is also parallelizablq and (3) vector

execution is ten times as fast as scalar execution. This figure

clearly shows that for the same granularity, vector

multiprocessor systems need more efficient synchronization

and a higher parallelization ratio than scalar multiprocessor

systems. The finer a program’s grain parallelism, the more

opportunity there is to parallelize the program — either

automatically or directly. Furthermore, the finer the

granularity, the less the parallel overhead. We therefore

288

http://crossmark.crossref.org/dialog/?doi=10.1145%2F165939.165982&domain=pdf&date_stamp=1993-08-01

1

0

- a=95, /9=0
.-.. +--..+.. .+... *.-. ~ Vect0ri2ati0n ratio

l.. .. X..XX-...*=. --X

11-. ---=..

O.oa)l 0.001 0.01 0.1 1 10

Parallelization Overhead f~lre~ grsn~ari~ is neirtrer

Granularity vectorimd nor psrallelized)

Fig. 1. Parallelization effect
on scalar and vector multiprocessor systems,

decided to use a new hardware mechanism in order to

provide faster event[lO1 synchronization (by a new spin-loop

method), and shorter hardware-lock[*Ol time for mutual

exclusion.

A parallelized program may be executed on the

single-processor model of the S-3800 series, and it may also

be executed in an undedicated environment (especially when

debugging or testing a parallel program). In an undedicakd

environment, the number of processors assigned by the

operating system depends on the program’s priority, so the

execution time of a parallel program and the waiting time for

event synchronization would vary every time the program is

executed. When the waiting time is long, the processor

cycles for the other programs are wasted. This drawbi~ck

calls for a new synchronization feature that does not lose

cycles, thus stabilizing the CPU time and account time.

We begin this paper with a brief overview of

processor organization in the S-3800 series, and then

describe the parallel processing model. We then propose a

new synchronization feature (time-limited spin-loop), anew

instruction (compare-and-wait), and a communication buffer

(CB) which keeps the variables for synchronization, Finally,

we describe the experimental performance of the two- and

four-processor models.

2. Processor Organization of the S-3800

The processor organization of the S-3800 (Fig, 2)

consists of four scalar and vector processors (SPS and VI%),

a system controller (SC), main storage (MS), extended

storage (ES), input/output processors (IOPS), and a service

%%%’G%P’~’ ‘
d3

- “k---------------

+ processors H+IU II I

I Extended I

L2EE@
m Flding-point registu
GR: Gmusl-ptupase rcgista

SP:Sc-llsrpc.X- HIPPEHiah-timmn m pudlel irnerfme
VP Vecrorprccessrlr HsLk High-speedirmrke Sdapta
SVP SCrvieep?— SAG Scienti!c Aninratim Graphics

UltraNet is a registered trademmk of Network Technologies, IrIc.

Fig. 2. Processor organization of the S-3800.

processor (SW). Each scalar processor k

compatible whh Hhachi’s general purpose

main frame M-series, supports three new

instructions for multiprocessing, and

thirty-one instructions for controlling the

vector processing, and also contains 2,56-

KB store-through buffer storage (ES).

Each vector processor has two add/

multiply pipelines, one divide pipeline,

one mask pipeline, 128 KB of vector

registers, and 1 KB of vector mask

registers. It also has one load/store

pipeline and one load pipeline to and from

the main storage. The communication

buffer (CB), which enables efficient

parallel processing, will be discussed in

Section 4.

289

3. Parallel Processing Model

Before discussing the multiprocessing architecture of

the S-3800, we will briefly overview its parallel processing

scheme, with reference to the development goals —

especially those related to synchronization primitives —

described in Section 1. These goals can only be reached if the

interaction with the operating system is reduced and flexible

parallel processing control is provided. As a result, we

adopted a two-level scheme (Fig. 3) for scheduling parallel

sub-tasks (or parallel operations), similar to the two-level

schemes used in IBMs Parallel FORTRAN[81 and PCF

FORTRAN for advanced machines[91. The automatic

parallelizing compiler and the compiler directives identify

parallel sub-tasks, a run-time scheduler dispatches the sub-

task to one of the logical processors, and the operating

system assigns the logical processor to a real processor.

PIogramA Program B Pmgnun C

QQ
,
● :, .. .

)
,

Run-time scheduler
.

++++ + +

Operating system (System scheduling)
. . . .

Ehib2&Jli!a
Fig. 3. Two-level scheduling scheme.

The parallelizing compiler extracts three types of

parallel structure loop structures, case structures, and inter-

subroutines or inter-function structures. Serial structures and

paratlel structures appear in the program one after the other

(Fig. 4). A fork primitive (at the beginning of parallel

structures) creates the parallel sub-tasks, and the join

primitive (at the termination of ParaIlel structures) provides

barrier synchronization for the sub-tasks.

A copy of the run-time scheduler is allocated to each

program, and each copy manages three resources to execute

a program in parallel: the logical processors that execute

sub-tasks, the dispatching queue in which sub-tasks are set,

and the free list of the work memory used as temporary

variable storage by the sub-tasks. The fork primitive creates

children sub-tasks. The run-time scheduler inserts these sub-

tasks into the dispatching queue and signals the event to the

logical processors in order to start parallel execution.

Immediately after receiving the signal, the logical processors

take a sub-task from the dispatching queue, get the necessary

work memory, and start executing the sub-task. When they

have finished, they take another sub-task from the

dispatching queue. This means that as long as there are sub-

tasks in the queue, the processors do not need to interact with

the operating system. In addition, this scheme enables

parallel processing to be achieved independent of the

number of real processors assigned by the operating system.

During the excxwion of the join primitive, the parent task

waits until all the sub-tasks have finished their work, this

event being signalled from the last sub-task to the parent

task.

There are two types of synchronization primitives:

locks and events[lOl. Locks may be used to ensure mutual

exclusion in accessing a critical region in the following

cases when a sub-task is inserted into or deleted from the

fork

join

fork

join

———I
!
!

--- I
--- 1

Seriat execution

Parallel execution

Serial execution

Parallel execution

I Serial execution

— Parent task
— Children sub-tasks

Fig. 4. Structure of the parallel program.

290

dispatching queue, and when increasing or decreasing the

counters for parallel loops or for identifying the last sub-task.

The compare-and-swap operation[’O1 is appropriate for the

former case, whereas the fetch-and-add operation[]ol is

appropriate for the latter case. Notice that resolving lock

contention is the main feature of parrdlel processing. Lock

contention genemlly occurs in two cases. The first is when

the header of the dispatching queue is accessed by all the

logical processors immediately after the sub-tasks are

created, and the second occurs if the granularity of each sub-

task is nearly the same in which case the counter in the parent

task which is used to identify the last sub-task may be

updated by several sub-tasks at about the same time. It is

therefore important to reduce the hardware-lock time for

mutual exclusion.

The other synchronization primitives, events, may be

used to force a sub-task to wait until another sub-task has

reached a certain point. They are used in starting logical

processors or in waiting for all the sub-tasks to finish their

work.

essential
because waiting time is

too short to release
the real processors.

-
The effectiveness of
busy-wait spin-loop

depends on the length
of the serial structure

(waiting time for the next
paratlel execution)

fork

join
fork n

join
fork n

join
fo* n

join
I — Pmmt @Sk

— Chil&n sub+esks

serial
execution

Seriat
execution

I — Pamit task
— Children subtaskx

(a) high paralleliration ratio (b) intermediate parallelization ratio
(short Selid SQUCIURS) (tong serial structures)

Fig. 5. Waiting times before fork primitives.

4. Multiprocessing Architecture of the S-3800

The S-3800 multiprocessing architecture

incorporates four new features: a time-limited spin-loop

function used when waiting for events, a communication

buffer (CB) for faster synchronization and shorter hardware-

lock time, a spin-loop timer for measuring the total spin-loop

time of single programs, and three new instructions for

synchronization – compare-and-wait (CW), fetch-and-add

(FA), and store-and-set CB (STSCB). In addition, the Nl-

series synchronization instructions are also supported:

compare-and-swap (CS), compare-double-and-swap (CDS),

and test-and-set (TS).

4.1 Time-Limited Spin-Loop

Two methods are generally available for event

synchronization: operating system (OS) primitives (p@

wait macros); and the busy-wait spin-loop method. The spin-

loop method is required for loop-level free-grain parallelism

on the vector multiprocessor system because the OS

primitives take 10 to 100 times longe$l’1. The disadvantage

of this method, however, is that a long busy-wait time might

reduce the system throughput in an undedicated

environment. However, in a dedicated environment, we can

be fairly certain that the spin-loop method causes no

problems.

Here we shall look closely at which method is

appropriate for two-level scheduling in undedicated systems.

Wait operations are used either when waiting for the creation

of new sub-tasks, or when waiting for the completion of all

children sub-tasks. In the fiist case, the waiting time depends

on the parallelization ratio, which is related to the length of

the serial structures between one parallel structure and the

next. When the parallelization ratio is high enough, the serial

structures will be so short that the spin-loop method is

essential — and, better, the waiting time is expected to be

short enough so as not to spoil the system throughput Fig.

5(a)]. At intermediate parallelization ratios, when the

program benefits from parallelizing only if the logical

processors are assigned to the same real processors during

the execution of serial structures, the spin-loop method is

effective Fig. 5(b)]. If the program does not benefit from

parallelizing, the logical processors should release their real

processors by using OS primitives. When the ratio is low, the

program should not be parallelized at all, but if this is

291

unavoidable, the OS primitives are used in order not to spoil

the system throughput.

The waiting time for the completion of all children

sub-tasks depends on the granularity of each parallel sub-

task. As long as we use the two-level scheduling scheme

described in Section 3, the waiting time of the parent task is

less than the execution time of the last sub-task. With fine-

grain parallelism, the spin-loop method is essential in order

to reduce the synchronization time [Fig. 6(a)], but with

coarse-grain parallelism the short synchronization time

achieved by the spin-loop method is not essential lFig. 6(b)].

OS primitives should therefore be used in order to avoid

losing too many cycles.

L
Busy-wait spin-loop

during the join operation is
essentiat

because the maximum
waiting time is too short

to release the real processors.

fork

\ 1
Parallel

join -- ,execution

fork .-

1
Parallel

join ,execution
--

fork --

t
Parallel

join ,execution
--

fork

E
---——-tParallel

join ,execution

fork ---------- --

1
Parallel

join ,execution
—-—— ---

I
— Plmalt task
— Child?m Sub-tasb

(a) fmegrain parallelism
(short parallel structures)

Lbecause the parallel
structure is long.

\

i

I

I
-- i

I — Parent task
— Childrm sub-tasks

(b) coarse-grain parallelism
(long parallel structures)

Fig. 6. Waiting times before join primitives.

We therefore decided to combine the spin-loop

method with OS primitives to create what we call the time-

limited spin-loop method. The first chmacteristic of this

method is that the busy-wait spin-loop method is used

initially to achieve fast synchronization, and then after a

predetermined time the OS primitives are used in order to

keep the system throughput high. The second characteristic

is that the

hardware

busy-wait spin-loop is not terminated by the

(like the Cray X-MP/Y-MP deadlock

interruption[~l) but by software. The time-limited spin-loop

method is therefore effective not only for fine-grain

parallelism but also for parallel processing in an undedicated

environment.

The time-limited spin-loop method involves the

following procedures

(1) The time limit of the busy-wait spin-loop is decided.

(2) Until the limit time is reached, a busy-wait spin-loop

is used to wait for an event.

(3) After the time limit, thertm-time scheduler sets a flag

to indicate that the task is waiting in the OS primitive

(wait macro) mode instead of the spin-loop mode, and

releases the real processor. In dispatching another

program, the operating system will consider the system

balance. This flag is used to judge whether a store

instruction or an OS primitive (post macro) should be

used to send the event to the waiting sub-task.

The limit time of the spin-loop is the key issue for this

feature, and it should meet two conditions. One is that in

free-grain parallelism, the limit time should be more than the

granularity. The other is that at intermediate parallelization

ratios, the limit time should be as long as the serial structure.

Deciding the limit time, however, is an issue that still needs

to be discussed.

4.2 Spin-Loop Timer and the Compare-and-Wait

Instruction

The time-limited spin-loop feature can be

implemented by using the existing compare and conditional

branch instructions. Although this has the advantage that the

scalar architecture does not have to be expanded or changed,

we did not use this technique for two reasons.

(1) Inter-processor communication via the main storage

is slow Eig. 7(a)]. The event is fust stored in the main

storage, and the inconsistency with the buffer storage is

detected in every scalar processor that was waiting for

the event. This results in a block transfer from the main

storage to the buffer storage, and only then is the

condition of the synchronization met.

(2) An interrupt might occur during the busy-wait spin-

loop. Without interaction with the operating system,

there would then be no way to measure the busy-waiting

time. In addition, the busy-waiting time would vary from

292

one execution to the next in an undedicated system. It is

meaningless to interact with the operating system while

busy-waiting to achieve fast synchronization.

For these two reasons, we decided to introduce anew

instruction, compare-and-wait (CW), and a spin-loop timer.

The CW instruction operates on the communication buffer

(CB), which is shared by all the scatar processors and which

follows a store-through protocol. The CB will be discussed

in detail in the next subsection.

The CW instruction operates as follows:

(1) There are three operands: (a) maximum spin-loop

count, (b) location of the event synchronization variable,

and (c) expected value to establish synchronization.

(2) The expected value is compared with the contents of

the location, which are fetched directly from the CB,

bypassing the buffer storage and decrementing the spin-

lcep count.

(3) If the value and the contents are equal, the instruction

is completed with condition code O. Otherwise steps (2)

and (3) are repeated until the spin-loop count is zero.

(4) If the spin-loop count is zero, the instruction is

completed with condition code 2.

(5) The CW instruction is interruptible in step (3).

Because the CW instruction uses the CB for event

synchronization, and since the CB is the cache shared by all

the processors, this instruction causes no inconsistency and it

does not require block transfers Fig. 7(b)]. We can therefore

achieve fast event synchronization by combining the new

CW instruction and the CB. The weak point of the CW

instruction is that the synchronization poinis are more sparse

than they are when the existing compare and conditicml

branch instructions are used. This is because the CB is

farther away from the processors than the buffer storage,

The spin-loop timer is used to time the busy-wait

spin-loops. This timer is incremented whenever a CW

instruction is executed. The operating system can both read

from and write to the spin-loop timer, and its value is used to

optimize the performance of programs executed on

dedicated systems. In undedicated systems, the total spin-

loop time would be different in every execution, but to

emble a stable CPU time or account time to be provided, the

operating system can use the spin-loop timer value to

calculate the account time and to carry out enforced job

termination when excessive CPU time has been used.

4.3 Communication Buffer, Store-and-Set CB

Instruction

In a shared-memory multiprocessor system, parallel

sub-tasks execute their own codes and synchronize with each

other when using shared variables. Such shared variables are

usually copied into the private buffer storage of each scalar

processor, but when one of the processor updates a variable,

all the copies in the buffer storages of the other processors

should reflect this change. This is carried out by block

(a) using existing instructions (b) using CW instructions and the CB

CW Compar?-and-Wait Instrwion IP fnmuction Processor
c Compare fnsiruction SP %&r Processor
ST Store fnwwtion VP vector Pmcemm
BC Branch-on-Condition Instruction BS Buffer Stomge?Cache)

Fig. 7. Two methods for event synchronization.

293

transfers from the main storage to all the buffer storages,

causing some degradation of performance.

The communication buffer (CB) is a store-through

buffer storage (cache) which is shared by all the scalar

processors, and which follows a set-associative mapping

replacement protocol. This buffer only caches the data used

for synchronization, namely the operands for these five

instructions: compare-and-wait (CW), fetch-and-add (PA),

compare-and-swap (CS), compare-double-and-swap (CDS),

and test-and-set (’ES). The first two instructions are new

features of the S-3800, and the last three already exist in the

M-series architecture”. The operands of these instructions

are fetched directly from the CB, bypassing the buffer

storage. By restricting the data held in the CB to

synchronization data, the performance of vector store

operations is not degraded. Because the synchronization data

is never accessed by the vector processors, there is no need

for block transfer from the main storage to the CB.

Although the CB is primarily transparent to the

software, it is essential for the run-time scheduler to take full

advantage of the CB in order to provide high-performance

parallel processing. We therefore created a new instmction,

store-and-set CB (STSCB), that initializes the

synchronization variables and sets them to the CB. In this

instruction, four bytes from a general-purpose register are

stored into the main storage, and then copied to the CB with

a block transfer operation.

In implementing the CB, we had the alternatives of

the shared-registers approach or the CB approach. The

shared-registers approach has &n adopted in several vector

multiprocessor systems, such as the Cray X-MP/Y-MP

series, theNEC SX-3 series, and the Convex C2/C3 series[lz].

This approach has the advantages of a shorter access time

and simpler implementation, but the CB approach has more

advantages for the S-3800 series.

First of all, there me no restrictions of the number of

synchronization variables. In addition, it is impossible to

save a shared register into the main storage temporarily,

because these registers are shared by other processors, some

of which might be in use. This limitation of the shared-

registers approach restricts the programming freedom,
.

* The scalar architecture of the S-3800 is based on Hitachi’s

main frame M-series archkecture.

whereas the CB is primarily transparent to the software and

thus offers more flexibility.

Secondly, the M-series architecture aheady has CS,

CDS, and TS instructions for achieving mutual exclusion

from critical regions. In executing these instructions, the

hardware lock is set while data in the main storage is

updated. In the CB approach, these instructions can also take

advantage of the CB because the access time of the CB is

shorter than that of the main storage.

Third, the shared registers must be saved and restored

when the program is swapping out or swapping in.

Finally, the CB approach is more reliable because the

CB only stores a copy of part of the main storage. Even if the

CB hardware is damaged, it can be disconnected without

bringing the entire system to a halt.

4.4 Fetch-and-Add Instruction

The compare-and-swap (CS) instruction modifies the

data only if it has not been changed by any other processors

and its value is what the CS instruction expects. This means

that if lock contention has occurred and another processor

has changed the data, it is necessary to loop back in

preparation for updating and try again (Fig. 8). It follows that

a long hardware lock time and a long execution time would

be required to complete the lock synchronization for mutual

exclusion.

L GR1, COUNTER

RETRY LR GRO,GR1

A GRO,“ 1“

Cs GR1, GRO,COUNTER

BNE RETRY

Fig. 8. Synchronization using the CS instruction

(Increment by ‘1’ operation).

The fetch-and-add operation, as used in the NYU

Ultracomputed13 J41, is particularly effective for updating

counters in critical regions, since this operation is capable of

waiting without looping back. When increasing or

decreasing the counters for parallel loops or for identifying

the last sub-task, this operation would therefore result in

much less leek time and execution time than would result

from using the CS instruction. Furthermore, parallel loops

294

tend to appear in a fine-grain parallelism. We therefore

decided to introduce a fetch-and-add (FA) instruction in

which an integer variable in the CB is increased according to

a variable in a general-purpose register, and the increased

variable is loaded into the general-purpose register.

Because almost all the counters used in parallel

processing are either incremented or decremented by one,

we have classified the FA instruction into two types. When

the increment value is ‘1’ or ‘-l’, the operation is carried out

inside the CB with a little additional hardware. Otherwise,

the operation is carried out in the scalar processor after

fetching the counter value from the CB. Operating this

increment or decrement in the CB further reduces both the

lock time and the execution time.

Processor O Processor 1

Compare-and-Wait (OR busy-waiting

(w using Compare
sending

o

t K7

+Branch)
.- store an event

.5 ~
busy-waiting for the event

s~
3 “U receiving the event

‘-’---l--------+
Fig. 9. S~chronization time for an event primitive.

1.0 -

0.9

0.8

$ 0.7

~ 0.6
“g
.: 0.5

0.4 .

$ 0.3

0.2

0.1

0.0 -
Cw

,.. .---... -.. ... -.-...
! WI 2 processors !
I
i 04 processom !
L. 1

.I

Instruction + Btich
with CB Instruction

(average) without CB

Fig. 10. The effect of the CW instruction

and the CB on event synchronization.

5. Performance Evaluation

We measured the performance of the event and lock

synchronization primitives on the two-processor and four-

processor models. To precisely evaluate the ways in which

the synchronization primitives are affected by the CB and

the new instructions, we simulated the logical processes of

the S-3800.

The event synchronization time can be defined as the

total time from when a prccessor sends an event until all the

other processors have received the event and started

executing the next instruction (Fig. 9). We used the store

instruction for sending an event, and we used the CW

instruction with the CB for receiving an event. For

comparison, we also used a combination of compare and

branch instructions for receiving an event. By eliminating

block transfers, the former process reduced the event

synchronization time by an average of 30% (Fig. 10).

The maximum lock synchronization time can be

expressed as total time needed for all the processors to

serially update the lock word (Fig. 11). We evaluated the

time taken to increase the counter by one using an FA

instruction with the CB, which we compared with CS

instructions both with and without the CB. We inserted some

instructions in the program which made all the processors

start executing the FA or the CS instructions at the same

time. The difference between the performance of the FA

instruction and that of the CS instruction clearly shows the

advantage of the former technique (Fig. 12). This difference

includes the effects of executing unity increment operations

in the CB in case of the FA instruction. As a result, the

execution time of unity increments and decrements was

reduced by 7570 in the two-processor model and by 86% in

the four-processor model. Even without the FA instruction,

the effect of the CB on speeding up CS instructions is also

significant the execution time of the CS instruction was

reduced by 39’%0in the two-processor model and by 42’ZOin

the four-processor model,

Figure 13 shows the overall effect of introducing tlhe

CB and the new instructions. The vertical axis shows tlhe

parallelization effect with four processors in executing a

DAXPY operation (“V=S*V+V”), where V is the veetor

data (or one-dimensional matrix data) and S is the scalar

data. This figure shows the result of a preliminary evaluation

assuming the following conditions: (1) The program has a

295

Processor O ~ewg= Processor 1

I time I
I

g --~
I

IFetch-and-Add\ IFetch-and-Addl

‘l--T------T
Fig. 11. Sfichronization time for a lock primitive.

1.0

0.9

0.8

0.7
‘s

.~ o.6

C’&

“g 0.5

A
g 0.4

$
0.3

0.2

0.1

0.0

Executing ‘+1’ operations

in ali processors

r . 1
i f31 2 processors ~
i
~❑ 4 processors ~
L . J

FA Cs

—

—

Cs

I

Instruction Instruction Instruction
with CB with CB without CB

Fig. 12. The effect of the FA instruction and the CB

on lock synchronization.

two-dimensional loop structure, where inner loop

(“V=S*V+V”) is vectorized and the outer loop is divided

into four parallel segments. The horizontal axis shows the

size of each dimension. (2) During the whole execution of

the parallel loop structure, the event wait operation (CW

instruction) and the lock contention (PA instruction) each

appear twice. The difference between the two lines

represents the advantages of the CB and the new instructions

introduced in the S-3800.

6. Conclusions

We have presented the parallel processing

architecture of the Hitachi supercomputer S-3800 series,

which features a time-limited spin-loop using a new

compare-and-wait (CW) instruction and a spin-loop timer, a

communication buffer (CB), a store-and-set CB (STSCB)

instruction, and a fetch-and-add (FA) instruction. The run-

time scheduler entirely controls parallel processing, taking

futl advantage of these features.

The time-limited spin-loop feature was shown to be

essential for practical parallel processing in an undedicated

environment, as well as for extremely high-speed parallel

processing with fine-grain parallelism. Performance

evaluations have demonstrated that the CB and the three new

instructions greatly improve the performance of parallel

processing.

4

o

-4
Effect of the parallel
processing features

(CB, and CW,FA,STSCB

1 I , t t UI

1 10 100 1000 1ooOo

Number of elements in (n x n) loop structure

Fig. 13. Effect of the parallel processing features

in the S-3800.

[Condition a) 2-dimensional loop divi&d into 4 segments,

b) CW and FA instructions appear twice each (for loop parallel).]

296

References

[1] M.C. August, G.M. Brost, C.C. Hsiung, and A.J.

Schiffleger, “Cray X-MP: The Birth of a

Supercomputer; IEEE Computer, pp. 45-52, Jan., 1989.

[2] U. Detert, and G. Hofemann, “Cray X-MP and Y-MP

memory performance,” Parallel Computing 17, North-

Holland, pp. 579-590, 1991.

[3] W. Oed, “Cray Y-MP C90 System features and early

benchmark results,” Parallel Computing 18, North-

Holland, pp. 947-954, 1992.

[4] A. Iwaya, and T. Watanabe, “The Parallel Processing

Feature of the NEC SX-3 Supercomputer System,”

International Journal of High Speed Computing, Vol. 3,

Number 3 &4, 1991.

[5] K. Ishii, H. Abe, S. Kawabe, and M. Hirai, “An

Overview of the Hitachi S-3800 Series Supercomputer,”

Proc. of Supercomputer ’92, pp. 65-81, Jun., 1992.

[6] S. Nagashima, Y. Inagami, T. Odaka, and S. Kawabe,

“Design Consideration for a High-Speed Vector

Processcm The Hitachi S-81 O,” ICCD ’84, pp. 238-243,

Oct., 1984.

[7] T. Odaka, S. Kawabe, and H. Wada, “Development

of Hitachi Supemomputer S-820 System,” Proc. of the

third International Confi on Supercomputing, pp. 71-77,

1988.

[8] L.J. Toomey, E.C. Plachy, R.G. Scarborough, R.J.

Sahulka, J.F. Shaw, and A.W. Shannon, “IBM Parallel

FORTRAN,” IBM Systems Journal, Vol. 27, No. 4, pp.

416-435,1988.

[9] The Parallel Computing Forum, “PCF FORTRAN:

Language Definition,” Aug., 1988.

[10] K. Hwang, and F.A. Briggs, “Computer Architecture

and Parallel Processing,” McGraw-Hill Inc., 1985.

[11] P. Carnevali, P. Sguazzero, and V. Zecca,

Wlicrotadcing on IBM Multiprocessors: IBM Journal of

Research andDevelopmen(, Vol. 30, No. 6, pp. 574-582,

Nov., 1986.

[12] T. Jones, “Engineering Design of the Convex C2,”

IEEE Computer, pp. 36-44, Jan., 1989.

[13] A. Gottlieb, R. Grishman, C.P. Kruskal, K.P.

McAuliffe, L. Rudolph, and M. Snir, “The NYU

Ultracomputer - Designing an MIMD Shared Memory

Parallel Computer: ZEEE Trans. Computers, pp. 175-

189, Feb., 1983.

[14] G.F. Pfister, W.C. Brantley, D.A. George, S.L.

Harvey, WJ. Kleinfelder, K.P. McAuliffe, E.A. Meltcm,

V.A. Norton, and J, Weiss, “The IBM Research Parallel

Processor Prototype (RP3): Introduction and

Architecture,” Proc. of International Conj on Parallel

Processing, pp. 764-771,1985.

[15] H. Wada, S. Kawabe, and T. Odaka, “Hitachi

supercomputer S-820 overview,” Proc. of

Supercomputing Europe ’89, pp. 139-147,1989.

[16] H. Wada, K. Ishii, S. Yazawa, and S. Kawabe, “High-

speed Vector Instruction Execution Schemes of Hitachi

Supercomputer S-820 System,” Proc. of International

Co@. on Parallel Processing, pp. 291-298,1988.

[17] H. Wada, K. Ishii, M. Fukagawa, H. Murayama, and

S. Kawabe, “High-speed Processing Schemes for

Summation Type and Iteration Type Vector Instructions

on Hitachi Supercomputer S-820 System,” Proc. of

International Conf. on Supercomputing, pp. 197-206,

1988.

[18] H. Wada, T. Isobe, M. Furukawa, and S. Kawabe,

“High-speed Storage Control Schemes of Hitachi

Supercomputer S-820 System,” Proc. of International

Conf on Supercomputing, pp. 341-350,1989.

297

