
Routing Reserved Bandwidth Multi-point

Connections.

Dinesh C Verma

P.M. Gopal

IBM TJ Watson Research Center

PO Box 704,

Yorktown Heights, NY 10598

Abstract

Some important classes of multi-point bandwidth-inten-

sive applications like video-conferencing with mixing and

the distributed classroom can be characterized as consisting

of a broadcast from a source node to several destinations

nodes, and point-to-point flows from the destination nodes

to the source node. Determining a tree in an arbitrary mesh

network which satisfies the bandwidth constraints and mini-

mizes the cost of reserved bandwidth is a NP-hard problem.

In this paper, we look at some heuristics that can be used to

solve the problem of routing these multi-point connections.

The heuristics are based on finding the capacity-constrained

minimum cost tree which minimizes the cost of bandwidth

reserved for point-to-point communication from destina-

tions to the source, and weights are assigned to minimize

the number of extra nodes in the tree which increase the cost

of bandwidth reserved from the source to the destination. A

theoretical bound on the performance of some of the heuris-

tics, as well as simulation results comparing their perfor-

mance to that of the optimum solution are presented. The

results are encouraging, the heuristics find a tree with a cost

within 2% of the optimum on the average, and with a cost

within 10% of the optimum in those cases when the heuris-

tic fails to find the optimum tree.

Permission to copy without fee all or part of this material is

granted provided that the copies are not made or distributed for

direct commercial advantage, the ACM copyright notice and the

titla of the publication and its date appear, and notice ia given

that copying is by permission of the Association for Computing

Machinery. To copy otharwise, or to rapublish, requires a fee

and/or specific permission.

SIGCOMM’93 - Ithaca, N. Y., USA /9/93

e 1993 ACM 0-89791-61 9-019310009 /0096 . ..$1 .50

1. Introduction.

With the introduction and widespread deployment of

fiber technology, the communications world is rapidly gear-

ing up for multi-point applications. Many examples of such

applications can be stated, such as video-conferencing,

broadcast TV, or a broadcast classroom. Several of these

applications can be modeled as a broadcast from a source

node to severat destination nodes, and point-to-point flows

from the destinations to the source.

An important application is video-conferencing among

some set of users across a communication network. One of

the problems in video-conferencing is that the amount of

bandwidth required to handle the incoming video streams is

proportional to the number of participants in the conference.

In order to reduce this bandwidth, the incoming video

streams can be scaled down and superimposed by a “mixer”

and the merged stream broadcast to all the participants. A

mixer must be capable of handling the combined bandwidth

of all the participants, but each intilvidual participant needs

to handle less bandwidth. It would be cheaper to place a

small number of mixers inside a communication network

than to have a mixer at each participating host.

Another important application is the digital class-room,

where a teacher on his workstation may be broadcasting a

lecture to a number of students, who are listening to him

remotely on their desktop computers, and are able to pro-

vide interactive feedback to the teacher.

It is clear that these applications can be modeled as a

forward broadcast from a source to severat receivers, and a

reverse set of flows from the receivers to the source.

There are several other applications which can also be

modeled in a similar fashion. One such application is a dis-

96

http://crossmark.crossref.org/dialog/?doi=10.1145%2F166237.166247&domain=pdf&date_stamp=1993-10-01

tributed digital juke box. A client (the source) of a distrib-

uted digital juke-box sends his stream of requests to several

servers (destinations), and mixes the responses of the differ-

ent servers that reply. Another such application is a distrib-

uted simulation. The simulation may occur on several

workstations (destinations) across a network, while a person

(source) monitoring the simulation compares and analyses

the streams of data transmitted back to him by the various

simulators.

In this paper, we consider the problem of efficiently

routing the class of applications described above. Specifi-

cally, we consider the problem of computing the optimum

distribution tree which supports the forward and reverse

bandwidth requirements. This problem is different from the

Steiner tree problem, since the bandwidth on the point-to-

point flows from destinations to the source have to be taken

into account as well.

The problem of finding the optimal distribution-tree for

applications like digital TV without bandwidth reservation

is equivalent to the Steiner tree problem in graphs [1]. This

problem in NP-Complete, but efficient heuristics ([21 [31)
exist to find a path which is not much worse than the opti-
mum. These algorithms have been used to find the optimal

path for multicasting in networks ([4], [5]) using both cen-

tralized and decentralized schemes. Modhications to the

Steiner tree heuristics have been used to develop a routing

strategy for video-conferences with bandwidth reservations

[6]. It is also shown in [6] that simple Steiner tree routing

may be inefficient for reserved bandwidth traffic.

In the next Section, we define the problem more pre-

cisely, introduce the terms that we will be using, and also

present some basic algorithms that we will be using later in

the development of the heuristics to solve the problem. We

wilt solve the problem through a series of simpler problems,

and provide a series of heuristics that solve the problem.

2. Problem Statement

The problem considered in this paper, which we call the

minimum cost capacity-constrained broadcast-reply tree

problem is defined as follows:

Consider a graph G=(l/E), where V is the set of its verti-

ces, and E is the set of its edges with a capacity matrix C,

and a cost matrix W where C[i][j] gives the capacity avail-
able from node i to node j and W[i][j] gives the cost of

reserving a unit bandwidth from node i to j. Given a source

nodess V, and a set of vertices D {s in not a member of

D}, find a tree T rooted ats and spanning all the members of

D such that

1.

2.

3.

There is a capacity of F available along the path on T

fromstoanyd= D.

Each path from a member of D tos has capacity of l?. If

anode in the tree has k children in D {including itself},

then link between the node and its parent in the tree must

have a capacity of kR to accommodate all the reverse

paths passing through the node.

The aggregate cost of the bandwidth reserved on all the

edges is minimized.

As an example, consider the graph in Figure 1. Suppose

sis {1} and Dis {2, 5}. Suppose ‘dij W[i, j] = 1, and the

edges have capacity as shown in the figure. If we want to

reserve a forward bandwidth F of 5 and a reverse bandwidth

R of 6, and select the tree to consist of the edges {(1,3), (3,

2) and (3, 5)}, then we need an bandwidth of 5 on the for-

ward edges{(1,3), (3, 2), (3, 5)), a bandwidth of 6 on the
reverse edges {(5,3) and (2, 3)}, but a bandwidth of 12 on

the reverse edge (3,1), because the two reverse paths con-

verge at node 3.

m

10 12

,, ‘o 6
12

Figure 1,

We define the forward component of the cost of a tree to

be the sum of the cost of bandwidth reserved on different

edges for the forward bansmission of information. It should

be noted that the forward component of the cost depends on

the number of extra nodes (similar to Steiner points) chosen

to build the tree.

We define the reverse component of the cost of a tree to

be the aggregate cost of the bandwidth reserved on different

edges in order to obtain the reply back from the leaves of a

tree to the destination.

The minimum cost capacity constrained broa~dcast-reply

tree problem can be shown to be INP-hard, since it contains a

known NP-hard problem (Steiner tree problem) as a special

case when R = O, and with all edge capacities > F.

Therefore, we must attempt to develop some good heu-

ristics to solve the minimum cost capacity-constrained

broadcast-reply tree problem. We approach the problem by

solving a series of simpler problems, each progressively

97

harder than the previous one. As a first step, we solve the

problem where the forward component of the cost is a con-

stant. Then we consider the problem in the context of unit-

cost graphs. Finally we propose the heuristic to solve the

problem in the most general case.

We first define two subproblems and provide efficient

solutions for these, These sub-problems will be used in the

heuristics that we describe later.

Subproblem 1: The capacity-constrained shortest path

problem is defined as follows:

Consider a graph G=(l(E), where V is the set of its verti-

ces, and E is the set of its edges with a capacity matrix C,

and a cost matrix W where C[i][j] gives the capacity avail-

able from node i to node j and W[i][j] gives the cost of

reserving a unit bandwidth from node i toj. Given two verti-

ces d and s in Y find a sequence of nodes n@1n2. +, such

that

no=d.

nk=s.

Vi(O<i< k)((C[nJ [ni+ll)~l?)

Vi(O<i <k) ((C[ni+ll [nil)>F)

The cost of the path

~ ~(w[nJ [n,+~l) +~(w[n,+~l [n;]) is mini-
o~,<~
mlzed.

Sohdion: A slight modification to any standard shortest

path algorithm, e.g., [7], allows us to obtain the required
minimum cost capacity-constrained path. We construct a

clirected graph G’=(YE’) with the same set of vertices as the

c)riginal graph G but an edge from node i to node j is only

included in E‘ if C[i][j] >:= R and C[j][i] >= E This edge

is assigned a cost of W[i][j]R + W[j][i]F. We now find the

minimum cost path from d tos in G’ using the algorithm for

shortest paths. The sequence of nodes obtained in this mini-

mum cost path gives us the capacity-constrained minimum

cost path in G.

In order to show the correctness of this approach, it is

sufficient to show that each path from d tos in G satisfying

the capacity constraints corresponds to a path from d tos in

G’ with the same cost. This correspondence is obvious, and

can be proved by induction on the number of hops in the

path.

In the rest of the paper we will refer to the capacity-con-
s,trained shortest path from d tos with a capacity of F froms

to d and a capacity of R from d tos as SHCAP(d,s,R,F). This

path will be needed in the heuristics we propose for solving

98

the multi-point routing problem under different circum-

stances.

Subproblem 2: The capacity-constrained tree-aug-

menting path problem is defined as follows:

Consider a graph G=(T/E), where V is the set of its verti-

ces, and E is the set of its edges with a capacity matrix C,

and a cost matrix W where C[i][j] gives the capacity avail-

able from node i to node j and W[i][j] gives the cost of

reserving a unit bandwidth from node i toj. Given two verti-

ces d ands in V and a tree

n@z1n2...nl, such that

1.

2.

3.

4.

5.

no=d.

nl=s.

V’i(O<i<k)((C[ni]

‘in G, find a sequence of nodes

ni+ll) ~R)

Vi(OSi<k)((C[n,+~l [n,l)~F)

n@1n2,..n1 combined with T results in a tree, or if n; is

the first node in the path that is already in T, and th&e

are 1descendants of nj in T, then removing the existing

path from nj tos in T, and adding the path n}..nl results

in a tree, and furthermore,

Vi(j~i Kk)((C[ni] [ni+ll)~~R+R)

We will refer to this problem as STCAP(d,s,R,F T),

which takes a existing tree or forest T and finds a path p

from d tos such that there is a capacity of F froms to d, and

a capacity of R from d tos, and p U T is a tree or forest. In

other words, we have to choose paths that satisfy the tree

constraint.

Solution: There are obviously many solutions to this

problem, since we are not imposing a shortest path con-

straint. However, we propose a solution that can be used in

the heuristic. The solution we present is an extension of the

SHCAP algorithm, where we need to ensure that the paths

we obtain preserves the tree property. The approach we take

to solve this problem can be best illustrated by Figure 2.

Suppose u->~->s (denoted by thick lines) is an existing tree,

and we need to find the capacity-constrained tree-augment-

ing path from d tos. We find the capacity-constrained short-

est path from d to s. If this results in a tree, we are done.

However, in some cases, the shortest path may violate the

tree property, as shown in Figure 2. In this case, adding the

shortest path d->f->b-x to the existing tree does not result

in a tree. We then find the second best capacity-constrained

shortest path from d tos, which is d->a-x. We also find the
capacity-constrained shortest cost path from~tos which can

accommodate the combined bandwidth requirements of d

and u, children off in the new tree, this path isf->c->s. We

then choose among the cheaper of two alternative paths, d-

>f->s or d->a-x. If we chose the former, the path from u to

s would change to u->f->c->s.

Figure 2,

Since even the new paths found may, in turn, violate the

tree property, we need to call STCAP recursively in the fol-

lowing fashion:

1.

2.

3.

4.

5.

6.

—

STCAP(d,s,R,fiT)

Find the path p = SHCAP(d,s,R,F).

Check if adding path p to tree Tresults in a tree or forest.

If the answer to Step 2 is yes, then p is the desired path.

If p U T is not a tree, andp consists of k nodes

rt@t@z...nk, then there IINM be some nodes which are at

fault. Node ni along p is at fault if it is already in T and

ni+ 1 is not the parent of ni in T. Choose~as the node at

fault which is closest to d and eliminate the edge going

out of~in p from the graph. Find the path STCAP{d,-

s,R,JT), in the graph obtained after deleting the link

fromfi

Atso examine STCAP(d,s,R,~T) in the graph obtained

after deleting the edge coming into~in p. Assignpl to be

the cheaper of the two paths obtained in the previous and

this step.l

If there are k descendants of ni, the node at fault, in D,

then add the bandwidth of kR to the existing path in T

from ni tos. Remove Wls path from T to obtain a forest

T’. Find path Pz = STCAP(nJs,kR,ET’).

1. The goat is to find a path from d tos which is the second

least expensive capacity constrained path.

99

7.

8.

Suppose p3 was the path from ni tos along nodes in T.

Let Cl be the cost of the path pl, and let C2 be the sum

of the cost of the fragment of p from d to ni and k times

the difference in costs between p2 andpj. If the former is

smaller, assign p to be pl, else assign p to be concatena-

tion of n~1n2...ni and P2. 2

The result of step 7 is the desired path.

Notice that in some cases pl or p2 may not be feasible,

and the other one is chosen by default. Also, if ni is the same

as d, only pz is feasible.

3. Trees with

Components.

Constant Forward

As the first simplification, we solve the minimum cost

capacity-constrained broadcast-reply tree problem when the

cost of the forward component of the tree is fixedl. There are

several situations when we can simplify the problem to have

a constant forward component cost.

One situation is when the source broadcasts to all the

nodes in a graph with all edges having unit cost, A sources

is specified, and we need to reserve a bandwidth of F in the

forward dmection, i.e. froms to any other node ;ln the path,

and a reverse bandwidth of R from any node to s. If all

edges have unit costs and all the nodes in a graph with IVI
vertices have to be sparme~ then the forward component of

the cost is IVI – 1, which is a constant. NO m:itter which

tree we select, we will be reserving the forward component

F on IV – 1 edges, thus minimizing the reverse component

of the cost is sufficient to solve the problem.

A similar situation exists when F is equal to O. Here the

forward component of the cost of the tree is a ccmstan$ and

we need to only minimize the reverse compoment of the

cost. We call this problem the minimum cost ca,pacity-con-

strained reply tree problem.

All that we need to do to find the minimum cost capac-

ity-constrained reply tree in tlis graph is to find the shortest

paths with the available capacity from all the nodes in the

graph to the source node. This can be done by means of the

algorithm outlined below.

2. Cl in this case is the extra cost obtained by adding PI to

the tree, and C2 is the extra cost added by reroutimg k flows

along the tree fromp3 top2. Therefore k times the difference

between the cost of these two routes must be added to the

partial path tlom d to ni in order to find the addhional cost.

1.

2.

3+

4.

5.

6.

MCRT(S,D)

Initialize tree T to consist only of the source nodes.

For node din D, which is closest tos but not in Z find

the path p = STCAP’(d,s,R,F)?

Reduce the capacity on each edge of the graph by R on

path p.

Assign T to bep U 1

If link U->V with a cost of W[u][v] is selected in path,

add a dummy link v- M to the network, assign this link a

cost of -W[t,t][v] to the node and assign the capacity of

this link to be the ftow on the link U->V.4

Repeat Steps 1-4 for all nodes in D.

As an example, consider the graph shown in Figure 3.

Assume that all edges have unit capacity in each direction

and the edges have costs as shown in the figure. O is the

source node, and F and R are both unity, Suppose D consists

of the nodes {3,4} and we attempt to first find a path from 4

to O, and then a path from 3 to O. The shortest path with a

capacity of R from 4 to O would be {4,1,2,0}. We add

dummy links with negative costs from 0->2,2->1, and 1->4,

each with a capacity of R. We reduce the capacity in the

reverse direction by R unit along the path. We now need to

determine the shortest path from 3 to O with a capacity of 1.

In the new graph, it is obtained to be {3,2,1, O}, On adding

1

3
1

Figure 3,

3. STCAP’ is the same algorithm as STCAP except that the
forward path capacity on the dummy edges introduced in

step 5 is not checked. Whenever a dummy edge is traversed,

an existing flow is being rerouted, and the forward flow is

already feasible on that link.

4. If the new path added results in a rerouting of the path
from one node to the source, (i.e. step 6 in STCAP algo-

rithm is the cheaper alternative) it would be better to remove

the link originally going out of the rerouted node. While not

required for the correctness of the algorithms, it eliminate

negative cycles due to dummy edges introduced, and allows

the use of simple shortest-path algorithms to obtain SHCAP

these links, we determine that link 2<->1 is no longer in the

tree, and thus the final tree obtained consists of two paths,

{0,1,4} and {0,2,3}.

Notice that this example illustrates the reason why we

need to add the reverse path links in the graph. In the choice

of the path from 4 to O, we had chosen a path which blocked

any path from 3 to O. However, adding the dummy links in

the graph allowed us to choose a path from 3 to O, as well as

reroute the path from 4 to O in a single step.

We now need to prove that the algorithm MCRT(S,D)

presented above does actuatly find the minimum cost capac-

ity-constrained reply tree. However, before we actually state

the proof, we will assert some relations between the mini-

mum cost capacity-constrained reply tree with n nodes in D,

and with n+l nodes in D. We assume that the n+ Irk element

in D is the furthest one from the source nodes.

Let us cdl the minimum cost capacity-constrained reply

tree when the cardinality of D is n as OPTR(n).

Proposition 1: OPTR(n+ 1) may differ from

OPTR(n) in only the following three ways:

1. OPTR(n) is a subset of OPTR(n+l), formed by elimi-

nating the path from dn+l to the point in OPTR(n) that is

closest (least cost) to dn+l.

2. Let u be the closest (least cost) node to dn+l thatalso

is along the path from some other node in D to the sources

in OPTR(ni-1). Then OPTR(n) may have a different and

less expensive path from u tos than in OPTR(n+l).

3. Let u be as defined above. Then at most one element x

in D which does not have u along its path tos may be routed

through u in OPZR(n). Let Ux be the node closest to .x in

OPZR(n+l) which shares the path tos with another node in

D -{dn+l, x). UYmay take a different less expensive path tos

than in OPTR(n+l), and if so, there are no other differences

between OPTR(n) and OPTR(n+l). Otherwise, at most one

element y in D -{dn+l, x) can be routed through ux. The

same assertion recursively applies to UYthe node closest to y

in OPTR(n+l) which shares the path tos with another node

in D - {dn+l, W}.

Proof Consider the path in OPTR(n+l) from d tos. Let

u be the node closest to d along this path that is also in

0P7R(n). The path from u tos in OPTR(n) mayor may not

have sufficient capacity to accommodate the reply from d. If

it does, then the path from u to s should be the same in

OPTR(n+l), and the difference betwexm OPTR(n) and

OPZR(n+l} is given by step 1 of Proposition 1. Otherwise,

u either has the same path tos in OPTR(n) and OPTR(n+l)

or it does not. If it has a separate path, then the path from u

100

to s in OPTR(n+l) must require more bandwidth than the

path from u tos in OPTR(n), and will be more expensive. In

this case, the difference between OPTR(n) and OPTR{n+l)

would be given by step 2 in the proposition. If the path from

u to s is the same in OPTR(n) and OPTR(n+ 1), then some

node in D that was being routed through u must have been

rerouted along some other path. In this third and most com-

plex case, a restructuring of the tree would take place. How-

ever, removing a node from OPTR(n+l) allows only one

node from the other members in D to take the path through

u. The effect of freeing up of capacity can cause a chain-

reaction, rerouting other nodes along the path. However, at

most 1 node can be affected in each sub-tree.

Lemma 1: MCRT(S,D) finds the minimum cost capac-

ity-constrained reply tree fors and D.

Prooj We show the optimality of MCRT(s,D) by induc-

tion on the cardhmlity of D. Obviously, the algorithm works

correctly for the case when D has a single element. In this

case, the optimum tree is just the shortest path between s

and the element in D. Suppose the algorithm works cor-

rectly when D has a cardinality of n, and produces the opti-

mum reverse path tree OPTR(n). We show that the

algorithm will also produce OPTR(n+l), the optimum

reverse path tree when one more element dn+l is added to

D.

In order to show that the algorithm finds the tree

OPTR(n+l), we show that the shortest path from d to s in

the graph formed by adding links as described in Step 4 of

the algorithm where OPTR(n) is known will restructure the

existing tree to obtain OPTR(n+l). Let us consider the three

possible cases one by one.

When OPiCR(tt) is a subset of OPIR(n+l), the shortest

path from d tos would consist of the shortest path from d to

u, and the shortest path from u to s. If there was another

shorter path, then OPTR(n+l) would not have been the opti-

mum tree.

In the case 2 outlined in Proposition 1, we would have

the shortest path as passing through u, but taking a path dif-

ferent than the one taken in OPTR(n). Since the path from u

to s in OPTR(n) does not have the capacity to support the

additional destination, the shortest path from d to s would

violate the tree property at node u. Thus, the algorithm

would attempt to reroute the flows through u, (step 6 in

STCAP algorithm) and result in OPTR(n+l), where u takes
the cheapest path tos where the additional required capacity

is available.

Case 3 can best be described pictorially. Suppose

OPTR(n+l) is as described by the solid lines in Figure 4

and OPTR(n) is defined by the dotted lines, Because, we

OPTR(n)

+

\& c

x

Path from d tos

—

s

A’Rlu c

vxa

OPTR(n+l)
Figure 4.

have introduced dummy edges reversing the flows along all

the links in OP7R(n), we are able to take the path from d to

s as shown in the figure. In such a case, we assert that the

shortest path from d tos would consist of a path (hat restruc-

tures OPTR(n) into OPTR(n+l). This path woul[d be d->u-

>x->y->b->c- >s. The cost of this path is exactly the differ-

ence between OPTR(n+l) and OPTR(n). If this was not the

shortest path, we would have obtained another tree with

n+l nodes, OPTR ‘(n+l) which would have been less

expensive than OPTR(n+l) which is impossible. We want

to reiterate that the reason we are able to restructure the tree

is due to the existence of the dummy links, introduced at

step 5 in algorithm MCRT.

Notice that the shortest path found in this case may vio-
late the tree property in cases where we may need to reroute

the flows through some nodes in a manner analogous to

what we did in case 2 above.

Having proved the above facts, it is easy to prove that

the algorithm works correctly for n+l nodes in D if it works

101

correctly for n nodes in D. This, plus the base case for n = 1,

shows that the algorithm does indeed find the minimum cost

capacity-constrained reply tree.

4. Heuristic for unit cost graphs

Having solved the minimum cost capacity-constrained

reply tree problem in the simplified case where the forward

component is constant, we consider the next case where all

edges have a unit cost. The heuristic is based on the obser-

vation that the forward component of the cost of a tree can

be minimized by choosing as few extm nodes in the tree as

possible, and the reverse component of the cost can be min-

imized by means of choosing the minimum cost reverse

path tree with capacity R from each element in D tos.

The heuristic is also based on finding the minimum cost

tree from the elements in set D to the source nodes. How-

ever, we try to assign costs to different nodes in the graph so

that the algorithm tends to pickup nodes that are already in

the tree in preference to new nodes.

The unit cost graph heuristic consists of the following

steps:

1.

2.

3,

Initiahze T to consist only ofs.

Break up each node into two nodes (node x is broken

into node xl and node x@). All edges from node x to

node y are converted to edges between node XO and

node y], with the same capacity and a cost of carrying a

unit bandwidth from x to y.

Nodes xl and node XO are connected by an edge with a

large capacity, and a cost of F/R if x E D. Otherwise, the

cost of this edge is O. Note that this means that taking a

flow of R along anode in D would cost F less than tak-

ing a flow through a node not in D. This is exactly the

forward cost associated with picking anew node. Fur-

thermore, a positive cost associated with the new node

reduces the chances of picking up a new node, or a path

with lots of new nodes.

4.For a node din D, and the partially built tree Z find

5.

6.

STCAP’(d,s,R,~T). Augment T by the new path

obtained in this fashion.

Add dummy links with cost of-1 and increase the capac-

ity of such links by R along the selected path. If y is a

node that was not in D, and has been selected for the first

time in this path, then mark the cost of edge from yl to
yO as having zero cost. If y is a node that was not in the

original set D, and the flow from yl to yO has been

reduced to zero as a result of the new flow, mark the

edge as having a cost of F/R. 5

Repeat step 4-6 for all the nodes in D.

We would like to point out that steps 4-6 are the steps

involved in finding a minimum cost flow through a graph,

(see algorithm FO/S/D in [8], and any flow selected through

anode which is already selected through it saves a cost of F,

which is the overhead we would be getting if we select a

new ncde. The only additional constraint is because of the

tree structure which has to be imposed at every step.

5. Heuristic with Unequal Weights

In a real network, the cost of transmitting information

on a link would be dependent on the current load on the

link as well as various other factors. Thus, a more realistic

problem would be to find the minimum cost capacity-con-

strained broadcast-reply tree in a graph with different costs

assigned to each link.

Our approach to this solution is the following. We

would use the unit-cost graph heuristic, and extend it in the

following fashion.

Node n is broken into two sub-nodes nO and nl, and an

edge from x to y with capacity c is converted to an edge

from node XO to node yl with the same capacity iff there is a

capacity of at least F from y to x, and a capacity of at least R
from x to y. This edge is given a cost of FW/yl[xl +

RW[x][y], where W is the cost matrix.

The main structure of the algorithm remains the same as

in the case for unit cost graph heuristic. When a flow from

node a to node b of magnitude r is added, a edge of capacity

r is added from b to a, and its cost is assigned to be the neg-

ative of the cost of edge from b to a.

In the case of nodes with different weights, it is not clear

as to what weight should be assigned to the internal links of

anode. We propose two alternative ways of adding the costs

to the internal edges in a node, in the first alternative, the

zero-weight heuristic, we assign no weight to any internal

nodes. It is possible to show theoretical bounds of an algo-

rithm using this approach, as we have done in Section 6. In.-
the other alternative, the distance to closest node heuristic,

we take the internal cost of an edge to be the cost of the

shortest flow that would connect the node to anode already

in the destination set or to a partially built tree. This scheme

performs slightly better than the first alternative. Perfor-

mance results for both heuristics have been presented in

Section 7.

5. The cost of F/R forces each fresh node to have an extra

cost of F associate with it. This is the forward component of

the cost for the tree.

102

The scheme to assign costs to internal edges is slightly

different in the unit cost heuristic, This is because choosing

an extra node in the tree with unit costs adds an overhead of

F irrespective of the path we choose to take to that node.

However, there is a dependency of the overhead on the path

taken when the weights are not equal. That is the reason for

the difference in the assignment of internal costs to the two

proposed heuristics.

6. Performance

In this section, we present bounds on the performance of

the proposed heuristics.

Lemma 2: The zero-weight heuristic is optimal when

we need to span all the nodes of a unit cost graph, or when F

= o.

Z%WOJFollows trivially from Proposition 1.

_Lemma 3:When the cost matrix W is symmetric, that is,

W[i][j] = W[j][i], then the ratio of the cost of the zero-

weight heuristic tree to the cost of the minimum cost capac-

ity constrained broadcast-reply tree is bounded above by (1

+ F~)/(1 + F/dR), where d is the number of nodes in D.

l%wo~ If the cost matrix is symmetric, then adding the

forward component of the cost to the cost of an edge as

described in Section 5 does not change the relative weights

of the edges. Thus, our heuristic will find the minimum cost

capacity-constrained reply tree described in Section 3.

Consider the cost of a tree obtained due to our heuristic.

Let {el, e2,... ej) be the edges that have been chosen in the

tree. Each edge will have a forward cost w per unit flow, and

reverse cost of w per unit flow. If k reverse flows are travers-

ing the edge ei, then the cost of the edge is wF+kwR. The

cost of the spanning tree is given by summing up the cost of

all the edges in this graph. For edge ei, let CF[ei] = WF be

the cost of the forward flow on the edge, and let CR[ei] =

kwR be the cost of the reverse flows on the edges. It follows

that

(~)CR [eil S CF [e,] S (~) CR [e,] . (EQ 1)

The cost of the spanning tree obtained by the heuristic

can be obtained by summing up the cost of the forward and

reverse components of all the edges in the tree, Let CH be
the cost of the tree, CHR be the cost of tbe reverse compo-

nents of all the edges in the tree, and CHF be the cost of the

forward components in all the trees. From equation 1, it fol-

lows that

(&)cHR<cHF<~cHR

Since C~ = C~F + CH~,it follows hat

CH< (l+;)CHR

(EQ 2)

(EQ 3)

Now, if Co is the optimal cost tree, and COF and COR are

the forward and reverse components of the cost of the opti-

mal tree, it follows by a similar reasoning that

(l+g)coRsco (IIQ 4)

Since the heuristic finds the minimum cost reverse

flows, the reverse part component of the heuristic is better

than the reverse part component of the optimal tree. Thus

CHR < COR (JZQ 5)

Combining equations 2 and 4, using the knowledge in

equation 5, we obtain

(1+ F/R)

c~Sco(l+F/(Rd))”
(EQ 6)

7. Simulation Results

In order to see how the heuristics perform as opposed to

the optimal solution, we compare it to exhaustive enumera-

tion of all possible flows satisfying the constraints of the

problem. Enumeration was done by selecting all possible

subsets of the graph that contain all elements of D, and then

finding out the minimum cost flow of capacity R from all

the members of D to the source node s. We colmpared the

performance of zero-weight and distance to closest node
heuristics mentioned in Section 5.

We studied graphs with 7 nodes, selecting node O, and

some random 3 other nodes to be connected by a spanning

tree. The graphs for the comparison study were generated

randomly using the following method. Two nodes were con-

nected by an edge with a probability of 0.6, and an band-

width chosen on this link as a uniform number between O

and 12, so that the expected average bandwidth on the link

was 6 units. The weight of each link was a randlom number

distributed uniformly between O and 1. Flndhlg the opti-

mum trees for nodes containing over 7 nodes took too much

simulation time, and therefore was not attempted.

We experimented with three different combinations of F
and R. In the first combination F and R were equal, having

the value of 1. h the second combination F was 1, while R

was 0.1, and in the third combination F was 0.1 while R was

103

1. The distributed classroom is an application where the for-

ward component is expected to dominate, while video-con-

ferencing with mixing is a case where both components are

balanced. In the distributed simulation, or a distributed juke-

box, the reverse component is expected to dominate.

C’ase 1: When F and R were both equal to 1, of the 600

graphs examined, there were no feasible trees found in 50

cases. In 491 of the other cases, the distance to closest node

heuristic found the optimum tree, i.e., a tree with the same

cost as obtained by exhaustive enumeration, and in the other

cases, it found a sub-optimum tree. Averaged over the 550

cases where a feasible tree existed, the heuristic produced a

tree which cost (on an average) only 0.6% more than the

optimum, while considering only those cases where it did

not find the optimum tree, the heuristic tree cost (on the

average) 5% more than the optimum. The zero-weight heu-

ristic found the optimum tree in 408 cases, and the heuristic

tree cost about 1.9% more than the optimum over all the 550

graphs. In the 142 cases where the optimum tree was not

found, the zero-weight heuristic found a tree that cost about

6.8% more than the optimum.

Case 2: When F was 1.0, and R was 0.1, there was no

feasible tree in 23 cases out of 600, and in 466 cases the dis-

tance to closest node heuristic performed as well as exhaus-

tive enumeration. On an average, the heuristic tree cost

2,8% more than the optimum, while considering only the

111 cases where the heuristic did not find the optimum tree,

it found a tree which cost about 1370 more than the opti-

mum tree. The zem-weiglzt heuristic fared much worse, it

found the optimum tree in only 296 cases, and over all the

possible graphs found a tree that was 10.2% worse. Over the

281 cases where it dld not find the optimum tree, it found a

tree which cost 18% more than the optimum.

Clwe 3: F of 0.1 and R of 1.0 was the best possible situ-

ation for the heuristic, In this case, a feasible tree did not

exist in 31 cases, and the distance @ closest node heuristic

obtained the optimum tree in 552 cases. In the cases where

it dld not obtain the optimum tree, it found a tree which on

the average cost only 0.8% more than the optimum. Overatl,
it found a tree which was, on the average, only 0.02?L more

expensive than the optimum. For the zero-weight heuristic,

the optimum was found in 531 cases, the overall heuristic

tree cost 0.06% more than the optimum, while the 38 cases

in which the optimum tree was not found, a tree costing 1910

more than the optimum was obtained.

The results of the simulations can be summarized in the

following table.

A B c D E

D-1 550 491 59 1.006 1.050

z-1 550 408 142 1.019 1.068

D-2 577 466 111 1.028 1.130

z-2 577 296 281 1.102 1.180

D-3 569 552 17 1,002 1.008

z-3 569 531 38 1.006 1.010

D-1: Case, distance-to-closest-node heuristic
Z-1: Case 1, zero-weight heuristic
D-2: Case 2, distance-to-closest-node heuristic
Z-2: Case 2, zero-weight heuristic
D-3: Case 3, distance-to-closest-node heuristic
Z-3: Case 3, zero-weight heuristic.
A: Number of graphs with feasible communication trees
B: Number of trees where heuristic found optimum tree
C: Number of trees where heuristic did not find optimum.
D: Cost of heuristic tree I Cost of optimum tree
E: Same as column C, only for cases in column C.

Excluding the graphs in which no feasible tree existed,

the distance to closest node heuristic obtained the optimum

tree in 899Z0of the graphs, while the zero-weight heuristic

obtained the optimum tree in 73% of the examined graphs.

It is clear from the results that the distance to closest

node heuristic does fairly well in finding a minimum cost

tree for routing multi-point connections with bandwidth res-

ervation. Note that the heuristic performs better as the ratio

of F to R decreases.

8. Conclusions and further work.

In this paper, we have presented heuristics that can be

used to route multi-point connections with bandwidth

requirements. We have shown some theoretical bounds on

one of the heuristics, and examined their performance by
means of simulations. The heuristics seem to perform ade-

quately, and we feel that it can be used in practical networks

without a lot of overhead.

There are several issues which remain open in the con-

text of this work. The theoretical bounds that we have

obtained are valid only under the constraint that the cost of

edges be symmetric. An open problem is to obtain similar

bound on the performance of the zero-weight heuristic

under more general conditions. Another open problem is to

obtain theoretical bounds on the performance of the distance

to closest node heuristic.

104

References

[1] Hakimi, S. “Steiner’s Problem in Graphs and Its Impli-

cations”, Networks, vol. 1, pp 113-133, 1971.

[2] Kou L, Markowsky G, and Berman L, “A fast algorithm

for Steiner Trees”, Acts Informatic~ vol. 15(1981) pp 141-

145.

[3] Rayward-Smith V.J and Claire A, “On finding Steiner

Vertices”, Networks, Vol. 16 (1986), pp 283-294.

[4] Waxman B M, “Routing of Multipoint Connections”,

IEEE Journal on Selected Areas in Communication, vol. 6

(1988) pp 1617-1622.

[5] Subramanian N and Liu S, “Centralized Multi-point

Routing in Wide Area Networks”, Symposium on Apptied

Computing, Kansas City, MO, April 1991.

[6] Jiang X, “Routing Broadband Multicast Streams”,

Computer Communications, vol 15 (1992), no 1 pp. 45-51,

[71Floyd R. W., “Algorithm 67 Shortest Path”, Communi-

cations of the ACM, vol. 5(1962), pp. 345.

[8] Chachra V., Ghare P M and Moore J M, “Applications of

Graph Theory Algorithms”, North Holland 1979.

105

