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Abstract

We describe an adaptive display algorithm for interactive frame
rates during visualization of very complex virtual environments.
The algorithm relies upon a hierarchical model representation in
which objects are described at multiple levels of detail and can
be drawn with various rendering algorithms. The idea behind the
algorithm is to adjust image quality adaptively to maintain a uni-
form, user-specified target frame rate. We perform a constrained
optimization to choose a level of detail and rendering algorithm for
each potentially visible object in order to generate the “best” image
possible within the target frame time. Tests show that the algorithm
generates more uniform frame rates than other previously described
detail elision algorithms with little noticeable difference in image
quality during visualization of complex models.

CR Categories and Subject Descriptors:
[Computer Graphics]: I.3.3 Picture/Image Generation – viewing
algorithms; I.3.5 Computational Geometry and Object Modeling –
geometric algorithms, object hierarchies ; I.3.7 Three-Dimensional
Graphics and Realism – virtual reality.

1 Introduction

Interactive computer graphics systems for visualization of realistic-
looking, three-dimensional models are useful for evaluation, design
and training in virtual environments, such as those found in archi-
tectural and mechanical CAD, flight simulation, and virtual reality.
These visualization systems display images of a three-dimensional
model on the screen of a computer workstation as seen from a sim-
ulated observer’s viewpoint under interactive control by a user. If
images are rendered smoothly and quickly enough, an illusion of
real-time exploration of a virtual environment can be achieved as
the simulated observer moves through the model.
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It is important for a visualization system to maintain an interactive
frame rate (e.g., a constant ten frames per second). If frame rates
are too slow, or too jerky, the interactive feel of the system is
greatly diminished [3]. However, realistic-looking models may
contain millions of polygons – far more than currently available
workstations can render at interactive frame rates. Furthermore,
the complexity of the portion of the model visible to the observer
can be highly variable. Tens of thousands of polygons might be
simultaneously visible from some observer viewpoints, whereas
just a few can be seen from others. Programs that simply render all
potentially visible polygons with some predetermined quality may
generate frames at highly variable rates, with no guaranteed upper
bound on any single frame time.

Using the UC Berkeley Building Walkthrough System [5] and a
model of Soda Hall, the future Computer Science Building at UC
Berkeley, as a test case, we have developed an adaptive algorithm
for interactive visualization that guarantees a user-specified target
frame rate. The idea behind the algorithm is to trade image quality
for interactivity in situations where the environment is too complex
to be rendered in full detail at the target frame rate. We perform a
constrainedoptimization that selects a level of detail and a rendering
algorithm with which to render each potentially visible object to
produce the “best” image possible within a user-specified target
frame time. In contrast to previous culling techniques, this algorithm
guaranteesa uniform, boundedframe rate, even during visualization
of very large, complex models.

2 Previous Work

2.1 Visibility Determination

In previous work, visibility algorithms have been described that
compute the portion of a model potentially visible from a given
observer viewpoint [1, 11]. These algorithms cull away large por-
tions of a model that are occluded from the observer’s viewpoint,
and thereby improve frame rates significantly. However, in very
detailed models, often more polygons are visible from certain ob-
server viewpoints than can be rendered in an interactive frame time.
Certainly, there is no upper bound on the complexity of the scene
visible from an observer’s viewpoint. For instance, consider walk-
ing through a very detailed model of a fully stocked department
store, or viewing an assembly of a complete airplane engine. In
our model of Soda Hall, there are some viewpoints from which an
observer can see more than eighty thousand polygons. Clearly, vis-
ibility processing alone is not sufficient to guarantee an interactive
frame rate.
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2.2 Detail Elision

To reduce the number of polygons rendered in each frame, an in-
teractive visualization system can use detail elision. If a model
can be described by a hierarchical structure of objects, each of
which is represented at multiple levels of detail (LODs), as shown
in Figure 1, simpler representations of an object can be used to
improve frame rates and memory utilization during interactive vi-
sualization. This technique was first described by Clark [4], and
has been used by numerous commercial visualization systems [9].
If different representations for the same object have similar appear-
ances and are blended smoothly, using transparency blending or
three-dimensional interpolation, transitions between levels of detail
are barely noticeable during visualization.
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Figure 1: Two levels of detail for a chair.

Previously described techniques for choosing a level of detail at
which to render each visible object use static heuristics, most often
based on a threshold regarding the size or distance of an object to
the observer [2, 8, 9, 13], or the number of pixels covered by an
average polygon [5]. These simple heuristics can be very effective
at improving frame rates in cases where most visible objects are
far away from the observer and map to very few pixels on the
workstation screen. In these cases, simpler representations of some
objects can be displayed, reducing the number of polygons rendered
without noticeably reducing image quality.

Although static heuristics for visibility determination and LOD
selection improve frame rates in many cases, they do not generally
produce a uniform frame rate. Since LODs are computed indepen-
dently for each object, the number of polygons rendered during each
frame time depends on the size and complexity of the objects visible
to the observer. The frame rate may vary dramatically from frame
to frame as many complex objects become visible or invisible, and
larger or smaller.

Furthermore, static heuristics for visibility determination and
LOD selection do not even guarantee a bounded frame rate. The
frame rate can become arbitrarily slow, as the scene visible to the
observer can be arbitrarily complex. In many cases, the frame
rate may become so slow that the system is no longer interactive.
Instead, a LOD selection algorithm should adapt to overall scene
complexity in order to produce uniform, bounded frame rates.

2.3 Adaptive Detail Elision

In an effort to maintain a specified target frame rate, some com-
mercial flight simulators use an adaptive algorithm that adjusts the
size threshold for LOD selection based on feedback regarding the
time required to render previous frames [9]. If the previous frame
took longer than the target frame time, the size threshold for LOD

selection is increased so that future frames can be rendered more
quickly.

This adaptive technique works reasonably well for flight sim-
ulators, in which there is a large amount of coherence in scene
complexity from frame to frame. However, during visualization
of more discontinuous virtual environments, scene complexity can
vary radically between successive frames. For instance, in a build-
ing walkthrough, the observer may turn around a corner into a large
atrium, or step from an open corridor into a small, enclosed office.
In these situations, the number and complexity of the objects visible
to the observer changes suddenly. Thus the size threshold chosen
based on the time required to render previous frames is inappropri-
ate, and can result in very poor performance until the system reacts.
Overshoot and oscillation can occur as the feedback control system
attempts to adjust the size threshold more quickly to achieve the
target frame rate.

In order to guarantee a bounded frame rate during visualization
of discontinuous virtual environments, an adaptive algorithm for
LOD selection should be predictive, based on the complexity of the
scene to be rendered in the current frame, rather than reactive, based
only on the time required to render previous frames. A predictive
algorithm might estimate the time required to render every object
at every level of detail, and then compute the largest size threshold
that allows the current frame to be rendered within the target frame
time. Unfortunately, implementing a predictive algorithm is non-
trivial, since no closed-form solution exists for the appropriate size
threshold.

3 Overview of Approach

Our approach is a generalization of the predictive approach. Con-
ceptually, every potentially visible object can be rendered at any
level of detail, and with any rendering algorithm (e.g., flat-shaded,
Gouraud-shaded, texture mapped, etc.). Every combination of ob-
jects rendered with certain levels of detail and rendering algorithms
takes a certain amount of time, and produces a certain image. We
aim to find the combination of levels of detail and rendering al-
gorithms for all potentially visible objects that produces the “best”
image possible within the target frame time.

More formally, we define an object tuple, (O;L;R), to be an in-
stanceof object O, rendered at level of detail L, with rendering algo-
rithm R. We define two heuristics for object tuples: Cost(O;L;R)
and Bene�t (O;L;R). The Cost heuristic estimates the time re-
quired to render an object tuple; and the Benefit heuristic estimates
the “contribution to model perception” of a rendered object tuple.
We define S to be the set of object tuples rendered in each frame.
Using these formalisms, our approach for choosing a level of detail
and rendering algorithm for each potentially visible object can be
stated:

Maximize : P
S
Bene�t (O;L;R)

Subject to : (1)P
S
Cost(O;L;R) � TargetFrameTime

This formulation captures the essence of image generation with
real-time constraints: “do as well as possible in a given amount of
time.” As such, it can be applied to a wide variety of problems that
require images to be displayed in a fixed amount of time, including
adaptive ray tracing (i.e., given a fixed number of rays, cast those
that contribute most to the image), and adaptive radiosity (i.e., given
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a fixed number of form-factor computations, compute those that
contribute most to the solution). If levels of detail representing “no
polygons at all” are allowed, this approach handles cases where the
target frame time is not long enough to render all potentially visible
objects even at the lowest level of detail. In such cases,only the most
“valuable” objects are rendered so that the frame time constraint is
not violated. Using this approach, it is possible to generate images
in a short, fixed amount of time, rather than waiting much longer
for images of the highest quality attainable.

For this approach to be successful, we need to find Cost and
Benefit heuristics that can be computed quickly and accurately. Un-
fortunately, Cost and Benefit heuristics for a specific object tuple
cannot be predicted with perfect accuracy, and may depend on other
object tuples rendered in the same image. A perfect Cost heuristic
may depend on the model and features of the graphics workstation,
the state of the graphics system, the state of the operating system,
and the state of other programs running on the machine. A per-
fect Benefit heuristic would consider occlusion and color of other
object tuples, human perception, and human understanding. We
cannot hope to quantify all of these complex factors in heuristics
that can be computed efficiently. However, using several simplify-
ing assumptions, we have developed approximate Cost and Benefit
heuristics that are both efficient to compute and accurate enough to
be useful.

4 Cost Heuristic

The Cost (O;L;R) heuristic is an estimate of the time required
to render object O with level of detail L and rendering algorithm
R. Of course, the actual rendering time for a set of polygons
depends on a number of complex factors, including the type and
features of the graphics workstation. However, using a model of a
generalized rendering system and several simplifying assumptions,
it is possible to develop an efficient, approximate Cost heuristic
that can be applied to a wide variety of workstations. Our model,
which is derived from the GraphicsLibrary ProgrammingToolsand
Techniques document from Silicon Graphics, Inc. [10], represents
the rendering system as a pipeline with the two functional stages
shown in Figure 2:

� Per Primitive: coordinate transformations, lighting calcula-
tions, clipping, etc.

� Per Pixel: rasterization, z-buffering, alpha blending, texture
mapping, etc.

CCCCCC
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Processing
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Processing
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Figure 2: Two-stage model of the rendering pipeline.

Since separate stages of the pipeline run in parallel, and must
wait only if a subsequent stage is “backed up,” the throughput of
the pipeline is determined by the speed of the slowest stage – i.e.,
the bottleneck. If we assume that the host is able to send primitives
to the graphics subsystem faster than they can be rendered, and no
other operations are executing that affect the speed of any stage of
the graphics subsystem, we can model the time required to render
an object tuple as the maximum of the times taken by any of the
stages.

We model the time taken by the Per Primitive stage as a linear
combination of the number of polygons and vertices in an object
tuple, with coefficients that depend on the rendering algorithm and
machine used. Likewise, we assume that the time taken by the Per
Pixel stage is proportional to the number of pixels an object covers.
Our model for the time required to render an object tuple is:

Cost(O;L;R) = max

�
C1Poly(O;L) + C2Vert(O;L)

C3Pix (O)

�

where O is the object, L is the level of detail, R is the rendering
algorithm, and C1, C2 and C3 are constant coefficients specific to a
rendering algorithm and machine.

For a particular rendering algorithm and machine, useful values
for these coefficients can be determined experimentally by rendering
sample objects with a wide variety of sizes and LODs, and graphing
measured rendering times versus the number of polygons, vertices
and pixels drawn. Figure 3a shows measured times for rendering
four different LODs of the chair shown in Figure 1 rendered with
flat-shading. The slope of the best fitting line through the data
points represents the time required per polygon during this test.
Using this technique, we have derived cost model coefficients for
our Silicon Graphics VGX 320 that are accurate within 10% at
the 95% confidence level. A comparison of actual and predicted
rendering times for a sample set of frames during an interactive
building walkthrough is shown in Figure 3b.
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Figure 3: Cost model coefficients can be determined empirically.
The plot in (a) shows actual flat-shaded rendering times for four
LODs of a chair, and (b) shows a comparison of actual and es-
timated rendering times of frames during an interactive building
walkthrough.

5 Benefit Heuristic

The Bene�t(O;L;R) heuristic is an estimate of the “contribution
to model perception” of rendering object O with level of detail L
and rendering algorithm R. Ideally, it predicts the amount and ac-
curacy of information conveyed to a user due to rendering an object
tuple. Of course, it is extremely difficult to accurately model hu-
man perception and understanding, so we have developed a simple,
easy-to-compute heuristic based on intuitive principles.

Our Benefit heuristic depends primarily on the size of an object
tuple in the final image. Intuitively, objects that appear larger to the
observer “contribute” more to the image (see Figure 4). Therefore,
the base value for our Benefit heuristic is simply an estimate of the
number of pixels covered by the object.

Our Benefit heuristic also depends on the “accuracy” of an object
tuple rendering. Intuitively, using a more detailed representation or
a more realistic rendering algorithm for an object generates a higher
quality image, and therefore conveys more accurate information to
the user. Conceptually, we evaluate the “accuracy” of an object
tuple rendering by comparison to an ideal image generated with an
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Figure 4: Objects that appear larger “contribute” more to the image.

ideal camera. For instance, consider generating a gray-level image
of a scene containing only a cylinder with a diffusely reflecting
Lambert surface illuminated by a single directional light source in
orthonormal projection. Figure 5a shows an intensity plot of a
sample scan-line of an ideal image generated for the cylinder.

First, consider approximating this ideal image with an image gen-
erated using a flat-shaded, polygonal representation for the cylinder.
Since a single color is assigned to all pixels covered by the same
polygon, a plot of pixel intensities across a scan-line of such an
image is a stair-function. If an 8-sided prism is used to represent
the cylinder, at most 4 distinct colors can appear in the image (one
for each front-facing polygon), so the resulting image does not ap-
proximate the ideal image very well at all, as shown in Figure 5b.
By comparison, if a 16-sided prism is used to represent the cylinder,
as many as 8 distinct colors can appear in the image, generating a
closer approximation to the ideal image, as shown in Figure 5c.
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d) Gouraud-shaded 16-sided prism.

Figure 5: Plots of pixel intensity across a sample scan-line of images
generated using different representations and rendering algorithms
for a simple cylinder.

Next, consider using Gouraud shading for a polygonal represen-
tation. In Gouraud shading, intensities are interpolated between
vertices of polygons, so a plot of pixel intensities is a continuous,
piecewise-linear function. Figure 5d shows a plot of pixel intensities
across a scan line for a Gouraud shaded 16-sided prism. Compared
to the plot for the flat-shaded image (Figure 5b), the Gouraud shaded
image approximates the ideal image much more closely.

More complex representations (e.g., parametric or implicit sur-
faces) and rendering techniques (e.g., Phong shading, antialiasing
or ray tracing) could be used to approximate the ideal image even

more closely. Based on this intuition, we assume that the “error,”
i.e., the difference from the ideal image, decreases with the number
of samples (e.g., rays/vertices/polygons) used to render an object tu-
ple, and is dependent on the type of interpolation method used (e.g.,
Gouraud/flat). We capture these effects in the Benefit heuristic by
multiplying by an “accuracy” factor:

Accuracy(O;L;R) = 1� Error = 1�
BaseError

Samples(L;R)m

where Samples(L, R) is #pixels for ray tracing, or #vertices for
Gouraud shading, or #polygons for flat-shading (but never more
than #pixels); and m is an exponent dependent on the interpolation
method used (flat = 1, Gouraud = 2). The BaseError is arbitrarily
set to 0.5 to give a strong error for a curved surface represented
by a single flat polygon, but still account for a significantly higher
benefit than not rendering the surface at all.

In addition to the size and accuracy of an object tuple rendering,
our Benefit heuristic depends on on several other, more qualitative,
factors, some of which apply to a static image, while others apply
to sequences of images:

� Semantics: Some types of object may have inherent “im-
portance.” For instance, walls might be more important than
pencils to the user of a building walkthrough; and enemy robots
might be most important to the user of a video game. We adjust
the Benefit of each object tuple by an amount proportional to
the inherent importance of its object type.

� Focus: Objects that appear in the portion of the screen at which
the user is looking might contribute more to the image than ones
in the periphery of the user’s view. Since we currently do not
track the user’s eye position, we simply assume that objects
appearing near the middle of the screen are more important
than ones near the side. We reduce the Benefit of each object
tuple by an amount proportional to its distance from the middle
of the screen.

� Motion Blur: Since objects that are moving quickly across the
screen appear blurred or can be seen for only a short amount of
time, the user may not be able to see them clearly. So we reduce
the Benefit of each object tuple by an amount proportional to
the ratio of the object’s apparent speed to the size of an average
polygon.

� Hysteresis: Rendering an object with different levels of detail
in successive frames may be bothersome to the user and may
reduce the quality of an image sequence. Therefore, we reduce
the Benefit of each object tuple by an amount proportional to
the difference in level of detail or rendering algorithm from the
ones used for the same object in the previous frame.

Each of these qualitative factors is represented by a multiplier
between 0.0 and 1.0 reflecting a possible reduction in object tuple
benefit. The overall Benefit heuristic is a product of all the afore-
mentioned factors:

Bene�t(O;L;R) = Size(O) �Accuracy(O;L;R)�
Importance(O) � Focus(O) �Motion (O) �Hysteresis (O;L;R)

This Benefit heuristic is a simple experimental estimate of an ob-
ject tuple’s “contribution to model perception.” Greater Benefit is
assigned to object tuples that are larger (i.e., cover more pixels in
the image), more realistic-looking (i.e., rendered with higher lev-
els of detail, or better rendering algorithms), more important (i.e.,
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semantically, or closer to the middle of the screen), and more apt
to blend with other images in a sequence (i.e., hysteresis). In our
implementation, the user can manipulate the relative weighting of
these factors interactively using sliders on a control panel, and ob-
serve their effects in a real-time walkthrough. Therefore, although
our current Benefit heuristic is rather ad hoc, it is useful for exper-
imentation until we are able to encode more accurate models for
human visual perception and understanding.

6 Optimization Algorithm

We use the Cost and Benefit heuristics described in the previous
sections to choose a set of object tuples to render each frame by
solving equation 1 in Section 3.

Unfortunately, this constrained optimization problem is NP-
complete. It is the Continuous Multiple Choice Knapsack Problem
[6, 7], a version of the well-known Knapsack Problem in which el-
ements are partitioned into candidate sets, and at most one element
from each candidate set may be placed in the knapsack at once. In
this case, the set S of object tuples rendered is the knapsack, the
object tuples are the elements to be placed into the knapsack, the
target frame time is the size of the knapsack, the sets of object tuples
representing the same object are the candidate sets, and the Cost and
Benefit functions specify the “size” and “profit” of each element,
respectively. The problem is to select the object tuples that have
maximum cumulative benefit, but whose cumulative cost fits in the
target frame time, subject to the constraint that only one object tuple
representing each object may be selected.

We have implemented a simple, greedy approximation algorithm
for this problem that selects object tuples with the highest Value
(Bene�t (O;L;R)=Cost (O;L;R)). Logically, we add object tu-
ples to S in descending order of Value until the maximum cost is
competely claimed. However, if an object tuple is added to S which
represents the same object as another object tuple already in S, only
the object tuple with the maximum benefit of the two is retained.
The merit of this approach can be explained intuitively by noting
that each subsequent portion of the frame time is used to render the
object tuple with the best available “bang for the buck.” It is easy
to show that a simple implementation of this greedy approach runs
in O(n logn) time for n potentially visible objects, and produces a
solution that is at least half as good as the optimal solution [6].

Rather than computing and sorting the Benefit, Cost, and Value for
all possible object tuples during every frame, as would be required
by a naive implementation, we have implemented an incremental
optimization algorithm that takes advantage of the fact that there is
typically a large amount of coherence between successive frames.
The algorithm works as follows: At the start of the algorithm, an
object tuple is addedto S for each potentially visible object. Initially,
each object is assigned the LOD and rendering algorithm chosen in
the previous frame, or the lowest LOD and rendering algorithm if
the object is newly visible. In each iteration of the optimization, the
algorithm first increments the accuracy attribute (LOD or rendering
algorithm) of the object that has the highest subsequent Value. It
then decrements the accuracy attributes of the object tuples with the
lowest current Value until the cumulative cost of all object tuples
in S is less than the target frame time. The algorithm terminates
when the same accuracy attribute of the same object tuple is both
incremented and decremented in the same iteration.

This incremental implementation finds an approximate solution
that is the same as found by the naive implementation if Values of
object tuples decrease monotonically as tuples are rendered with

greater accuracy (i.e., there are diminishing returns with more com-
plex renderings). In any case, the worst-case running time for the
algorithm is O(n log n). However, since the initial guess for the
LOD and rendering algorithm for each object is generated from the
previous frame, and there is often a large amount of coherence from
frame to frame, the algorithm completes in just a few iterations
on average. Moreover, computations are done in parallel with the
display of the previous frame on a separate processor in a pipelined
architecture; they do not increase the effective frame rate as long
as the time required for computation is not greater than the time
required for display.

7 Test Methods

To test whether this new cost/benefit optimization algorithm pro-
duces more uniform frame rates than previous LOD selection algo-
rithms, we ran a set of tests with our building walkthrough applica-
tion using four different LOD selection algorithms:

a) No Detail Elision: Each object is rendered at the highest LOD.

b) Static: Each object is rendered at the highest LOD for which
an average polygon covers at least 1024 pixels on the screen.

c) Feedback: Similar to Static test, except the size threshold for
LOD selection is updated in each frame by a feedback loop,
based on the difference between the time required to render
the previous frame and the target frame time of one-tenth of a
second.

d) Optimization: Each object is rendered at the LOD chosen by
the cost/benefit optimization algorithm described in Sections 3
and 6 in order to meet the target frame time of one-tenth of a
second. For comparison sake, the Benefit heuristic is limited
to consideration of object size in this test, i.e., all other Benefit
factors are set to 1.0.

All tests were performed on a Silicon Graphics VGX 320 work-
station with two 33MHz MIPS R3000 processors and 64MB of
memory. We used an eye-to-object visibility algorithm described in
[12] to determine a set of potentially visible objects to be rendered in
each frame. The application was configured as a two-stage pipeline
with one processor for visibility and LOD selection computations
and another separate processor for rendering. Timing statistics were
gathered using a 16�s timer.

In each test, we used the sample observer path shown in Figure
6 through a model of an auditorium on the third floor of Soda Hall.
The model was chosen because it is complex enough to differenti-
ate the characteristics of various LOD selection algorithms (87,565
polygons), yet small enough to reside entirely in main memory so
as to eliminate the effects of memory management in our tests. The
test path was chosen because it represents typical behavior of real
users of a building walkthrough system, and highlights the differ-
ences between various LOD selection algorithms. For instance, at
the observer viewpoint marked ‘A’, many complex objects are si-
multaneously visible, some of which are close and appear large to
the observer; at the viewpoint marked ‘B’, there are very few ob-
jects visible to the observer, most of which appear small; and at the
viewpoint marked ’C’, numerous complex objects become visible
suddenly as the observer spins around quickly. We refer to these
marked observer viewpoints in the analysis, as they are the view-
points at which the differences between the various LOD selection
algorithms are most pronounced.
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Figure 6: Test observer path through a model of an auditorium.

8 Results and Discussion

Figure 7 shows plots of the frame time (seconds per frame) for each
observer viewpoint along the test path for the four LOD selection
algorithms tested. Table 1 shows cumulative compute time (i.e.,
time required for execution of the LOD selection algorithm) and
frame time statistics for all observer viewpoints along the test path.
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Figure 7: Plots of frame time for every observer viewpoint along
test observer path using a) no detail elision, b) static algorithm,
c) feedback algorithm, and d) optimization algorithm. Note: the
“Frame Time” axis in plot (a) is five-times larger than the others.

If no detail elision is used, and all potentially visible objects are
rendered at the highest LOD, the time required for each frame is
generally long and non-uniform, since it depends directly on the
number and complexity of the objects visible to the observer (see
Figure 7a). In our test model, far too many polygons are visible
from most observer viewpoints to generate frames at interactive
rates without detail elision. For instance, at the observer viewpoint
marked ‘A’ in Figure 6, 72K polygons are simultaneously visible,
and the frame time is 0.98 seconds. Overall, the mean frame time for
all observer viewpoints on the test path is 0.43 seconds per frame.

If the Static LOD selection algorithm is used, objects whose
average polygon is smaller than a size threshold fixed at 1024 pixels
per polygon are rendered with lower LODs. Even though the frame
rate is much faster than without detail elision, there is still a large
amount of variability in the frame time, since it depends on the size
and complexity of the objects visible from the observer’s viewpoint
(see Figure 7b). For instance, at the observer viewpoint marked ‘A’,
the frame time is quite long (0.19 seconds) because many visible
objects are complex and appear large to the observer. A high LOD
is chosen for each of these objects independently, resulting in a long
overall frame time. This result can seen clearly in Figure 8a which

LOD Selection Compute Time Frame Time
Algorithm Mean Max Mean Max StdDev
None 0.00 0.00 0.43 0.99 0.305
Static 0.00 0.01 0.11 0.20 0.048
Feedback 0.00 0.01 0.10 0.16 0.026
Optimization 0.01 0.03 0.10 0.13 0.008

Table 1: Cumulative statistics for test observer path (in seconds).

depicts the LOD selected for each object in the frame for observer
viewpoint ‘A’ – higher LODs are represented by darker shades of
gray. On the other hand, the frame time is very short in the frame at
the observer viewpoint marked ‘B’ (0.03 seconds). Since all visible
objects appear relatively small to the observer, they are rendered
at a lower LOD even though more detail could have been rendered
within the target frame time. In general, it is impossible to choose
a single size threshold for LOD selection that generates uniform
frame times for all observer viewpoints.

a) Static algorithm b) Optimization algorithm

Figure 8: Images depicting the LODs selected for each object at the
observer viewpoints marked ’A’ using the Static and Optimization
algorithms. Darker shades of gray represent higher LODs.

The Feedback algorithm adjusts the size threshold for LOD se-
lection adaptively based on the time taken to render previous frames
in an effort to maintain a uniform frame rate. This algorithm gen-
erates a fairly uniform frame rate in situations of smoothly varying
scene complexity, as evidenced by the relatively flat portions of the
frame time curve shown in Figure 7c (frames 1–125). However, in
situations where the complexity of the scene visible to the observer
changes suddenly, peaks and valleys appear in the curve. Some-
times the frame time generated using the Feedback algorithm can be
even longer than the one generated using the Static algorithm, as the
Feedback algorithm is lured into a inappropriately low size threshold
during times of low scene complexity. For instance, just before the
viewpoint marked ‘C’, the observer is looking at a relatively simple
scene containing just a few objects on the stage, so frame times are
very short, and the size threshold for LOD selection is reduced to
zero. However, at the viewpoint marked ‘C’, many chairs become
visible suddenly as the observer spins around quickly. Since the
adaptive size threshold is set very low, inappropriately high LODs
are chosen for most objects (see Figure 9a), resulting in a frame
time of 0.16 seconds. Although the size threshold can often adapt
quickly after such discontinuities in scene complexity, some effects
related to this feedback control (i.e., oscillation, overshoot, and a
few very slow frames) can be quite disturbing to the user.

In contrast, the Optimization algorithm predicts the complexity of
the model visible from the current observer viewpoint, and chooses
an appropriate LOD and rendering algorithm for each object to meet
the target frame time. As a result, the frame time generated using
the Optimization algorithm is much more uniform than using any of
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a) Feedback algorithm b) Optimization algorithm

Figure 9: Images depicting the LODs selected for each object at the
observer viewpoints marked ’C’ using the Feedback and Optimiza-
tion algorithms. Darker shades of gray represent higher LODs.

the other LOD selection algorithms (see Figure 7d). For all observer
viewpoints along the test path, the standard deviation in the frame
time is 0.008 seconds, less than one third of any of the other three
algorithms tested. The longest frame time is 0.13 seconds, and the
shortest is 0.075 seconds.

As the Optimization algorithm adjusts image quality to maintain
a uniform, interactive frame rate, it attempts to render the “best”
image possible within the target frame time for each observer view-
point. As a result, there is usually little noticeable difference be-
tween images generated using the Optimization algorithm and ones
generated with no detail elision at all. A comparison of images for
observer viewpoint ‘A’ generated using a) no detail elision, and b)
using the Optimization algorithm to meet a target frame time of one
tenth of a second are shown in Figure 10. Figure 10a has 72,570
polygons and took 0.98 seconds to render, whereas Figure 10b has
5,300 polygons and took 0.10 seconds. Even though there are less
than a tenth as many polygons in Figure 10b, the difference in image
quality is barely noticeable. For reference, the LOD chosenfor each
object in Figure 10b is shown in Figure 8b. Note that reduction in
rendering time does not map to a linear reduction in polygon count
since polygons representing lower levels of detail tend to be bigger
on average.

The Optimization algorithm is more general than other detail eli-
sion algorithms in that it also adjusts the rendering algorithm (and
possibly other attributes in the future) for each object independently.
Examine Figure 11, which shows three images of a small library
on the sixth floor of Soda Hall containing several textured surfaces.
Figure 11a1, shows an image generated using no detail elision –
it contains 19,821 polygons and took 0.60 seconds to render. Fig-
ures 11b1 and 11c1 show images generated for the same observer
viewpoint using the Optimization algorithm with target frame times
of b) 0.15 seconds (4,217 polygons), and c) 0.10 seconds (1,389
polygons). Although the Optimization algorithm uses lower levels
of detail for many objects (see Figures 11b1 and 11c1), and gener-
ates images that are quite different than the one generated with no
detail elision (see Figures 11b2 and 11c2), all three images look very
similar. Notice the reduced tessellation of chairs further from the
observer, and the omission of texture on the bookshelves in Figure
11b1. Similarly, notice the flat-shaded chairs, and the omission of
books on bookshelves and texture on doors in Figure 11 c1.

Having experimented with several LOD selection algorithms in
an interactive visualization application, we are optimistic that vari-
ation in image quality is less disturbing to a user than variation in
the frame times, as long as different representations for each ob-
ject appear similar, and transitions between representations are not
very noticeable. Further experimentation is required to determine
which types of rendering attributes can be blended smoothly during
interactive visualization.

9 Conclusion

We have described an adaptive display algorithm for fast, uniform
frame rates during interactive visualization of large, complex virtual
environments. The algorithm adjusts image quality dynamically in
order to maintain a user-specified frame rate, selecting a level of
detail and an algorithm with which to render each potentially visible
object to produce the “best” image possible within the target frame
time.

Our tests show that the Optimization algorithm generates more
uniform frame rates than other previously described detail elision
algorithms with little noticeable difference in image quality dur-
ing visualization of complex models. Interesting topics for fur-
ther study include algorithms for automatic generation of multi-
resolution models, and experiments to develop measures of image
quality and image differences.
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a) No detail elision

b) Optimization algorithm (0.10 seconds)

Figure 10: Images for observer viewpoint ‘A’ generated using a) no
detail elision (72,570 polygons), and b) the Optimization algorithm
with a 0.10 second target frame time (5,300 polygons).

a1
a) No detail elision

b1

b2 b3
b) Optimization algorithm (0.15 seconds)

c1

c2 c3

c) Optimization algorithm (0.10 seconds)

Figure 11: Images of library generated using a) no detail elision
(19,821 polygons), and the Optimization detail elision algorithm
with target frame times of b) 0.15 seconds (4,217 polygons), and c)
0.10 seconds (1,389 polygons). LODs chosen for objects in b1 and
c1 are shown in b2 and cc – darker shades of gray represent higher
LODs. Pixel-by-pixel differences abs(a1�b1) and abs(a1�c1) are
shown in b3 and c3 – brighter colors represent greater difference.
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