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Abstract 
Volume rendering algorithms visualize sampled three dimen- 
sional data. A variety of applications create sampled data, in- 
cluding medical imaging, simulations, animation, and remote 
sensing. Researchers have sought to speed up volume rendering 
because of the high run time and wide application. Our algo- 
rithm uses permutation warping to achieve linear speedup on 
data parallel machines. This new algorithm calculates higher 
quality images than previous distributed approaches, and also 
provides more view angle freedom. We present permutation 
warping results on the SIMD MasPar MP-I . The efficiency rc- 
suits from nonconflicting communication. The communication 
remains efficient with arbitrary view directions, larger data sets. 
larger parallel machines, and high order filters. We show con- 
stant run time versus view angle, tunable filter quality, and efh- 
cient memory implementation. 

1 Introduction 
Volume rendering [4] is memory and compute bound. Research- 
crs have used parallelism to spccdup transparency volume ren- 
dering. The goal in parallelism is linear speedup, and no storage 
overhead. Linear speedup is parallel run time tp on P proces- 
sors that is a fraction of the best sequential run time t , or 
tp = 0 (t/P) . Storage efficiency is 0 (S) storage w& S 
sample pomts, equivalent to the sequential algorithm’s storage. 

previous parallel volume rendering algorithms have restrict- 
ed platforms [7]. data set sizes [17][6], filter quality 
[9][12][2][10][3]. view angle freedom, or correctness [13]. Us- 
ers shouldn’t have to sacrifice functionality to achieve higher 
perfonnancc with parallel computers. We have dcvcloped a par- 
allel algorithm that uses unrestricted viewpoints and filters. with 
efficient storage. linear run-time speedup, and problem and gen- 
eration scalability. Unrestricted viewpoints are achieved with 
provable one-to-one communication. For this reason we call our 
algorithm permutation warping for parallel volume rendering. 
This paper extends work on data parallel rotation [9] and our 
work on parallel image warping [15]. We have developed new 
decompositions for our permutation assignment, quantified the 
error of competing multipass shears, provided a new virtualiza- 
tion technique that keeps run time constant across view angle, 
and implemented the algorithm on the MasPar MP-1. The per- 
mutation warp provides processor and problem size scalability 
with linear speedup. 

2 Permutation Warping 
We define voxels to be point samples. Assume that there is a 
processor available for every sample point and define proccs- 
sors as n [i, j, k] , where i, j, k are integers. Assign processors 
to sample points p (x, y, z) , where x, y, z arc reals. This re- 
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quires P = S processors. Also give processors a screen space 
assignment of n’. We will discuss data parallel virtualization in 
Section 3. Our algorithm consists of the following three steps: 

In Step 1, processors classify and shade reading neighboring 
data as necessary. 

In Step 2, each processor resamples the opacities, up, and 
intensities, IsP, to be aligned with the view rays. If done m a 
straight forward fashion this would require many rounds of 
communication, but we have developed a permutation warp that 
requires only one communication. We resample in the object 
space near where the points lie, and then send the resampled 
data to its screen space position. For example, permutation 
warping uses a single one-to-one communication versus eight 
for a trilinear filter. The challenge to doing this is using a rule, 
M, to calculate processor assignments for the viewing transform 
1151. 
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Fig. 1 Transforms and Communications In 
Permutation Warping for a Single Voxel 
Fig. 1 illustrates the transforms calculated by a single proces- 

sor. The object space and screen space are separated, the object 
space on the left and the screen space on the right. A processor 
?t does permutation warping by: 
2.1) Calculating processor assignments A’ = M (a) ; the logical 

connection is shown by the dotted line in Fig. 1. 
2.2) Calculating reconstruction point pxP = T’ (p’ ,) ; the in- 

verse transform is shown by a solid lime and &e point is 
shown as an asterisk (*). 

2.3) Performing resampling of aR and I,,. reading the values of 
Isp and ap of its neighboring processors. The number of 
nctghbors used determines the filter order. 

2.4) Sending resampled values to screen processors R’. 
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In Step 3, a parallel product evaluation combines resampled 
intensities and opacities. Binary tree combining computes prod- 
ucts for any associative (not necessarily commutative) operator 

8 , I, Q JZ 8 . . . 8 I, [5]. Cornpositing (Iioverlj) is as- 
sociative. Numerical integration is also associative. In the next 
section we further discuss the mapping M and our generaliza- 
tions from [15]. 

2.1 Processor Assignment by Permutation Warp 
Paeth [8], Tanaka et al. [ll], and Schroeder et al. [9] have used 
pure shear matrix decomposition of rotation to create efficient re- 
sampling algorithms. The technique is a refinement of multipass 
filtering where the transform is restricted to rotation. By not actu- 
ally resampling data, and using the shears only to calculate the 
processor assignment, we use a better filter, and are still efficient. 
While Schroder and Salem used a one to one assignment [9] to 
calculate multipass resampling, we are interested in calculating a 
direct one pass resampling. A permutation warp M calculates 
[i’, j’, k’] given [i, j, k] and a transform T. To understand why 

we go through the extra work of calculating M, Fig. 3 shows 
communications taking place in parallel for a volume rotation. 
There are no conflicts. Each white line connects only two proces- 
sors shown by the parallel nature of all of the lines. The object 
space processor bounding box is green, and the forward T 
warped version is also given as green in the screen space. The 
screen space processor bounding box is red in both spaces. Of 
course, processors are both object space processors II and screen 
space processors TC’ with II [i, j, k] = 7~’ [i, j, k] . This is shown 
by those processors who interpolate for thcmsclves, the blue pro- 
cessors in the interior where communications arcs are not drawn. 

We have further qualified the transforms T permutation warp- 
ing can be used for. They are the equiareal transforms defined by 
det (7) = +l (determinant). Here we develop a solution for any 
3D transform of this type. 

The processor assignment is calculated by the transform 
R’ = M (n) . This permutation transforms points px, whose co- 
ordinates are a tuple of integers, to another point, p’ , whose co- 
ordinates are also integers. An integer coordinate fierd is mapped 
to another integer coordinate field, and the point p;, when in- 
versed by T’ to px, = I” (p’,,) is within X’S netghborhood. 
Obviously M and T are closely rclatcd. The distances satisfy 

sional rotation decomposition, M, is found in [ 151. and our code 
has built in neighborhood check that has not yet been violated. 
Proof for 3D can be done similar to 2D by brute force calculation 
of p1 = cr.’ Mgz and comparing p1 and pz. 

M = MtMz... M, is a concatenation of pure shear, transla- 
tion, and round operators. Rounding is used to snap real values to 
integers. Shear are non angle preserving afline transforms. A 
pure shear is nonscaling and preserves distance. Any &fine trans- 
form, T, with det (2) = 1 is nonscaling, or equiafline. This in- 
cludes shears, rotations, and translations, that are all isometries. 
By allowing det (7) = fl , reflections can also be calculated for 
equiareal transforms. An isometry is a one-to-one and onto trans- 
form that preserves distances. 

The general solution to a three dimensional equiareal trans- 
form is calculated by solving a system of ten equations with nine 
unknowns (both (EQ 1) and (EQ 2)). 

det (A) = fl (EQ 1) 

The system appears to be over constrained, but can in fact be 
solved. The symbolic solution from Mathematica(TM) is, 
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The solution above allows direct solution for a three pass non- 
scaling transform (EQ 2) (or six passes of single coordinate 
shears versus the eight passes from [9]). which we use in our per- 
mutation calculation. It could also be used for a multipass warp- 
ing provided the data could move in two directions operating on 
scanframes. 

3 Data Parallel Virtuahation 
To apply permutation warping without a processor for each sam- 
ple point requires emulating v virtual processors on P < v physi- 
cal processors. We have found that a data parallel approach uses 
permutation warping very efficiently. 

To virtualize we make an assignment of P processors to the S 
voxels. Object space voxel Points are assigned to processor id’s 
by an address tiling. Address tiling in three dimensions is an ex- 
tension of two dimensional tiling techniques such as our cache 
tiling [14]. Wittenbrink in [ 161 provides more detail on slice and 
dice virtualization. A slice, row major addressed volume coordi- 
nate is transformed to a sliced and diced coordinate by 
(t] k] r] iI s] j) + (t] r] s] k] il j). Such virtualization is amenable 
to a wide variety of architectures such as mesh [l], hypercube. 
and multistage interconnection networks. Each dimension gets 
approximately P’” cuts. The algorithm is the same as that in 
Section 2. except now processors calculate M for every point. 
The screen space samples being calculated are unique, but pro- 
cessors may receive more than one message because of virtual- 
ization. The density of messages across the network is the same 
if the slice and dice virtualization is used and communication re- 
mains efficient. 

4 Time/Quality Trade-offs 
Multipass shears, [8][9][11][12]. and direct warping, Section 2 
[15], are not equivalent. Because each resampling discards the 
prior data, a shear filtering approach has more resolution error 
and interpolation error than a comparable direct filter. After a 
shear, all that is stored is the new samples. We used two test ob- 
jects to calculate the reconstruction error: a cube of intensity 
65535 and a sphere whose intensities are zero at the edge and 
65535 at the center. 16 bit intensities were used. The volumes 
were 128x128~128 voxels with the sphere and cube centered and 
of diameter/width equal to 64. A Sun Spare 2 was used to calcu- 
late the comparison to ease implementation of the shearing ap- 
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preach. The errors were calculated by differencing each sample 
point for an altered viewpoint with the analytically detined cube 
or sphere. Absolute errors were summed on each ray. We com- 
pare two direct filters: a zero order hold (zoh) and a first order 
hold (trilinear), and a multipass filter using linear interpolation. 

The empirical study shows that the cube’s mean error per ray 
is 3.45% zoh, 4.58% multipass. and 3.46% trilinear. The maxi- 
mum error encountered on any ray rendering the cube is 9.37% 
zoh, 15.57% multipass. and 12.3% trilinear. For the sphere 
mean errors were 1.15% wh, 0.22% multipass. and 0.07% tri- 
linear, and max errors were 11.98% wh, 3.04% multipass, and 
1% trilmear. The trilmear is clearly better than shearing, but the 
zero order hold is the same as the ailinear for the cube and 
worse than trilinear and shearing for the sphere. This results 
from the frequency content of the volumes. The cube is a step 
function and has infinite frequencies. The zero order hold main- 
tains the resolution very well. The multipass approach has re- 
peated aliasing steps which degrades the reconstruction 
Wittenbrink in [ 161 provides more details. 

Fig. 4, Fig. 5. and Fig. 6 show MR angiography rendering to 
illustrate filter differences. Fig. 4 shows the noise inherent in the 
MR angiography data. Fig. 5 shows the 256x256~32 data ren- 
dered at 512x512 morning in on the bifurcation of Fig. 4. Fast 
traversal is possible with the zoh of Fig. 5. and a more accurate 
trilinear filter is used to render Fig. 6. The filter difference on 
these medical image is readily apparent. 

Performance measurements were taken on the MasPar MP-1 
[l]. The MasPar used for the performance study was a 16384 
SIMD processor MP-1 whose peak performance is 26,CHlO 
MIPS (32 bit integer) and 1.200 MFLCPS (32 bit floating 
point). The architecture supports frame buffers through VME 
frame grabbers, HIPPI connection, or through MasPar’s frame 
buffer (not available yet). Image display in the current imple- 
mentation is done on the X host. The processors are intercon- 
nected through a mesh with 23.000 Mbyte&c peak bandwidth 
and a multistage crossbar router with 1.300 Mbytes/set peak 
bandwidth. The array controller provides a software accessible 
hardware timer that accurately captures the elapsed run time. 

Our implementation in MPL, a C like parallel language, uses 
the slice and dice virtualization discussed. ‘The neighboring pro- 
cessors do not need to be accessed in the resampling step be- 
cause of a one voxel overlap of volume storage on each 
processor. The overlap allows a random access to replace a cost- 
ly case decision in the SIMD language. The storage overlapping 
does not reduce the size of volumes that can be processed in 
practice. We take advantage of the MasPar instruction Scan- 
Max. Once each processor composites its subcube. ScanMax 
composites across z in segments to complete each parallel prod- 
uct in one instruction. The over operator can be done similarly 
using the Scan operator to create the proper transparency at 
each processor, and then doing a parallel addition. 

Measurements given are the average of multiple runs at each 
angle. Fig. 2 shows the run times to render a 128x128~128 byte 
volume to a 128x128 image versus resampling angle. The zero 
or&r hold is most efficiently calculated without using permuta- 
tion warping, as we showed in [ 151. See TABLE 1. The rotation 
only times are given in Fig. 2 and TABLE 3 also showing how 
the resampling for rotation takes the majority of the time. The 
many lines for each filter show rotation about x, rotation about 
y. rotation about z and rotation about x. y. and z. Each time rep 
resents rendering from the original data. 

TABLE 2 gives the mean run time across all angles. Note 
that the performance is tightly bounded and predictable. The ef- 
fectiveness of direct warps lies in the performance filter tunabil- 

ity. The zero order hold takes from 73% to 146% less time than 
the Erst order hold, and can be used for interactive performance 
in viewing the larger volumes. The trilinear interpolation. or 
first or&r hold, has comparable performance to the multipass 
warps but is more accurate. Fig. 5 and Fig. 6 show the filter 
quality tuning for the foh and zoh. 

I I I I 

0.6 

0.5 

I 

O-l t- 
i .-...... .-. -.--.-. I .._ .- . i __... .._i __ _,..... l..... -- ._._ j _._.___ A.-.-. 

! 1 
“0 10 20 30 40 50 60 70 80 90 

Angle (Degrees) 

Fig. 2 Nearly Constant Run Time Versus Angle 
Communication congestion is low for the data parallel per- 

mutation warp. There is no congestion if a processor is available 
for every sample point Using the rotation speed of 0, 0,O de- 
grees in TABLE 1 as zero congestion the congestion is 19% to 
29% of the run time for permutation warping. foh. The conges- 
tion is 40% to 43% for the backwards algorithm, or wh The 
router start-up penalty and/or the rule overhead account for the 
rest of the difference. 

The closest comparisons are to [ 12][9][ IO] who use similar 
voxel sizes and architectures. Comparison of resampling times 
shows that direct filters cost more [12] but the direct 6lter is su- 
perior to the shear locally then send approach [9] with up to a 
five times speedup depending on the machine. The forward 
wavefront approach [2][ lo] trades view angle freedom for high 
performance and a slight speedup over our work. We have 
through permutation warping provided improved quality and 
view angle freedom for data parallel machines. 

5 Conclusions and Future Work 
We presented an EREW PRAM algorithm for volume render- 
ing, and demonstrated its efficiency on a parallel machine. Our 
general reconstruction filter approach provides for time/quality 
trade-offs not possible in previous data parallel approaches 
making data parallel implementations more useful for volume 
rendering. 

The data parallel version can be ported to nearly all massive- 
ly parallel general purpose computers. This facb and the ability 
to change combining rules, shading, or reconstruction filters, 
shows that permutation warping achieves high efficiency with 
great flexibility on general machines. Special purpose machines 
cannot offer this flexibility in shading, combining. and filter 
choices. Changing viewpoints has been thought to be ineffi- 
cienL and low quality filters in shearing methods have been 
used for efficiency or data duplication used for ray tracing, but 
our algorithm provides efficiency with a zoh. foh (trilinear El- 
ter). and generalizes to better filters. A three dimensional de- 
composition was introduced that generalizes the work in pure 
shears [8][11][9]. and improves our direct resampling approach 
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[15]. Our implementation on the MasPar allows rendering with 
changing viewpoints of five frames/second and two frames/scc- 
ond for higher quality uilinear reconstruction on 128x128~128 
byte volumes. This improves on previous results [2][3] 
[9][10][12] because of the better filters used, and we discussed 
the filter differences. 

Straight forward extensions to our techniques include coher- 
ency adaptations such as adaptive ray termination and adaptive 
quadrature. Perspective projection can be added as a follow on 
warp to the permutation warp for two passes versus four of [12]. 
The MasPar implementation can also be modified to up sample 
or down sample, least expensively as an up sample of the trans- 
formed image or down sample while warping. Our new dccom- 
position will be useful for 6 pass pure shear multipass approaches 
versus eight passes [9]. 
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Fig. 3 Volume Transforms in Parallel 

Fig. 4 Data with Ramp to Show Noise 

Fig. 5 8X magnification Zero Order Hold Fig. 6 8X Magnification Trillnear 
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