
Permutation Warping for
Data Parallel Volume Rendering

Craig M. Wittenbrink
Dept. of Electrical Engineering,

University of Washington
Seattle, WA 98195

craig@shasta.ee.washington.edu

Abstract
Volume rendering algorithms visualize sampled three dimen-
sional data. A variety of applications create sampled data, in-
cluding medical imaging, simulations, animation, and remote
sensing. Researchers have sought to speed up volume rendering
because of the high run time and wide application. Our algo-
rithm uses permutation warping to achieve linear speedup on
data parallel machines. This new algorithm calculates higher
quality images than previous distributed approaches, and also
provides more view angle freedom. We present permutation
warping results on the SIMD MasPar MP-I . The efficiency rc-
suits from nonconflicting communication. The communication
remains efficient with arbitrary view directions, larger data sets.
larger parallel machines, and high order filters. We show con-
stant run time versus view angle, tunable filter quality, and efh-
cient memory implementation.

1 Introduction
Volume rendering [4] is memory and compute bound. Research-
crs have used parallelism to spccdup transparency volume ren-
dering. The goal in parallelism is linear speedup, and no storage
overhead. Linear speedup is parallel run time tp on P proces-
sors that is a fraction of the best sequential run time t , or
tp = 0 (t/P) . Storage efficiency is 0 (S) storage w& S
sample pomts, equivalent to the sequential algorithm’s storage.

previous parallel volume rendering algorithms have restrict-
ed platforms [7]. data set sizes [17][6], filter quality
[9][12][2][10][3]. view angle freedom, or correctness [13]. Us-
ers shouldn’t have to sacrifice functionality to achieve higher
perfonnancc with parallel computers. We have dcvcloped a par-
allel algorithm that uses unrestricted viewpoints and filters. with
efficient storage. linear run-time speedup, and problem and gen-
eration scalability. Unrestricted viewpoints are achieved with
provable one-to-one communication. For this reason we call our
algorithm permutation warping for parallel volume rendering.
This paper extends work on data parallel rotation [9] and our
work on parallel image warping [15]. We have developed new
decompositions for our permutation assignment, quantified the
error of competing multipass shears, provided a new virtualiza-
tion technique that keeps run time constant across view angle,
and implemented the algorithm on the MasPar MP-1. The per-
mutation warp provides processor and problem size scalability
with linear speedup.

2 Permutation Warping
We define voxels to be point samples. Assume that there is a
processor available for every sample point and define proccs-
sors as n [i, j, k] , where i, j, k are integers. Assign processors
to sample points p (x, y, z) , where x, y, z arc reals. This re-

O-81 864920.8/93 $3.00 o 1993 IEEE

Arun K. Somani
Dept. of Computer Science and

Engineering
Dept. of Electrical Engineering,

University of Washington
Seattle, WA 98 195

somani@ee.washington.edu

quires P = S processors. Also give processors a screen space
assignment of n’. We will discuss data parallel virtualization in
Section 3. Our algorithm consists of the following three steps:

In Step 1, processors classify and shade reading neighboring
data as necessary.

In Step 2, each processor resamples the opacities, up, and
intensities, IsP, to be aligned with the view rays. If done m a
straight forward fashion this would require many rounds of
communication, but we have developed a permutation warp that
requires only one communication. We resample in the object
space near where the points lie, and then send the resampled
data to its screen space position. For example, permutation
warping uses a single one-to-one communication versus eight
for a trilinear filter. The challenge to doing this is using a rule,
M, to calculate processor assignments for the viewing transform
1151.

7L

Object Screen
Space Space

Fig. 1 Transforms and Communications In
Permutation Warping for a Single Voxel
Fig. 1 illustrates the transforms calculated by a single proces-

sor. The object space and screen space are separated, the object
space on the left and the screen space on the right. A processor
?t does permutation warping by:
2.1) Calculating processor assignments A’ = M (a) ; the logical

connection is shown by the dotted line in Fig. 1.
2.2) Calculating reconstruction point pxP = T’ (p’ ,) ; the in-

verse transform is shown by a solid lime and &e point is
shown as an asterisk (*).

2.3) Performing resampling of aR and I,,. reading the values of
Isp and ap of its neighboring processors. The number of
nctghbors used determines the filter order.

2.4) Sending resampled values to screen processors R’.

57

http://crossmark.crossref.org/dialog/?doi=10.1145%2F166181.166189&domain=pdf&date_stamp=1993-11-01

In Step 3, a parallel product evaluation combines resampled
intensities and opacities. Binary tree combining computes prod-
ucts for any associative (not necessarily commutative) operator

8 , I, Q JZ 8 . . . 8 I, [5]. Cornpositing (Iioverlj) is as-
sociative. Numerical integration is also associative. In the next
section we further discuss the mapping M and our generaliza-
tions from [15].

2.1 Processor Assignment by Permutation Warp
Paeth [8], Tanaka et al. [ll], and Schroeder et al. [9] have used
pure shear matrix decomposition of rotation to create efficient re-
sampling algorithms. The technique is a refinement of multipass
filtering where the transform is restricted to rotation. By not actu-
ally resampling data, and using the shears only to calculate the
processor assignment, we use a better filter, and are still efficient.
While Schroder and Salem used a one to one assignment [9] to
calculate multipass resampling, we are interested in calculating a
direct one pass resampling. A permutation warp M calculates
[i’, j’, k’] given [i, j, k] and a transform T. To understand why

we go through the extra work of calculating M, Fig. 3 shows
communications taking place in parallel for a volume rotation.
There are no conflicts. Each white line connects only two proces-
sors shown by the parallel nature of all of the lines. The object
space processor bounding box is green, and the forward T
warped version is also given as green in the screen space. The
screen space processor bounding box is red in both spaces. Of
course, processors are both object space processors II and screen
space processors TC’ with II [i, j, k] = 7~’ [i, j, k] . This is shown
by those processors who interpolate for thcmsclves, the blue pro-
cessors in the interior where communications arcs are not drawn.

We have further qualified the transforms T permutation warp-
ing can be used for. They are the equiareal transforms defined by
det (7) = +l (determinant). Here we develop a solution for any
3D transform of this type.

The processor assignment is calculated by the transform
R’ = M (n) . This permutation transforms points px, whose co-
ordinates are a tuple of integers, to another point, p’ , whose co-
ordinates are also integers. An integer coordinate fierd is mapped
to another integer coordinate field, and the point p;, when in-
versed by T’ to px, = I” (p’,,) is within X’S netghborhood.
Obviously M and T are closely rclatcd. The distances satisfy

sional rotation decomposition, M, is found in [151. and our code
has built in neighborhood check that has not yet been violated.
Proof for 3D can be done similar to 2D by brute force calculation
of p1 = cr.’ Mgz and comparing p1 and pz.

M = MtMz... M, is a concatenation of pure shear, transla-
tion, and round operators. Rounding is used to snap real values to
integers. Shear are non angle preserving afline transforms. A
pure shear is nonscaling and preserves distance. Any &fine trans-
form, T, with det (2) = 1 is nonscaling, or equiafline. This in-
cludes shears, rotations, and translations, that are all isometries.
By allowing det (7) = fl , reflections can also be calculated for
equiareal transforms. An isometry is a one-to-one and onto trans-
form that preserves distances.

The general solution to a three dimensional equiareal trans-
form is calculated by solving a system of ten equations with nine
unknowns (both (EQ 1) and (EQ 2)).

det (A) = fl (EQ 1)

The system appears to be over constrained, but can in fact be
solved. The symbolic solution from Mathematica(TM) is,

=31 - ‘22’31 + =21=32
c31 = (131’ ‘32 =

C21

42 =
‘22-l =32 ‘21’32

d, =
c21+ =23=31- a21 =33

-++-- 9
=21 =31 ‘21=31 ’ ‘22’31 - =21=32

a23
d,, = --

‘23’31 + ‘21’33 - ‘21

C21 ‘21 (“22’31 - “21’32)
+:-=&,

a21 - C21
b,, = -9

C21a11a32+ C21a31a12 - ‘31

“31
b,, = z -

‘31 (=22=31 - =21=32)
,

1
b,, = - - +

“31 + ‘21 (‘12’31 - =11=32)

=21 ‘21 (=?2=31 - =21=32) ’
(EQ 3)

The solution above allows direct solution for a three pass non-
scaling transform (EQ 2) (or six passes of single coordinate
shears versus the eight passes from [9]). which we use in our per-
mutation calculation. It could also be used for a multipass warp-
ing provided the data could move in two directions operating on
scanframes.

3 Data Parallel Virtuahation
To apply permutation warping without a processor for each sam-
ple point requires emulating v virtual processors on P < v physi-
cal processors. We have found that a data parallel approach uses
permutation warping very efficiently.

To virtualize we make an assignment of P processors to the S
voxels. Object space voxel Points are assigned to processor id’s
by an address tiling. Address tiling in three dimensions is an ex-
tension of two dimensional tiling techniques such as our cache
tiling [14]. Wittenbrink in [161 provides more detail on slice and
dice virtualization. A slice, row major addressed volume coordi-
nate is transformed to a sliced and diced coordinate by
(t] k] r] iI s] j) + (t] r] s] k] il j). Such virtualization is amenable
to a wide variety of architectures such as mesh [l], hypercube.
and multistage interconnection networks. Each dimension gets
approximately P’” cuts. The algorithm is the same as that in
Section 2. except now processors calculate M for every point.
The screen space samples being calculated are unique, but pro-
cessors may receive more than one message because of virtual-
ization. The density of messages across the network is the same
if the slice and dice virtualization is used and communication re-
mains efficient.

4 Time/Quality Trade-offs
Multipass shears, [8][9][11][12]. and direct warping, Section 2
[15], are not equivalent. Because each resampling discards the
prior data, a shear filtering approach has more resolution error
and interpolation error than a comparable direct filter. After a
shear, all that is stored is the new samples. We used two test ob-
jects to calculate the reconstruction error: a cube of intensity
65535 and a sphere whose intensities are zero at the edge and
65535 at the center. 16 bit intensities were used. The volumes
were 128x128~128 voxels with the sphere and cube centered and
of diameter/width equal to 64. A Sun Spare 2 was used to calcu-
late the comparison to ease implementation of the shearing ap-

58

preach. The errors were calculated by differencing each sample
point for an altered viewpoint with the analytically detined cube
or sphere. Absolute errors were summed on each ray. We com-
pare two direct filters: a zero order hold (zoh) and a first order
hold (trilinear), and a multipass filter using linear interpolation.

The empirical study shows that the cube’s mean error per ray
is 3.45% zoh, 4.58% multipass. and 3.46% trilinear. The maxi-
mum error encountered on any ray rendering the cube is 9.37%
zoh, 15.57% multipass. and 12.3% trilinear. For the sphere
mean errors were 1.15% wh, 0.22% multipass. and 0.07% tri-
linear, and max errors were 11.98% wh, 3.04% multipass, and
1% trilmear. The trilmear is clearly better than shearing, but the
zero order hold is the same as the ailinear for the cube and
worse than trilinear and shearing for the sphere. This results
from the frequency content of the volumes. The cube is a step
function and has infinite frequencies. The zero order hold main-
tains the resolution very well. The multipass approach has re-
peated aliasing steps which degrades the reconstruction
Wittenbrink in [161 provides more details.

Fig. 4, Fig. 5. and Fig. 6 show MR angiography rendering to
illustrate filter differences. Fig. 4 shows the noise inherent in the
MR angiography data. Fig. 5 shows the 256x256~32 data ren-
dered at 512x512 morning in on the bifurcation of Fig. 4. Fast
traversal is possible with the zoh of Fig. 5. and a more accurate
trilinear filter is used to render Fig. 6. The filter difference on
these medical image is readily apparent.

Performance measurements were taken on the MasPar MP-1
[l]. The MasPar used for the performance study was a 16384
SIMD processor MP-1 whose peak performance is 26,CHlO
MIPS (32 bit integer) and 1.200 MFLCPS (32 bit floating
point). The architecture supports frame buffers through VME
frame grabbers, HIPPI connection, or through MasPar’s frame
buffer (not available yet). Image display in the current imple-
mentation is done on the X host. The processors are intercon-
nected through a mesh with 23.000 Mbyte&c peak bandwidth
and a multistage crossbar router with 1.300 Mbytes/set peak
bandwidth. The array controller provides a software accessible
hardware timer that accurately captures the elapsed run time.

Our implementation in MPL, a C like parallel language, uses
the slice and dice virtualization discussed. ‘The neighboring pro-
cessors do not need to be accessed in the resampling step be-
cause of a one voxel overlap of volume storage on each
processor. The overlap allows a random access to replace a cost-
ly case decision in the SIMD language. The storage overlapping
does not reduce the size of volumes that can be processed in
practice. We take advantage of the MasPar instruction Scan-
Max. Once each processor composites its subcube. ScanMax
composites across z in segments to complete each parallel prod-
uct in one instruction. The over operator can be done similarly
using the Scan operator to create the proper transparency at
each processor, and then doing a parallel addition.

Measurements given are the average of multiple runs at each
angle. Fig. 2 shows the run times to render a 128x128~128 byte
volume to a 128x128 image versus resampling angle. The zero
or&r hold is most efficiently calculated without using permuta-
tion warping, as we showed in [151. See TABLE 1. The rotation
only times are given in Fig. 2 and TABLE 3 also showing how
the resampling for rotation takes the majority of the time. The
many lines for each filter show rotation about x, rotation about
y. rotation about z and rotation about x. y. and z. Each time rep
resents rendering from the original data.

TABLE 2 gives the mean run time across all angles. Note
that the performance is tightly bounded and predictable. The ef-
fectiveness of direct warps lies in the performance filter tunabil-

ity. The zero order hold takes from 73% to 146% less time than
the Erst order hold, and can be used for interactive performance
in viewing the larger volumes. The trilinear interpolation. or
first or&r hold, has comparable performance to the multipass
warps but is more accurate. Fig. 5 and Fig. 6 show the filter
quality tuning for the foh and zoh.

I I I I

0.6

0.5

I

O-l t-
i .-...... .-. -.--.-. I .._ .- . i __... .._i __ _,..... l..... -- ._._ j _._.___ A.-.-.

! 1
“0 10 20 30 40 50 60 70 80 90

Angle (Degrees)

Fig. 2 Nearly Constant Run Time Versus Angle
Communication congestion is low for the data parallel per-

mutation warp. There is no congestion if a processor is available
for every sample point Using the rotation speed of 0, 0,O de-
grees in TABLE 1 as zero congestion the congestion is 19% to
29% of the run time for permutation warping. foh. The conges-
tion is 40% to 43% for the backwards algorithm, or wh The
router start-up penalty and/or the rule overhead account for the
rest of the difference.

The closest comparisons are to [12][9][IO] who use similar
voxel sizes and architectures. Comparison of resampling times
shows that direct filters cost more [12] but the direct 6lter is su-
perior to the shear locally then send approach [9] with up to a
five times speedup depending on the machine. The forward
wavefront approach [2][lo] trades view angle freedom for high
performance and a slight speedup over our work. We have
through permutation warping provided improved quality and
view angle freedom for data parallel machines.

5 Conclusions and Future Work
We presented an EREW PRAM algorithm for volume render-
ing, and demonstrated its efficiency on a parallel machine. Our
general reconstruction filter approach provides for time/quality
trade-offs not possible in previous data parallel approaches
making data parallel implementations more useful for volume
rendering.

The data parallel version can be ported to nearly all massive-
ly parallel general purpose computers. This facb and the ability
to change combining rules, shading, or reconstruction filters,
shows that permutation warping achieves high efficiency with
great flexibility on general machines. Special purpose machines
cannot offer this flexibility in shading, combining. and filter
choices. Changing viewpoints has been thought to be ineffi-
cienL and low quality filters in shearing methods have been
used for efficiency or data duplication used for ray tracing, but
our algorithm provides efficiency with a zoh. foh (trilinear El-
ter). and generalizes to better filters. A three dimensional de-
composition was introduced that generalizes the work in pure
shears [8][11][9]. and improves our direct resampling approach

59

[15]. Our implementation on the MasPar allows rendering with
changing viewpoints of five frames/second and two frames/scc-
ond for higher quality uilinear reconstruction on 128x128~128
byte volumes. This improves on previous results [2][3]
[9][10][12] because of the better filters used, and we discussed
the filter differences.

Straight forward extensions to our techniques include coher-
ency adaptations such as adaptive ray termination and adaptive
quadrature. Perspective projection can be added as a follow on
warp to the permutation warp for two passes versus four of [12].
The MasPar implementation can also be modified to up sample
or down sample, least expensively as an up sample of the trans-
formed image or down sample while warping. Our new dccom-
position will be useful for 6 pass pure shear multipass approaches
versus eight passes [9].

Acknowledgments
We thank Professors David Salesin, Tony DeRose, and Steve
Tanimoto for their help and feedback. Thanks to Professor Steve
Mann for answering all kinds of graphics questions. MasPar en-
ginecrs Jon Becher and Rex Thanakij provided valuable machine
support as did Helen Asher who coordinated the MasPar Chal-
lenge contest by which a 16k processor MasPar was made avail-
able. We would also like to thank several anonymous referees.

Bibliography
[l] Blank, Tom The MasPar MP-1 Architecture. In Proceedings

of Compcon 90 (Feb. 26-Mar. 2,1990), 20-24.
[2] Cameron, G.G. and P.E. Undrill. Rendering Volumetric

Medical Image Data on a SIMD Architecture Computer. In
Proceedings of the Third Eurographics Workshop on Ren-
dering, (Bristol England, May 1992).

[3] Drebin. Robert A., Lorcn Carpenter, and Pat Harm&an. Vol-
um;fendering. In Computer Graphics 22, 4 (Aug. 1988),

[4] Kaufman, Arie, Editor. Volume Visualization. IEEE Com-
puter Society Press, Washington, D.C. 1991.

[5] Kruskal, Clyde P., Larry Rudolph and Marc Snir. The Pow-
er of Parallel Prefix. In Proceedings IEEE International
Parallel Processing Symposium (1985). 180-I 85.

[6] Montani. C., R. Pcrcgo, and R. Scopigno. Parallel Volume
Visualization on a Hypercube Architecture. In Proceedings
of 1992 Workshop on Volume Visualization (Oct. 1992). 9-
16.

[7] Nieh. Jason and Marc Levoy. Volume Rendering on Scal-
able Shared-Memory MIMD Architectures. In Proceedings
;{I992 Workshop on Volume Visualization (Oct. 1992). 17-

[8] Paeth, Alan W. A Fast Algorithm For Gcncral Raster Rota-
tion. In Proceedings Graphics Interface (May 1986), 77-81.

[9] Schrcder. Peter and James B. Salem. Fast Rotation of Vol-
ume Data on Data Parallel Architectures. In Proceedings
IEEE Visualization’91. (San Diego, CA Oct. 1991). 50-57.

[IO] Schrodcr, Pctcr and Gordon Stoll. Data Parallel Volume
Rendering as Line Drawing. In Proceedings of 1992 Work-
shop on Volume Visualization, (Oct. 1992). 25-32.

[I l] Tanaka, A., M. Kaneyama, S. Kazama, and 0. Watanabe. A
Rotation Method For Raster Image Using Skew Transfor-
mation. In Proceedings IEEE Conference on Computer Vi-
sion and Pattern Recognition (June 1986). 272-277.

[121 Vezina, Guy, Peter A. Fletcher, and Philip K. Robertson.
Volume Rendering on the MasPar MP-1. In Proceedings of
I992 Workshop on Volume VGualization. (Oct. 1992). 3-8.

[131 Westover, Lee. Footprint Evaluation for Volume Rendering.
In Computer Graphics 24.4 (Aug. 1990), 367-376.

[Id] Wittenbrink. Craig M. and Arun K. Somani. Cache Tiling
for High Performance Morphological Image Processing. In
CAMP 91, Computer Architecture For Machine Perception,
(Paris, France, Dec. 1991). 427438.

[Is] Wittenbrink. Craig M. and Arun K. Somani. 2D and 3D op-
timal parallel image warping. In Seventh International Par-
allel Processing Symposium, (Newport Beach, CA, April
1993). 331-337.

[16] Wittenbrink. Craig M. Designing Optimal Parallel Volume
Rendering Algorithms. Ph.D. dissertation. University of
Washington, 1993.

[Ii’] Yoo. Terry S., Uhich Neumann, Henry Fuchs, Stephen M.
Pizer, Tii Cullip, John Rhoades, Ross Whitaker. Achieving
Direct Volume Visualization with Interactive Semantic Re-
gion Selection. In Proceedings IEEE Visualization ‘91. (San

TABLE 2 16k Processor MP-1 Rendering Times in

60

Fig. 3 Volume Transforms in Parallel

Fig. 4 Data with Ramp to Show Noise

Fig. 5 8X magnification Zero Order Hold Fig. 6 8X Magnification Trillnear

Wittenbrink and Somani. ” Permutation Warping for Data Parallcl Vulume Rendering”

110

