
Role-Based
Databases

Security, Object Oriented
& Separation of Duty *J

Matunda Nyanchama & Sylvia Osborn *
email : {matunda, sy lv ia}~csd , uwo. ca

October 11, 1993

ABSTRACT

In this paper we combine concepts of role-based protection and
object oriented (O°0) databases to specify and enforce separation
of duty as required for commercial database integrity [5, 23, 24].
Roles essentially partRion database information into access con-
texts. Methods (from the O-O world) associated with n database
object, also partition the object interface to provide windowed
access to object information. By specifying that all database ino
formation is held in database objects and authorizing methods
to roles, we achieve object interface distribution across roles. For
procesaing in the commercial world we can design objects and dis-
tribute their associated methods to different roles. By authorizing
different users to the different roles, we can enforce both the order
of execution on the objects and separation of duty constraints on
method execution.
Keywords: Roles, role-based protection, access control, con-
text, least privilege, separation of duty, object oriented databases,
methods, objects, classes.

1 INTRODUCTION

Roles group sys tem privileges into units tha t can then
be authorized to users as single units. Role-based pro-
tection eases the task of managing large numbers of
users or user groups a n d / o r large numbers of sys tem
privileges which might overlap [17, 25]. Viewed this
way, roles partition sys t e m / da t a ba se information into
contexts or classes of information. Author iza t ion to a
role facilitates access to the information associated with
(accessible via) the role. A role can thus be seen as a
window into some database for author ized users.

Roles implement least privilege, ensuring tha t autho-
rized users access only the information necessary for
performing desired tasks. In specifying user role autho-
rization, it must be ensured tha t users are authorized
only to non-conflicting roles [10, 15].

Object oriented (O-O) principles require tha t informa-
tion access be done via method invocations. Methods in
tu rn access database objects which are the information

*This work was supported in part by a grant from the National
Science & Engineering Research Council of Canada.

tSubndtted to SIGMOD RECORD, June 1993
IThe Department of Computer Science, The University of

Western Ontario, London Ontario N6A 5B7 Canada, FAX: (519)
661-3515 emalh {mat undo,sylvia} @ csd.uwo .ca

bearing receptacles. Using some appropr ia te me thod
design and access control, information encapsulated in
an object can be windowed such tha t only authorized
information is visible to a user. The rest of object infor-
mat ion remains hidden. Ting et. al. [25] have employed
this approach to provide differentiated access to object
information in an O-O design en4ironment .

Given the foregoing, we argue tha t jus t as roles parti-
tion the database into contexts of information, so also
does method access to objects part i t ion the object inter-
face to provide windowed access to objec t information.
This paper uses roles and O-O principles to specify the
enforcement of separation of duly.

The requirement for separation of du ty [5, 23, 24] is
found in commercial securi ty applicat ions (see [5, 23,
24, 10, 15]) where in processing, a user who has par-
ticipated in one step in an execution process is barred
from executing further steps in the same process. Bar-
ring collusion, separation of du ty ensures t ha t the rules
specifying the manner of accomplishing a task are ad-
hered to. We combine role-based protect ion and the
O-O approach and show how to realize separat ion of
duty. The main idea is to keep t rack of an object his-
tory within each object.

In the next section we formally define roles and give a
brief outline of role-based protect ion. Section 3 briefly
outlines the O-O concepts such as classes, objects (a.s
instances of classes) and methods. More details on O-
O approaches can be found in [8, 1, 2, 4, 6, 12, 14,
19]. In section 4 is a summary of commercial da tabase
security, in particularly, the concept o f separat ion of
duty. In section 5 we combine role-based protect ion
and O-O principles to enforce separat ion of duty. We
offer a summary in section 6.

2 ROLE-BASED PROTECTION: .AN OVERVIEW

~.1 Role-Based Protection Basics

Role-based approaches use differentiated access to sys-
tem privileges to realize sys tem protect ion. A privilege,
in this context, determines a subject ' s access rights with

SIGMOD RECORD, Vol. 22, No. 4, December 1993 45

http://crossmark.crossref.org/dialog/?doi=10.1145%2F166635.166652&domain=pdf&date_stamp=1993-12-01

respect to the associated da ta item, system resource,
etc. Thus a privilege can be viewed as a token whose
possession confers access rights to the subject (user or
process acting on user's behalf) possessing it. A privi-
lege is specified by its name and a set of access modali-
ties to the associated object(s).

De f in i t i on I A privilege is a pair (z, m) where x rep-
resents (name, identifier, etc.) an object (data item, re-
source, etc.) and m is a non-empty list of access modal-
tries for object z.

In practice, x can refer to an object (such as a protected
da ta item, an O-O class definition or its extent, etc.) or
a resource (e.g. printer). In systems with simple access
modes such as read, write, execute, etc. m, the list of
modalities, is a subset of these access modes. In more
complex systems such as O-O environments, this list of
access modalities is a list of methods. Indeed, m can
be a list of transactions involving x. When x is some
resource, m is a list of modes tha t facilitate its access
and/or use. The exact nature of x and m is a mat ter of
the application and the associated security policy.

D e f i n i t i o n 2 A role is a named collection of privileges.
It is a pair (rname, plist} where rname is the role name
and plist is the privilege list.

Roles are named groups of related privileges pertaining
to protection objects, resources and /or the system in
an information system. The privileges encapsulated in
a role are administered as a single unit so that granting a
user/group access to a role authorizes such a user/group
to exercise the privileges in the role/17/.

Definition 2 "only captures the functional [7] compo-
nent of a role. The other impor tant component is the
structure which should capture a role's relationship with
other roles in the system [7]. The nature of role relation-
ships, hence role structure, is an aspect of role organi-
zation. Structures such as hierarchies [25], lattices [20]
and Ntrees [21, 22] have been proposed for role organi-
zation. In generM, both the functional and structural
components of a role are necessary to completely spec-
ify the role. We do not address role structuring but
assume that such structural specification exists within
or outside the role specification.

The main advantage of role-based protection is that it
eases the administrat ion of a large number of system
privileges. This can be enhanced further should users
themselves be grouped such tha t authorizations to roles
are given to user groups instead of individuals. Roles
offer flexibility in the granting and revoking of privileges
by alteration of a role's privilege list or user/group au-
thorization to the role. They facilitate the implemen-
tation of least privilege in which a role list contains the
fewest privileges necessary to perform associated duties.
As well, roles can be designed at the application level

Su~ects Roles !gL0r~i~.C~..eys

. i10-i

o o: i 0
Databue hff~-~a~tioa P~'lition

(a)

• t K

lntenecling Information Con~,.s

Ibl

Coatexl L ~ t M

Disjoint Information C~ont4ntta
Ic)

Figure 1: Role Database Par t i t ion

which allows for integration of security related applica-
tion semantics.

The main disadvantage of roles is tha t the analy-
sis of user privileges and their distribution to various
users/user groups can be a very complex process.

~.P Roles 8J Information Partition

Since roles facilitate access to information based on the
privileges they encapsulate, they offer access to different
pieces of protected information/resources. In essence, a
role groups system privileges into a unit t ha t is then
authorized to users as a single unit. For a user autho-
rized for a given role(s), only the information accessible
via the role(s) is available to the user. Viewed this way,
and for a protected database, a role is a window into the
database. The information visible/accessible via such a
window is a context 1 by itself. In general, roles partition
database information into contexts with each context of
information/resources accessible via the associated role
(see figure la). Depending on the application, these
contexts may or may not have overlapping information
(see figures l a & lb). The intersection (or lack of it) of
information contexts is mat ter of the security policy.

3 O - O D A T A B A S E S

8.1 Some 0 - 0 Basics

O-O Database Systems have evolved in an a t t e m p t to
approximate real world enti ty modeling. They capture
more real world semantics, a fact tha t makes t h e m bet-
ter at modeling complex entities than their relational

1 T h i s c o n t e x t c a n b e s e e n a s a c l a s s o f i n f o r m a t i o n . H o w e v e r ,
w e u s e t h e t e r m c o n t e x t t o a v o i d t h e c o n f u s i o n t h a t m a y a r i s e
w i t h c l a s ses in t h e 0 - 0 p a r a d i g m .

46 S I G M O D R E C O R D , Vo l . 22, N o . 4, D e c e m b e r 1993

counterparts. Therefore, they find applications in com-
plex modeling environments such as computer aided de-
sign/manufacturing (CAD~CAM), geographic informa-
tion systems (GIS), very large scale integration (VLSI),
etc. In this section we emphasize only those aspects
that are of relevance to our current formulation.

O-O databases support conventional database function-
alities such as persistence, concurrency control, recov-
ery, some form of storage management that includes
indexing, an ad hoc query facility, a provision for
schema definition and evolution, etc. As well, an O-
O database must incorporate concepts from the O-O
paradigm including concepts of complex objects and ag-
gregation, encapsulation, polymorphism, classes, exten-
sibility, class hierarchies and inheritance [2, 6, 12].

3.~ An 0 - 0 Model

A class defines the structure and behaviour of its in-
stances. Class structure is defined by instance variables
(attributes) and their types. Instances can be simple or
complex since the domains of attributes can be simple
or complex. Behaviour is determined by the methods
defined in the class. Methods operate on the instances of
the class on being invoked by corresponding messages.
The set of messages that a class responds to is its inter-
face. O-O databases allow for eztensibility which facili-
tates the introduction of user-defined classes from exist-
ing ones. Such classes are handled in the same manner
as system-defined ones, i.e. seamlessly.

Def in i t ion 3 An object (o) in an 0 - 0 database is a
triple [14, 11]: o = (oid, class, state) where old is the
unique o b j e c t dentifier, class is the class of which the
object is an instance and s t a t e represents the value of
the object.

oid and class are drawn from the countably infinite
universes OI79 and CAt for object identifiers and class
names, respectively.

Def in i t ion 4 The state of an object O_state= H._state
U NH_state where H_state=(H_attr, H_attrval)
and NTl_state={(NH-attr, NH-attrvaO} represent the
attribute-value pairs for attributes whose history is kept,
and not kept, respectively.

l"~e s l~it.g.?
. MI

MIO0 MIOI M102 M I I0

MIOIO M I O l l M I I O 0 M I I O I M I I 0 2

A M e t h o d lJm~OCaUon T r e e

Figure 2: A Method Invocation Tree

Def in i t i on 6 A history H = (e l ,e2 ,e3 , . . .) , where
each ei is an event. A finite history is of the form
H = (e l , e2 ,ea , - - . , en) where n is finite. It is infinite
otherwise. H and n are related via the size function,
i.e. n = size(H). Given two events ei ,ej we say ei
precedes (~) ej if and only if el . t ime < ej . t ime.

Each event stores necessary audit information resulting
from the occurrence of the event. The exact nature of
this information is application dependent. Given all ob-
ject histories, one can construct the system audit record
by ordering the events according to their t ime (e . t ime)
of occurrence and appending the object name or old.

Def in i t i on 7 A class c is a triple: (n, s, m) where n
is the name of the class, s, is its structure and m is the
method list applicable to the class.

All communication between objects in O-O databases is
via messages. Messages invoke methods which manip-
ulate the objects as defined in the class hence provid-
ing encapsulation: we cannot access the representation
other than through the class interface.

Def in i t i on 8 Given an object o and the set of database
messages (regarded as the message universe in the sys-
tem) .MS, the interface OI(o) C .MS is the set of mes-
sages understood by o.

The value of the H_state of an object carries its history.
A history is an ordered sequence of events where:

Def in i t ion 5 An event is
a quadruple e=(evname, act, uid, time) where e v n a m e is
the event name, ac t is the nature of the action, u id is
the identity of the subject executing the event, t i m e is
a chronological indicator of the time of the event.

Consequently:

In this work OI(o) = Methods(o).

A Method invocation can take various forms. It can
access (read and/or update) an object 's attributes; it
can invoke other methods (associated with the same
object); it can send messages to other objects; it can
create new objects. In general, method invocation is in
the form of a tree (see figure 2 and also [9]).

To ensure Polymorphism, instances of different classes
can receive the same message but respond differently
depending on the class of the receiver of the message.

S I G M O D R E C O R D , Vol . 22, No . 4, D e c e m b e r 1993 47

3.3 0 - 0 Objects, Methods &' Interface Windowing

In O-O databases, an object'.,; information is captured
by its state which is determined by the values of its at-
tributes. Method invocations form the only means of
access to this object information. Hence methods ma-
nipulate the object state and can either read or update
this state.

Methods can be structured in such a manner that dif-
ferent portions of the object information are available
via different methods to facilitate access control. We
term this differentiated access to object information via
its interface object interface windowing. A subset of an
object 's interface is an interface partition or window.
Indeed, any subset of the messages an object responds
to is a window into object information.

D e f in i t i on 9 An interface partition, part(OI(o)) of
some object o, is any subset (or nil) of the object in-
terface OI, i.e. part(OI(o)) C 0I(o),. Given some
interface 0I(o), part(OI(o)) E 201(°).

In specifying and enforcing access control, this window-
ing effect can be exploited by authorizing different users
to access different portions of object information via the
associated methods. By explicitly (or implicitly) autho-
rizing different users to execute different methods, we
realize differentiated access to object information. We
define a privilege based on interface partitic)ns as:

D e f in i t i on 10 An o-privilege is a pair (z,part(OI(z)))
when • is the object name ant paa(OI(x))
is some partition of the interface of x.

One can enforce the principle of least privilege by ensur-
ing that only the necessary methods, that avail sufficient
information to a user, are authorized to the user.

E x a m p l e 1 Consider an automated cheque issuing pro-
cess in which two "signatures", of a clerk and supervisor,
are required to be appended onto a cheque, and where the
clerk's must come before that of supervisor. The cheque
object is an instance of a class C H E Q U E with two meth-
ods, clerk and supervisor, which append (update) the
clerk and supervisor signatures to the cheque object, re-
spectively. The class definition (using the syntax of [18])
will be of the form:

Name: CHEQUE;
Structure: { PAYEE: String,

PAYEE-ID: String,
AMOUNT: Currency,
SIGN_l: String,
SIGN_2: String };

Methods: { clerk,supervisor)

and signature, respectively. Then audit trail is up-
dated with the appropriate information and the cheque
is "dispatched".2 On "receipt", the supervisor invokes
method superv isor which, among other things, updates
SIGN.2., the audit trail is updated, and the cheque is dis-
patched for payment. A security system will specify autho-
rization to the appropriate methods such that subjects in
the clerk and supervisor roles can execute the c le rk and
superv isor methods, respectively.

Audit trail information would be necessary if execution de-
pends on past history.

4 SEPARATION OF DUTY ~ THE O-O PARADIGM

Separation of duty is applied where several people (or
processes acting on their behalf) are required to perform
a given task. Such a task would be broken into sub-
parts which are then assigned to different people. Every
individual is then required to perform (say) only one
of the subtasks with the restriction that none of the
individuals can perform more than one subtask. From
example 1, separation of duty will bar a single individual
from updating both SIGN_i and SIGN_2.

The main idea of separation of duty is to ensure that no
individual can initiate action, approve the same action
and (possibly) benefit from the action. Separation of
duty aims to spread the responsibility for various pro-
cessing steps across different individuals (or their prox-
ies) and achieve dispersion of of authori ty across indi-
viduals that access database information.

Separation of duty is a major requirement for commer-
cial database integrity [5, 10,].5, 23, 24]. The Clark
and Wilson model for commercial security [5] proposes
to model the security requirements of commercial en-
vironments, which stress integrity more than secrecy.
Thus, apart from separation of duty, there are require-
ments such as all database items being constrained data
items (CDIs), that only certified transformation proce-
dures (TPs) manipulate the CDIs, that the TPs are cer-
tified to take CDIs from one correct state to another,
that there are verification procedures (IVPs) that as-
sure the integrity of code which manipulates the CDIs,
etc. In general, all data transformations are required to
be designed as well-formed transactions (WFTs) where
a W F T is a program that has been certified to maintain
the integrity of the data it manipulates [24].

Separation of duty requires the association of TPs with
users and the associated CDIs which leads to relation-
ships of the form (UID, (TPi(CDIx,CDI2, . . .)) , . . .)
where UID is the user identity. It is important to specify
what are the constrained data items and transformation
procedures. In this work, we make the following con-
stralnt:

Let method c lerk be implemented to update the PAYEE,
PAYEE_ID, AMOUNT and SIGN_i attributes with the
payee name, payee identifier, the amount of the cheque

C o n s t r a i n t 1 All data items whose history is neces-

2 Assume there is some ordering mechanism.

48 S I G M O D R E C O R D , Vol . 22, No . 4, D e c e m b e r 1993

sary for their processing must be handled as CDIs. The
associated access procedures must be well formed trans-
actions.

The enforcement of these policies must be mandatory,
i.e. system behaviour is defined a priori and cannot
be altered while the system is running. Subjects ' and
objects ' at tr ibutes must be the only basis for granting
authorization according to specified rules. Moreover,
subjects can neither alter nor transfer security relevant
information to third parties. Further, neither ordinary
subjects nor system security officers can alter informa-
tion pertaining to their own authorizations. As well,
any modification of authorization information must be
subjected to separation of duty.

5 ROLES, O-O OBJECTS ~ SEPARATION OF DUTY

5.1 Roles ~ The 0 - 0 Paradigm

Roles as seen in section 2 offer differentiated access to
database information based on their privileges. In the
O-O paradigm, information is held in the state of ob-
jects and is accessible via methods as seen in section 3.
In this section we combine the two concepts to exploit
the advantages of role-based protection and those of the
O-O paradigm.

O-O database objects are defined using O-O principles
and made accessible via associated methods only. The
authorization to object information is realized via role
"authorization" to the associated method according to
the definition of privilege (see definition 10) which leads
to role definition of the form:

D e f i n i t i o n i i An o-role is a named collection of o-
privileges i.e. o-role = (o-marne, { . . . , (oi, i n t i j) , . . - })
where oi is some object and intid is the associated in-
terface to the object and is of the form parti(OI(oi)).

For the rest of this paper we do not make a distinction
between definitions 2 and 11.

User access to database information comes via user role
authorization specified in a role's access control list
which is a finite set of subject/group identifiers:

D e f i n i t i o n 12 A role access control list (rac 0 is of the
form: { i d l , . . . , i d , } where idi E ID is a user (uid E
U Z g) or group identifier gid E GZD). In generalTO =
UID u GID.

Let 7~ and .A4 be the universal sets of roles and methods,
respectively. Then Vr E R, 3 r . r ac l={- - . , id i , . . . }.3 A
secure role is one with an associated access control list.

3We use the dot notation to refer to role name and role privi-
lege list as r.name and r.plist, respectively.

D e f i n i t i o n 13 A secure role is a named collection of
privileges along with its access list. I~ is a triple
(rname,plist, racl) where rname is the role name, plist
is its privilege list and racl is its access control list.

D e f i n i t i o n 14 An access strategy ¢ is of the form:
¢ : TD x R x 0 x .M ~-~ {true, fa lse} .

With id E ZD, r E 7~,o 6 O and m E A,'[we have:

true ~ id E r.ad
• l(id, r,o,m) = A (o, m) E r.pllst

false Otherwise

The condition id E r.acl (user-role authorization) en-
sures that the current user is authorized to execute the
role while (o, m) E r.plist ensures that there is an as-
sociated privilege defined in the role. 4

The effect of user role authorization is to generate rela-
tions of the form: (rname, {(oi, mj) , - - .}, { - . . , idp,---})
with rname being the role name, oi the object, mj is a
method and { . - - , idp , . . . } is l;he access control list.

D e f i n i t i o n 15 A user's privilege authorization scope is
the set of all privileges accessible to the user.

Given an authorization scheme and some id E I D
we can generate a user's authorization scope of the
form: (id , (rnamea,rnameb, . . .)) . Substituting each
role with its definition of the privilege list and re-
arranging the result yields a relation of the form
(id, (mj , (ol, o2,-" -)),- • -). Since we regard methods as
TPs and the objects ois as CDIs, we have a similar
relationship as that of section 4.

The O-O paradigm is suitable (almost natural) for this
scheme of role-based protection in which we have roles
authorized to execute specific methods associated with
some objects (see figure 3). The resulting effect is the
distribution of an object 's interface across roles.

E x z r n p l e 2 Consider the cheque process of example 1
and let the c h e q u e object have the same methods c l e rk
and s u p e r v i s o r . To associate these methods with roles,
define two roles, C L R K and S P V , corresponding to
clerks and supervisors, respectively. C L R K and S P V
a r e then authorized to execute methods c l e rk and su-
p e r v i s o r , respectively. This leads to role definitions
of the form: (SPV, {(cheque,supervisor)}) and (CLRK,
{(cheque,clerk)}) which effectively distributes the cheque
object interface to two roles.

Next, individuals are authorized to execute the roles. For
instance (say) John and Margaret are authorized for the
C L R K and SPV, respectively. The roles with their a c -

cess control lists
"now look like: (SPV,{(cheque,supervisor)},{Margaret})
and (CLRK, {(cheque,clerk)},{John}).

4(0, m) can be defined as any subset of the authorized interface
in the role.

S I G M O D R E C O R D , Vo l . 22, N o . 4, D e c e m b e r 1993 49

Subjects Roles Information Context Database O b.iects

/ ~.._xj ,,, i /'...__...,~oj.o~
1 ~ I " : , - s~ .~): ",., !/-

v._ i\],] i
• I"--:'" \ , , ~ / ! \\ ~ _ ~ : • ,.,~ .. .~
• " I . / / .X,,, : x"-----'~5~t.~i
• " t . ' ~ . , / ~ : i

@ -015 -

Databue lnfermatien Partition ~ . ~

Figure 3: Object Interface Distribution Over Roles

With id E 2:D, r E 7~, o E 0 and m E J~4 we have:

true ¢=~ id E r.acl
e~2(id, r , o , m) = A V e l E H , i d ~ e i .u id

^ (o, m) E r.plist
false Otherwise

The condition id ~- ei.uid,Vei E H ensures prior non-
participation for the current user in any previous event.

For this history to be useful, method executions must
either update the history at tr ibute or be part of some
transaction whose execution updates the attr ibute.
Processing constraints must ensure that each permit-
ted (or a t tempted) execution on the object utilizes the
history and updates it.

Example 3 Consider the cheque object of examples 1
and 2 which, as defined, do not keep track of execution his-
tory. We introduce another attribute (HIST) , to record
audit information associated with the object. The rede-
fined class structure of C H E Q U E is:

5.~ Enforcing Separation of Duty

Separation of duty requires audit information to ensure
tha t before subjects are allowed execution, they have
not part icipated in the processing before. However, as
Karger [10] observes, searching for such information in
the audit record can be very costly. Hence we use object
history, which is part of the object state hence part of
the object itself. This enables each object (at least those
tha t require separation of duty in their processing) in
the database to keep track of its own audit information.
We introduce a history :tttribute of the object to record
audit information.

The class structure must be defined to reflect the desired
object s t ructure to ensure that objects (at least those
tha t require separation of duty) keep track of their his-
tories. The history has a value which is the audit infor-
mat ion required for its processing. In defining a class,
then, we not only specify that there be a history at-
t r ibute but also its nature, i.e. the domain of its value.
This history provides no more information than can be
found in the audit, trail; nor does it preclude the stor-
age of the same information in the system audit record.
I t merely avails the same information in a form tha t
supports performance improvement.

To enforce separation of duty requires non-participation
in the current history which is necessary, but not suf-
ficient, to guarantee access at any execution stage [10].
The final decision on whether or not to allow access
must depend on authorization and any constraints im-
posed on access that may take into account both the his-
tory and any other required information to make such
a decision. Karger [10] makes similar observations re-
garding token capabilities for control of object access.

Our refined access strategy retains definition 14 but im-
poses a separation of duty criterion.

Name: C H E Q U E ;
Structure: { PAYEE: String,

PAYEE.ID: String,
AMOUNT: Currency,
SIGN.A: String,
SIGN..2: String
HIST: SequenceotEvents };

Methods: {clerk,supervisor)

Further, method executions must be redesigned to update
this attribute on attempted execution.

o n i n v o c a t i o n o f method (m)
check:= •2(id, r, o, m);
if check then

began
execute method;
update(o.HIST)

end
else update(o.HIST)

In example 3, method execution is part of a transac-
tional process tha t reads history information, uses it
along with authorization information and updates the
history. This illustration is similar to what Ravi Sandhu
[23] terms transaciional expressions. We do not address
the manner in which these executions are structured
and processed. I t suffices (for now) to say that it must
be transactional in nature.

Notice also tha t our formulation realizes dynamic sepa-
ration of duty [16] in tha t all we care about is tha t the
current access a t t empt is authorized and that the said
user 's part icipation is not in the object history.

6 SUMMARY

We have discussed the enforcement of separation of
duty using both role-based protection and O-O database
principles. Roles offer a flexible means of managing sys-
t em privileges for different numbers of users/user groups

50 S I G M O D R E C O R D , Vol . 22, N o . 4, D e c e m b e r 1993

with varying information access requirements. They can
be employed at the application level, thus incorporating
application level semantics. They offer a flexible means
of administering system privileges in that access rights
can be conferred and/or revoked via user authorization
to a role or role privilege assignment. Roles can employ
the principle of least privilege and effectively partition
database information into contexts which could or could
not overlap.

In the O-O paradigm, methods, the only means of ac-
cess to object information, provide a windowing effect
on this information. By authorizing different roles to
execute different methods of an object, we effectively
distribute the object interface across roles and hence
the individuals authorized for the associated roles.

To realize separation of duty we must keep track of an
object 's history and use it, along with access control
information, to determine whether or not to allow ac-
cess. Using O-O principles we can incorporate this audit
information in the object structure and impose condi-
tions on method execution that must access the history
(before) execution and update it on completion of ex-
ecution. Making audit information pair of the object
facilitates ease of processing as searching for the same
information in a common audit trail would be too ex-
pensive.

Methods themselves can be made transactional or be
par t of some transactional execution where object his-
tory is used and updated on any access or a t tempted
access to object information.

REFERENCES

[1] T. Andrews and C. Harris. Combining Language and
Database Advances in an Object Oriented Database Envi-
ronment. In S. B. Zdonik and D. Mater, editors, Readings
in Object Oriented Database Systems. Morgan Kanfmann,
1990.

[2] M. Atkinson, F. Bancilhon, D. DeWitt , K. R. Dittrich,
D. Mater, and S. Zdonik. The Object Oriented Manifesto.
In A CM SIGMOD '90 Proceedings, page 395, May 1990.

[3] R. W. Baldwin. Naming & Grouping Privileges to Sim-
plify Security Management in Large Databases. In Proc.
1990 IEEE Symposium on Research in Security and Pri-
vacy, pages 116---132. IEEE Computer Society Press, May
1990.

[4] J. Banerjee, H. T. Chou, J. F. Garza, W. Kim, D. Wodk,
N. Ballou, H. J K i m , F. Manola, and U. Dayal. Data Model
Issues for Object Oriented Applications. A CM Trans. O ~ c e
Information Systems, 5(1):3--26, Jan. 1987.

[5] D. D. Clark and D. It. Wilson. A Comparison of Commercial
and Military Security Policies. In Prac. 1987 IEEE Sympo-
sium on Security and Privacy, pages 184-194. IEEE Com-
puter Society Press, April 1987.

[6] K. It. Dittrlch. Object Oriented Database Management Sys-
tems: The Next Miles of the Marathon. Information Sys-
tems, 15(1):161-167, Mar 1990.

[7] J. E. Dobson and J. A. McDermid. Security Models and
Enterprise Models. In C.E. Landwehr, editor, Database Se-
curity II: Status E4 Prospects, pages 1-39. North-Holland,
1989.

[8] The Object Oriented Database Task Group. Final Report of
tile Object Oriented DataBase Task Group--OODBTG. Sept
1991.

[9] S. Jajodia and B. Kogan. Integrating an Object-Oriented
Data Model with Multilevel Security. In Proc. 1990 IEEE
Computer Society Symposium on Research in Security and
Privacy, pages 76-85. 1EEE Computer Society Press, May
1990.

[10] P.A. Karger. Implementing Commercial Data Integrity with
Secure Capabilities. In Proc. 1988 IEEE Symposium on Se-
curity and Privacy, pages 130-139. IEEE Computer Society
Press, April 1988.

[11] S.N. Khoshafian and G.P. Copeland. Object Identity. In
OOPSLA '86 Proceedings, pages 406.--416, Nov 1986.

[12] Won Kim. Object Oriented Databases: Definitions and Re-
search Directions. IEEE Trans. on Knowledge and Data
Engineering, 2(3):327-341, Sept 1990.

[13] L. G. Lawrence. The Role of Roles. Computers ~ Security,
12(1):15-21, Feb 1993.

[14] C. Lecluse, P. Velez, and F. Velez. 0 2 an Object Oriented
Data model. In Proc. A C M SIGMOD lnt'i Gonfcrencc on
Management of Data, 1988.

[15] T. M. P. Lee. Using Mandatory Integrity to Eafforce "Com-
mexcial" Security. In Proc. 1988 IEEE Symposium on Se-
curity and Privacy, pages 140-146. IEEE Computer Society
Pru~s, April 1988.

[16] M.J . Nash and K. It. Poland. Some Conundrunxs Concerning
Separation of Duty. In Proc. 1990 IEEE Compgtcr Society
Symposium on Research in Security and Privacy, pages 201-
207. IEEE Computer Society Press, May 1990.

[17] M. Nyanchama and S. L. Osborn. Role-Based Security: Pros,
Cons & Some Research Directions. A CM SIGSA C Review,
2(2):11-17, June 1993.

[18] S.L. Osborn. Algebraic Query Optimization for an Object
Algebra. Tech. Report ~251, Department of Computer Sci-
ence, University of Western Ontario, London Canada, 1989.

[19] S.L. Osborn. The Role of Polymorphlsm in Schema Evolu-
tion in an Object-Oriented Database. IEEE Transactions
on Knowledge and Data Engineering, pages 310-317, Sept.
1989.

[20] F. Rabitti , E. Bertlno, D. Woelk, and W. Khn. A Model
of Authorization for Next Generation Databases Systems.
A CM TODS, 16(1):88-131, March 1991.

[21] Ravi Sandhu. The NTree: A Two Dimensional Part ial Order
for Protection Groups. A CM Trans. on Computer Syst.,
6(2):197-222, May 1988.

[22] Ravi Sandhu. Recognizing Immediacy in an N-Tree Hierar-
chy and its Applications to Protection Groups. IEEE Trans.
on Software Engineering, 15(12):1518-.-1525, Dec 1989.

[23] Ravi Sandhu. Separation of Duties In Computerized Infor-
mation Systems. In S. Jajodia and C. E. Landwehr, editors,
Database Security, IV: Status and Prospects, pages 179---189.
North-Holland, 1991.

[24] D . J . Thomsen. Role-Based Application Design and Enforce-
ment. In S. Jajodia and C. E. Landwehr, editors, Database
Security, IV: Status aug Prospects, pages 151-168. North-
Holland, 1991.

[25] T. C. Tin g, S. A. Dermurjan, and M. Y. Hu. Requirements
Capabilities and Functionalities of User-Role Based Security
for an Object-Oriented Design Model. In C. E. Landwehr and
S. Jajodia, editors, Database Security V: Status E4 Prospects,
pages 275-296. North-Holland, 1992.

S I G M O D R E C O R D , Vol . 22, N o . 4, D e c e m b e r 1993 51

