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1. THE CHALLENGE OF AD HOC DATA FORMATS

XML. HTML. CSV. JPEG. MPEG. These data formats represent vast quantities of in-
dustrial, governmental, scientific, and private data. Because they have been standardized
and are widely used, many reliable, efficient, and convenient tools for processing data in
these formats are readily available. For instance, your favorite programming language un-
doubtedly has libraries for parsing XML and HTML as well as reading and transforming
images in JPEG or movies in MPEG. Query engines are available for querying XML doc-
uments. Widely-used applications like Microsoft Word and Excel automatically translate
documents between HTML and other standard formats. In short, life is good when work-
ing with standard data formats. In an ideal world, all data would be in such formats. In
reality, however, we are not nearly so fortunate.

An ad hoc data format is any non-standard data format. Typically, such formats do
not have parsing, querying, analysis, or transformation tools readily available. Every day,
network administrators, financial analysts, computer scientists, biologists, chemists, as-
tronomers, and physicists deal with ad hoc data in a myriad of complex formats. Figure 1
gives a partial sense of the range and pervasiveness of such data. Since off-the-shelf tools
for processing these ad hoc data formats do not exist or are not readily available, talented
scientists, data analysts, and programmers must waste their time on low-level chores like
parsing and format translation to extract the valuable information they need from their data.
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Name & Use

[ Representation

Web server logs (CLF):
Measure web workloads

Fixed-column ASCII records

AT&T provisioning data:
Monitor service activation

Variable-width ASCII records

Call detail: Fraud detection

Fixed-width binary records

AT&T billing data: Various Cobol data formats
Monitor billing process
Netflow: Data-dependent number of

Monitor network performance

fixed-width binary records

Newick: Immune
system response simulation

Fixed-width ASCII records
in tree-shaped hierarchy

Gene Ontology:
Gene-gene correlations

Variable-width ASCII records
in DAG-shaped hierarchy

CPT codes: Medical diagnoses

Floating point numbers

SnowMed: Medical clinic notes

keyword tags

Fig. 1. Selected ad hoc data sources.

Though the syntax of everyday programming languages might be considered “ad hoc,” we
explicitly exclude programming language syntax from our domain of interest.

In addition to the inconvenience of having to build custom processing tools from scratch,
the nonstandard nature of ad hoc data frequently leads to other difficulties for its users.
First, documentation for the format may not exist, or it may be out of date. For example, a
common phenomenon is for a field in a data source to fall into disuse. After a while, a new
piece of information becomes interesting, but compatibility issues prevent data suppliers
from modifying the shape of their data, so instead they hijack the unused field, often failing
to update the documentation in the process.

Second, such data frequently contain errors, for a variety of reasons: malfunctioning
equipment, programming errors, non-standard values to indicate “no data available,” hu-
man error in entering data, and unexpected data values caused by the lack of good docu-
mentation. Detecting errors is important, because otherwise they can corrupt “good” data.
The appropriate response to such errors depends on the application. Some applications re-
quire the data to be error free: if an error is detected, processing needs to stop immediately
and a human must be alerted. Other applications can repair the data, while still others can
simply discard erroneous or unexpected values. For some applications, errors in the data
can be the most interesting part because they can signal where two systems are failing to
communicate.

Today, many programmers tackle the challenge of ad hoc data by writing scripts in a lan-
guage like PERL. Unfortunately, this process is slow, tedious, and unreliable. Error check-
ing and recovery in these scripts is often minimal or nonexistent because when present,
such error code swamps the main-line computation. The program itself is often unreadable
by anyone other than the original authors (and usually not even them in a month or two)
and consequently cannot stand as documentation for the format. Processing code often
ends up intertwined with parsing code, making it difficult to reuse the parsing code for dif-
ferent analyses. Hence, in general, software produced in this way is not the high-quality,
reliable, efficient and maintainable code one should demand.
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Fig. 2. Architecture of PADS system.

1.1 Promising Solutions

To address these challenges, researchers have begun to develop high-level languages for
describing and processing ad hoc data. For instance, McCann and Chandra introduced
PACKETTYPES [McCann and Chandra 2000], a specification language designed to help
programmers process the binary data associated with networking protocols. Godmar Back
developed DATASCRIPT [Back 2002], a scripting language with explicit support for speci-
fying and parsing binary data formats. DATASCRIPT has been used to manipulate Java jar
files and ELF object files. The developers of Erlang have also introduced language exten-
sions that they refer to as binaries [Wikstrom and Rogvall 1999; Gustafsson and Sagonas
2004] to aid in packet processing and protocol programming. Finally, we are part of a
group developing PADS, another system for managing ad hoc data. PADS focuses on ro-
bust error handling and tool generation. It is also unusual in that it supports a variety of
data encodings: ASCII formats used by financial analysts, medical professionals and sci-
entists, EBCDIC formats used in Cobol-based legacy business systems, binary data from
network applications, and mixed encodings as well. PADS comes with not one but two
specification languages: PADS/C [Fisher and Gruber 2005] generates libraries and tools for
C programmers while PADS/ML [Mandelbaum et al. 2007] generates O’Caml code.
Although these languages differ in many details, they both derive their power from a
remarkable insight: Types can describe data in both its external (on-disk) and internal
(programmatic) forms. Figure 2 illustrates how systems such as PADS, DATASCRIPT, and
PACKETTYPES exploit this dual interpretation of types. In the diagram, the data consumer
constructs a type T to describe the syntax and semantic properties of the format in ques-
tion. A compiler converts this description into parsing code, which maps raw data into a
canonical in-memory representation. This canonical representation is guaranteed to be a
data structure that itself has type T, or perhaps T’ , the closest relative of T available in the
host programming language being used. In the case of PADS, the parser also generates a
parse descriptor (PD), which describes the errors detected in the data. A host language
program can then analyze, transform or otherwise process the data representation and PD.
This architecture helps programmers take on the challenges of ad hoc data in multiple
ways. First, format specifications in these languages serve as high-level documentation that
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is more easily read and maintained than the equivalent low-level PERL script or C parser.
Importantly, DATASCRIPT, PACKETTYPES, and PADS all allow programmers to describe
both the physical layout of data as well as its deeper semantic properties such as equality
and range constraints on values, sortedness, and other forms of dependency. The intent is
to allow analysts to capture all they know about a data source in a data description. If a
data source is changed, as data sources frequently are, by the extension of a record with an
additional field or new variant, one often only needs to make a single local change to the
declarative description to keep it up to date.

Second, basing the description language on type theory is especially helpful as ordinary
programmers have built up strong intuitions about types. The designers of data description
languages have been able to exploit these intuitions to make the syntax and semantics of
descriptions particularly easy to understand, even for beginners. For instance, an array
type is used to describe sequences of data objects, while union types are used to describe
alternatives.

Third, programmers can write generic, type-directed programs that produce tools for
purposes other than just parsing. For instance, McCann and Chandra suggest using PACK-
ETTYPES specifications to generate packet filters and network monitors automatically.
Back used DATASCRIPT to generate infrastructure for visitor patterns over parsed data.
PADS generates a statistical data analyzer, a pretty printer, an XML translator and an aux-
iliary library that enables XQueries using the Galax query engine[Ferndndez et al. 2003].
It is the declarative, domain-specific nature of these data description languages that makes
it possible to generate all these value-added tools for programmers. The suite of tools,
all of which can be generated from a single description, provides additional incentive for
programmers to keep documentation up-to-date.

Fourth, these data description languages facilitate insertion of error handling code. The
generated parsers check all possible error cases: system errors related to the input file,
buffer, or socket; syntax errors related to deviations in the physical format; and seman-
tic errors in which the data violates user constraints. Because these checks appear only
in generated code, they do not clutter the high-level declarative description of the data
source. Moreover, since tools are generated automatically by a compiler rather than writ-
ten by hand, they are far more likely to be robust and far less likely to have dangerous
vulnerabilities such as buffer overflows.

In summary, data description languages such as DATASCRIPT, PACKETTYPES, Erlang,
and PADS meet the challenge of processing ad hoc data by providing a concise and pre-
cise form of “living” data documentation and producing reliable tools that handle errors
robustly.

1.2 The Next 700 Data Description Languages

The languages people use to communicate with computers differ in their in-
tended aptitudes, towards either a particular application area, or a particu-
lar phase of computer use (high level programming, program assembly, job
scheduling, etc). They also differ in physical appearance, and more impor-
tant, in logical structure. The question arises, do the idiosyncrasies reflect
basic logical properties of the situations that are being catered for? Or are they
accidents of history and personal background that may be obscuring fruitful
developments? This question is clearly important if we are trying to predict or
influence language evolution.
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To answer it we must think in terms, not of languages, but of families of lan-
guages. That is to say we must systematize their design so that a new language
is a point chosen from a well-mapped space, rather than a laboriously devised
construction.

— P. J. Landin, The Next 700 Programming Languages, 1966 [Landin
1966].

Landin asserts that principled programming language design involves thinking in terms
of “families of languages” and choosing from a “well-mapped space.” However, so far,
when it comes to the domain of processing ad hoc data, there is no well-mapped space and
no systematic understanding of the family of languages one might be dealing with.

The primary goal of this paper is to begin to understand the family of ad hoc data pro-
cessing languages. We do so, as Landin did, by developing a semantic framework for
defining, comparing, and contrasting languages in our domain. This semantic framework
revolves around the definition of a data description calculus (DDC®). This calculus uses
types from a dependent type theory to describe various forms of ad hoc data: base types to
describe atomic pieces of data and type constructors to describe richer structures. We show
how to give a denotational semantics to DDC® by interpreting types as parsing functions
that map external representations (bits) to data structures in a typed lambda calculus. More
precisely, these parsers produce both internal representations of the external data and parse
descriptors that pinpoint errors in the original source.

For many domains, researchers have a solid understanding of what makes a “reason-
able” or “unreasonable” language. For instance, a reasonable typed language is one in
which values of a given type have a well-defined canonical form and “programs don’t go
wrong.” On the other hand, when we began this research, it was not at all clear how to
decide whether our data description language and its interpretation were “reasonable” or
“unreasonable.” A conventional sort of canonical forms property, for instance, is not rel-
evant as the input data source is not under system control, and, as mentioned above, is
frequently buggy. Consequently, we have had to define and formalize a new correctness
criterion for the language. In a nutshell, rather than requiring input data be error-free,
we require that the internal data structures produced by parsing satisfy their specification
whereever the parse descriptor says they will. Our invariant allows data consumers to rely
on the integrity of the internal data structures marked as error-free.

To study and compare PADS/C, PADS/ML, PACKETTYPES, DATASCRIPT, and/or some
other data description language, we advocate translating the language into DDC®. The
translation decomposes the relatively complex, high-level descriptions of the language in
question into a series of lower-level DDC® descriptions, which have all been formally de-
fined. We have done this decomposition for IPADS, an idealized version of the PADS/C
language that captures the essence of the actual implementation. We have also analyzed
many of the features of PADS/ML, PACKETTYPES and DATASCRIPT using our model. The
process of giving semantics to these languages highlighted features that were ambiguous
or ill-defined in the documentation that we had available to us.

To our delight, the process of giving PADS/C a semantics in this framework has had ad-
ditional benefits. In particular, since we defined the semantics by reviewing the existing
implementation, we found (and fixed!) a couple of subtle bugs. The semantics has also
raised several design questions that we are continuing to study. It has also helped us explore
important extensions. In particular, driven by examples found in biological data [Consor-
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tium ; Newick ], we decided to add recursion to PADS/C. We used our semantic framework
to study the ramifications of this addition.

Finally, DDC® has been instrumental in the development of our latest data description
language, PADS/ML. Unlike PADS/C, which was created prior to our semantic analysis,
PADS/ML was defined with DDC® already in hand. The semantics was a useful guide
in all aspects of the PADS/ML implementation, but particularly so in the development of
polymorphic descriptions, a new feature in PADS/ML. The compilation invariants required
for correct code generation in the presence of polymorphism are quite subtle. However,
using DDC®, we were able to workout the details in an clean, elegant setting and prove our
implementation technique was correct.

In summary, this article makes the following theoretical and practical contributions:

—We define a semantic framework for understanding and comparing data description lan-
guages such as PADS/C, PADS/ML, PACKETTYPES, and DATASCRIPT. No one has previ-
ously given a formal semantics to any of these languages. In fact, as far as we are aware,
no one has developed a general and complete “theory of front-ends” that encompasses
both a semantics for recognition of concrete, external syntax and a semantics for internal
representation of this data within a rich, strongly-typed programming language.

—At the center of the framework is DDC®, a calculus of data descriptions based on a
polymorphic, dependent type theory. We give a denotational semantics to DDC® by
interpreting types both as parsers and, more conventionally, as classifiers for parsed
data.

—We define an important correctness criterion for our language, stating that all errors in
the parsed data are reported in the parse descriptor. We prove DDC® parsers maintain
this property.

—We define IPADS, an idealized version of the PADS/C data description language that
captures its essential features, and show how to give it a semantics by translating it into
DDC®. The process of defining the semantics led to the discovery of several bugs in the
actual implemention.

—We have given semantics to features from several other data description languages in-
cluding PACKETTYPES and DATASCRIPT. As Landin asserts, this process helps us un-
derstand the families of languages in this domain and the totality of their features, so that
we may engage in principled language design as opposed to falling prey to “accidents
of history and personal background.”

—We use IPADS and DDC® to experiment with a definition and implementation strategy
for recursive data types. Recursive types are essential for representing tree-shaped hier-
archical data [Consortium ; Newick ]. We have integrated recursion into PADS/C, using
our theory as a guide.

—We also used IPADS and DDC® as a guide for the implementation of PADS/ML, a new
data description language for O’Caml. The chief difficulty in the design involved under-
standing how to compile polymorphic descriptions into O’Caml. Polymorphism allows
for effective “description reuse” and fits elegantly in the context of typed functional pro-
gramming languages like O’Caml. DDC® served as a simple formal framework in which
we could work out and prove the correctness of our implementation strategy.

Most of the basic ideas mentioned above were presented at the ACM Symposium on
Principles of Programming Languages in 2006, in a paper with the same title [Fisher et al.
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2006]. However, there are two important differences. First, we have found several ways
to improve the structure of the semantics of the DDC® since we first introduced it in 2006.
In particular, we were able to eliminate the “contractiveness” constraint, which allowed
us to simplify our earlier kinding rules substantially. They now take on a much more
standard format. Second, we have added polymorphism to the calculus so that we may use
it to understand the semantics of PADS/ML’s polymorphic, recursive and dependent data
types. The addition of polymorphism led to a number of technical challenges in the proof
of correctness of our system. Finally, this article differs from our previously published
work as it explains the proof techniques and all intermediate lemmas needed to achieve
our formal results. We have omitted the line-by-line details of the proofs, but key cases of
the most challenging lemmas may be found in Mandelbaum’s Ph.D. thesis [Mandelbaum
2006].

The rest of the paper describes our contributions in detail. Section 2 gives a gentle in-
troduction to data description languages by introducing IPADS. Sections 3, 4 and 5 explain
the syntax, semantics and metatheory of DDC®. Section 6 discusses encodings of IPADS,
PADS/ML, PACKETTYPES and DATASCRIPT in DDC® and Section 7 explains how we have
already made use of our semantics in practice. Sections 8 and 9 discuss related work and
conclude. We have explicitly excluded discussion of a variety of practical considerations
concerning the engineering of either the PADS/C or PADS/ML systems from this article so
we may focus specifically on the semantics of data description languages. We consider en-
gineering concerns, system performance and the architecture of the PADS tool generation
system beyond the scope of this article.

2. IPADS: AN IDEALIZED DDL

In this section, we define IPADS, an idealized data description language. IPADS captures
the essence of PADS/C in a fashion similar to the way that MinML [Harper 2005] captures
the essence of ML or Featherweight Java [Igarashi et al. 1999] captures the essence of Java.
The main goal of this section is to introduce the reader to the form and function of IPADS
by giving its syntax and walking through a couple of examples. Though the syntax differs,
the structure of PADS/C’s relatives PADS/ML, PACKETTYPES, and DATASCRIPT are similar.
Later sections will show how to give a formal semantics to TPADS.

Preliminary Concepts. Like PADS/C, PADS/ML, PACKETTYPES, and DATASCRIPT, IPADS
data descriptions are types. These types specify both the external data format (a sequence
of bits or characters) and a mapping into a data structure in the host programming lan-
guage. In PADS/C, the host language is C; in IPADS, the host language is an extension of
the polymorphic lambda calculus. For the most part, however, the specifics of the host
language are unimportant.

A complete TPADS description is a sequence of type definitions terminated by a single
type. This terminal type describes the entirety of a data source, making use of the previous
type definitions to do so. IPADS type definitions can have one of two forms. The form
(oo = t) introduces the type identifier v and binds it to IPADS type ¢. The type identifier
may be used in subsequent types. The second form (Prec o = t) introduces a recursive
type definition. In this case, o may appear in ¢t.

Complex IPADS descriptions are built by using type constructors to glue together a col-
lection of simpler types. In our examples, we assume IPADS contains a wide variety of base
types including integers (Puint 32 is an ASCII representation of an unsigned integer that
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may be represented internally in 32 bits), characters (Pchar), strings (Pstring), dates
(Pdate), IP addresses (Pip), and others. In general, these base types may be param-
eterized. For instance, we will assume Pstring is parameterized by an argument that
signals termination of the string. For example, Pstring(" ") describes any sequence
of characters terminated by a space. (Note that we do not consider the space to be part
of the parsed string; it will be part of the next object.) Similarly, Puint16_FW (3) is an
unsigned 16-bit integer described in exactly 3 characters in the data source. In general, we
write C'(e) for a base type parameterized by a (host language) expression e.

When interpreted as a parser, each of these base types reads the external data source
and generates a pair of data structures in the host language. The first data structure is the
internal representation and the second is the parse descriptor, which contains metadata
collected during parsing. For instance, Puint 32 reads a series of digits and generates an
unsigned 32-bit integer as its internal representation. Pstring generates a host-language
string. Pdate might read dates in a multitude of different formats, but always generates
a tuple with time, day, month, and year fields as its internal representation. Whenever
an IPADS parser encounters an unexpected character or bit-sequence, it sets the internal
representation to none (i.e. null) and notes the error in the parse descriptor.

An 1PADS Example. TPADS contains a rich collection of type constructors for creating
sophisticated descriptions of ad hoc data. We present these constructors through a series
of examples. The first example, shown in Figure 3, describes the Common Web Log
Format [Krishnamurthy and Rexford 2001], which web servers use to log the requests they
receive. Figure 4 shows two sample records. Briefly, each line in a log file represents one
request; a complete log may contain any number of requests. A request begins with an IP
address followed by two optional ids. In the example, the ids are missing and dashes stand
in for them. Next is a date, surrounded by square brackets. A string in quotation marks
follows, describing the request. Finally, a pair of integers denotes the response code and
the number of bytes returned to the client.

The 1PADS description of web logs is most easily read from bottom to top. The termi-
nal type, which describes an entire web log, is an array type. Arrays in IPADS take three
arguments: a description of the array elements (in this case, entry_t), a description of
the separator that appears between elements (in this case, a newline marker Pnl), and
a description of the terminator (in this case, the end-of-file marker). PADS/C itself pro-
vides a much wider selection of separators and termination conditions, but these additional
variations are of little semantic interest so we omit them from IPADS. The host language
representation for an array is a sequence of elements. We do not represent separators or
terminators internally.

We use a Pstruct to describe the contents of each line in a web log. Like an array,
a Pstruct describes a sequence of objects in a data source. We represent the result of
parsing a Pstruct as a tuple in the host language. The elements of a Pstruct are either
named fields (e.g. client : Pip) or anonymous fields (e.g. " ["). The Pstruct
entry_t declares that the first thing on the line is an IP address (Pip) followed by a space
character (" "). Next, the data should contain an authid_t followed by another space,
etc.

The last field of entry_t is quite different from the others. It has a Pcompute type,
meaning it does not match any characters in the data source, but it does form a part of the
internal representation used by host programs. The argument of a Pcompute field is an
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authid_t = Punion {
unauthorized : "-";
id : Pstring (" ");

bi
response_t =
Pfun (x:int) =

Puintl6_FW(x) Pwhere y.100 <= y and y < 600;

entry_t = Pstruct {

client : Pip; ",

remoteid : authid_t; ",

localid : authid_t; ",

date : Pdate("]1"); "]OA\"";

request : Pstring("\""); ALY

response : response_t 3; ",

length : Puint32;

academic : Pcompute (getdomain client) == "edu" : bool;

}i

entry_t Parray (Pnl, Peof)
Fig. 3. 1PADS Common Web Log Format Description

arbitrary host language expression (and its type) that determines the value of the associated
field. In the example, the field academic computes a boolean that indicates whether the
web request came from an academic site. Notice that the computation depends upon a
host language value constructed earlier — the value stored in the client field. TPADS
structs are a form of dependent record and, in general, later fields may refer to the values
contained in earlier ones.

The ent ry_t description uses the type authid_t to describe the two fields remoteid
and localid. The authid_t type is a Punion with two branches. Unions are repre-
sented internally as sum types. If the data source can be described by the first branch (a
dash), then the internal representation is the first injection into the sum. If the data source
cannot be described by the first branch, but can be described by the second branch then the
internal representation is the second injection. Otherwise, there is an error.

Finally, the response_t type is a Pfun, a user-defined parameterized type. The pa-
rameter of response_t is a host language integer. The body of the P£fun expression
is a Puint16_FW where x, the fixed width, is the argument of the function. In addition,
the value of the fixed-width integer is constrained by the Pwhere clause. In this case,
the Pwhere clause demands that the fixed-width integer y that is read from the source lie
between 100 and 599. Any value outside this range will be considered a semantic error.
In general, a Pwhere clause may be attached to any type specification. It closely resem-
bles the semantic constraints found in practical parser generators such as ANTLR [Parr and
Quong 1995].

A Recursive TPADS Example. Figure 5 presents a second IPADS example. In this exam-
ple, IPADS describes the Newick Standard format, a flat representation of tree-structured
data. The leaves of the trees are names that describe an “entity”. In our variant of Newick
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207.136.97.49 - - [15/0ct/1997:18:46:51 -0700]
"GET /tk/p.txt HTTP/1.0" 200 30
tj62.ao0l.com - — [16/0ct/1997:14:32:22 -0700]

"POST /scpt/confirm HTTP/1.0" 200 941

Fig. 4. Sample Common Web Log Data. Each record is broken with a newline to format it on this page.

node_t = Popt Pstruct {
name : Pstring(":"); ":";
dist : Puint32;
bi

Prec tree_t = Punion ({
internal : Pstruct {
"("; branches : tree_t Parray(",",")");
")y:"; dist : Puint32;
bi
leaf : node_t;
bi

Pstruct { body : tree_t; ";"; }

(+ Example: (B:3, (A:5,C:10,E:2):12,D:0) :32; )
Fig. 5. 1PADS Newick Format Description

Standard, leaf names may be omitted. If the leaf name does appear, it is followed by a
colon and a number. The number describes the “distance” from the parent node. Micro-
biologists often use distances to describe the number of genetic mutations that have to
occur to move from the parent to the child. An internal tree node may have any number of
(comma-separated) children within parentheses. Distances follow the closed-paren of the
internal tree node.

The Newick Standard format and other formats that describe tree-shaped hierarchies [Con-
sortium ; Newick ; ] provide strong motivation for including recursion in IPADS. We have
not been able to find any useable description of Newick data as simple sequences (structs
and arrays) and alternatives (unions); some kind of recursive description appears essential.
The definition of the type t ree_t introduces recursion. It also uses the type Popt ¢, a
trivial union that either parses ¢ or nothing at all.

Formal Syntax. Figure 6 summarizes the formal syntax of IPADS. Expressions e and
types o are taken from the host language, described in Section 3.2. Notice, however, that
we use z for host language expression variables and « for IPADS type variables. In the
examples, we have abbreviated the syntax in places. For instance, we omit the operator
“Plit” and formal label x when specifying constant types in Pstructs, writing “c;”
instead of “x : P1it ¢;”. In addition, all base types C' formally have a single parameter,
but we have omitted parameters for base types such as Puint 32. Finally, the type Palt,
which did not appear in the examples, describes data that is described by all the branches
simultaneously and produces a set of values - one from each type. Intuitively, Palt is a
form of intersection type.
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C(e) |Plit ¢ |Pfun(z:0) =t |te

— — —
Pstruct{xz:t} | Punion{x:t} | Palt{x:t} | t Pwherex.c
Popt t | t Parray(t,t) | Pcompute e:o | o | Prec a.t
t|la=t;p|Preca=t;p

Types t o

Programs p ::

Fig. 6. IPADS Syntax

3. A DATA DESCRIPTION CALCULUS

At the heart of our work is a data description calculus (DDC®), containing simple, orthog-
onal type constructors designed to capture the core features of data description languages.
Consequently, the syntax of DDC® is at a significantly lower level of abstraction than that of
PADS/C, PADS/ML or IPADS. Like any of these languages, however, the form and function
of DDC® features are directly inspired by type theory.

Informally, we may divide the features that make up DDC® into types and type opera-
tors. Each DDC® type describes the external representation of a piece of data and implicitly
specifies how to transform that external representation into an internal one. The internal
representation includes both the transformed value and a parse descriptor that character-
izes the errors that occurred during parsing. Type operators provide for description reuse
by abstracting over types.

Syntactically, the primitives of the calculus are similar to the types found in many de-
pendent type systems, with a number of additions specific to the domain of data descrip-
tion. The types are dependent because data parsed earlier often guides parsing of later
data (i.e.the form of the later data depends on the earlier data). In addition, parsing ad
hoc formats correctly often involves checking constraints phrased as expressions in some
conventional programming language. Data description languages tend to draw their ex-
pressions from their host language — the programming language in which their generated
software artifacts are encoded. The host language of PADS/C, for example, is C and there-
fore the PADS/C constraint language is also C. We mimic this design in DDC® and choose a
single language — a variant of F,,— for expressing both the expressions embedded in types
and the interpretations of DDC®. This host language is discussed further in Section 3.2.

3.1 DDC* Syntax

Figure 7 shows the syntax of DDC®. Expressions e and types o belong to the host language.
We use kinds « to classify types so that we can ensure their well-formedness. Kind T
classifies types that describe data. Kinds 0 — « and T — &k describe functions from
values to types and type to types, respectively.

The most basic types are unit and bottom. The former describes the empty string while
the latter describes no string, failing on all input. The syntax C'(e) denotes a base type C
parameterized by expression e.

We provide abstraction Az.7 and application 7 e so that we may parameterize types by
expressions. Dependent sum types X x:71.72 describe a sequence of values in which the
second type may refer to the value of the first. Sum types 71 + 7o express flexibility in
the data format, as they describe data matching either 7, or 7». Unlike regular expressions
or context-free grammars, which allow nondeterministic choice, sum-type parsers are de-
terministic, transforming the data according to 7; when possible and only attempting to
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Kinds Kk o= T|o—k|T—k
Types 7 == unit | bottom | C(e) | Ax.7 | Te
| Xairr|74+7|7& 7| {27 |e} | Tseq(T,e,7)
| alpaT|daT|TT
| compute(e:o) | absorb(7) | scan(7)

Fig. 7. DDC® syntax

use 7 if there is an error in 7y. Intersection types 71 & 7o describe data that match both
71 and 79. They transform a single set of bits to produce a pair of values, one from each
type. Constrained types {z:7 | e} transform data according to the underlying type 7 and
then check that the constraint e holds when x is bound to the parsed value.

The type 7 seq(7s, e, T¢) represents a sequence of values of type 7. The type 75 specifies
the type of the separator found between elements of the sequence. For sequences without
separators, we use unit as the separator type. Expression e is a boolean-valued function
that examines the parsed sequence after each element is read to determine if the sequence
has completed. For example, a function that checks if the sequence has 100 elements would
terminate a sequence when it reaches length 100. The type 7; is used when data following
the array will signal termination. Commonly, constrained types are used to specify that
a particular value terminates the sequence. For example, the type {z:Pchar |z =';'}
specifies that a semicolon terminates the array. However, if no particular value or set of
values terminates the array, then a type that never succeeds (like bottom) could be used to
ensure that the array is not terminated based on 7.

Type variables « are abstract descriptions; they are introduced by recursive types and
type abstractions. Recursive types pua.7 describe recursive formats, like lists and trees.
Type abstraction Aa.7 and application 7 7 allow us to parameterize types by other types.
Type variables « always have kind T. Note that we call functions from types to types type
abstractions in contrast to value abstractions, which are functions from values to types.

DDC® also has a number of “active” types. These types describe actions to be taken
during parsing rather than strictly describing the data format. Type compute(e:o) allows us
to include an element in the parsed output that does not appear in the data stream (although
it is likely dependent on elements that do), based on the value of expression e. In contrast,
type absorb(7) parses data according to type 7 but does not return its result. This behavior
is useful for data that is important for parsing, but uninteresting to users of the parsed data,
such as a separator. The last of the “active” types is scan(7), which scans the input for
data that can be successfully transformed according to 7. This type provides a form of
error recovery as it allows us to discard unrecognized data until the “synchronization” type
T is found.

3.2 Host Language

In Figure 8, we present the host language of DDC®, a straightforward extension of F|,
with recursion' and a variety of useful constants and operators. We use this host language
both to encode the parsing semantics of DDC® and to write the expressions that can appear
within DDC® itself.

LThe syntax for fold and unfold, particularly the choice of annotating unfold with a type, is based on the
presentation of recursive types in Pierce [Pierce 2002]
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Bits B = -|0B|1B
Constants ¢ == ()| true|false|O|1]|—-1]...
| none|B|w]|ok]|err|fail]...
Values v = c|fun fx=e|(v,0)
| inlw|inrw | [7]
Operators op = =|<|not]|...
Expressions e == c|xz|op(e)|fun fz=c|ee
Aa.e|e[7]

letz =eine|if etheneelsee
(e,;e) | mie|inle|inre
caseeof (inlz = e | inrx = ¢)
€l c@e]eld

fold[ua.7] e | unfold[puo.7]e
unit | bool | int | none

bits | offset | errcode

Base Types a :

Types o ux=alalo—o|loxo|o+o
oseq|Va.o | pa.o | da.o| oo
Kinds k= T|k—>kK

Fig. 8. The syntax of the host language, an extension of F;, with recursion and a variety of useful constants and
operators.

As the calculus is largely standard, we highlight only its unusual features. The constants
include bitstrings B; offsets w, representing locations in bitstrings; and error codes ok,
err, and fail, indicating success, success with errors, and failure, respectively. We use
the constant none to indicate a failed parse. Because of its specific meaning, we forbid
its use in user-supplied expressions appearing in DDC® types. Our expressions include
arbitrary length sequences [€], sequence append e @ €', and sequence indexing e [¢/].

The type none is the singleton type of the constant none. Types errcode and offset
classify error codes and bit string offsets, respectively. The remaining types have standard
meanings: function types, product types, sum types, sequence types (7 seq), type variables
(), polymorphic types (Va.o), and recursive types (ua.o).

We extend the formal syntax with some syntactic sugar for use in the rest of the pa-
per: anonymous functions Az.e for fun f a = e, with f ¢ FV(e); function bindings
letfun f x = ¢ in ¢/ for let f = fun f z = e in €’; span for offset * offset. We
often use pattern-matching syntax for pairs in place of explicit projections, as in A(B,w).e
and let (w,r,p) = e in €’. Although we have no formal records with named fields, we
use a (named) dot notation for commonly occuring projections. For example, for a pair x
of representation and parse descriptor, we use z.rep and x.pd for the left and right pro-
jections of z, respectively.  Also, sums and products are right-associative. Hence, for
example, a * b x ¢ is shorthand for a * (b * ¢).

The static semantics (I' - e : o), operational semantics (e — €’), and type equivalence
(o = o) are those of F, extended with recursive functions and iso-recursive types and are
entirely standard. See, for example, Pierce [Pierce 2002].

We only specify type abstraction over terms and application when we feel it will clarify
the presentation. Otherwise, the polymorphism is implicit. We also omit the usual type
and kind annotations on functions, with the expectation the reader can construct them from
context.
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3.3 Example

As an example, we present an abbreviated description of the common log format as it might
appear in DDC®. For brevity, this description does not fully capture the semantics of the
IPADS description from Section 2. Additionally, we use the standard abbreviation 7 * 7/
for products and introduce a number of type abbreviations in the form name = 7 before
giving the type that describes the data source.

S = Astr.{s:Pstring FW(1) |s = str}
authid_t = S(“ — ”) + Pstring(“ 77)

response_t = Ax.{y:Puint16_FW(x)|100 < y and y < 600}

entry_t =
Y client:Pip. S(“7) =
Y remoteid:authid_t. S(“7) x
Y response:response_t 3.
compute(getdomain client = “edu”:bool)

entry_t seq(S(“\n”), Ax.false, bottom)

In the example, we define type constructor S to encode literals with a constrained type.
We also use the following informal translations: Pwhere becomes a set-type, Pstruct
a series of dependent sums, Punion a series of sums, and Parray a sequence. As the
array terminates at the end of the file, we use A\x.false and bottom to indicate the absence
of termination condition and terminator, respectively.

4. DDC* SEMANTICS

At first glance, the primitives of DDC® are deceptively simple. However, deeper thought
reveals that their semantics is multifaceted. For example, each basic type simultaneously
describes a collection of valid bit strings, two datatypes in the host language — one for the
data representation itself and one for its parse descriptor — and a transformation from bit
strings, including invalid ones, into data and corresponding metadata.

We give semantics to DDC® types using three primary semantic functions, each of which
precisely conveys a particular facet of a type’s meaning. The functions [ - [, and [ - Jpp
describe the representation semantics of DDC®, detailing the types of the data’s in-memory
representation and parse descriptor. The function [ - |, describes the parsing semantics of
DDC®, defining a host language function for each type that parses bit strings to produce a
representation and parse descriptor. We define the set of valid bit strings for each type to be
those strings for which the PD indicates no errors when parsed. In addition to these three
semantic functions, we define a normalization relation, which facilitates reasoning about
parameterized descriptions.

We begin the technical discussion by describing a kinding judgment that checks if a
type is well formed — the other semantic functions should only be applied to well-formed
DDC® types. We then specify the normalization relation after which we formalize the three-
fold semantics of DDC® types. For reference, Table I lists all the functions and judgments
defined in this section and a brief description of each. Additionally, Table II lists all of the
F,, judgments that we reference.
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AN;T 7k type kinding

T type normalization
[~ ﬂ,ep =0 representation-type interpretation of DDC®
[[T HPD =0 parse-descriptor type interpretation of DDC®

[7lpp, = @ pd-body type interpretation of DDC%

[rlp=e parsing semantics of DDC®

[r:klpy = o Fu type of specified type’s parsing function (parser-type)
[Alpr =T parser-type interpretation lifted to entire context

[Alp, =T F. image of bDC® type context

[A]
[Alpp =T parse-descriptor type variables in [A] r,

ep =T representation-type variables in [A] ,

Table I. DDC® functions and judgments defined in this section.

=T ok well-formed contexts
I'ko::k  well-formed types
o=o' type equivalence
I'kFe:o expression typing

e— e expression evaluation

Table Il.  F,,, judgments referenced in this section.

4.1 DpDC* Kinding

The kinding judgment defined in Figure 9 determines well-formed DDC® types. We use
two contexts to express our kinding judgment:

' ==-|x0
A= |AaT

Context I' is a finite partial map that binds expression variables to their types. When
appearing in F}, judgments, such contexts may also contain type-variable bindings of the
form a::k. Context A is a finite partial map that binds type variables to their kinds. We
provide the following mappings from DDC® contexts A to F,, contexts I'.

[[']]rep:' H'HPD:'

[[A,oz:T]]rep = [[A]]rep,arep::T [A, a:T]pp = [Alpps apon:: T

Translation [A] , simply combines the two ([A] = [A],,, [A]pp)- These translations
are used when checking the well-formedness of contexts I' and types o with open type
variables.

As the rules are mostly straightforward, we highlight just a few of them. In rule BASE,
we use the function Byi,g to assign kinds to base types. Base types must be fully applied
to arguments of the right type. Once fully applied, all base types have kind T. Rule
DEPSUM, for dependent sums, shows that the name of the first component is bound to a
pair of a representation and corresponding PD. The semantic functions defined in the next
section determine the type of this pair. Type abstractions and recursive types (rules TYABS
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}—[[A]]Fw,l_‘ok [[A}]FW,F}—e:J

= [[AIIFW7FOk }—IIA]]FW,FOk Bkim](C):O’HT

AT Funie: T M7 AT F botson : T BOTTOM ATFOW) T Const

AT, x0Tk AiTkEr:i0—nk [Alg.Tke:o

A;F"A%.TZO’HHABS A;THTe: Kk APP

ATET:T A;F,x:[[T]]rcp s [lpp b7 T

D
ATFSzrr T EPSUM
A;THET:T A;FI—T':TS ATHET:T A;I‘I—T/:TI
NTERSECTION
ATE7T4+7:T oM AT ET&T T

AT HET:T [[A}]FW,F,J)Z[[T]]WP * [T]pp b € : bool
AT EA{zr|er: T

CoON

A;THET:T A;THETs: T ATER T
[Alp, . T'Fe: [tm]p * [Tmlpp — ool (Tm = Tseq(7s, e, 7))

rep

SE
A;TF rseq(rs,e,m) 0 T Q

}_[[A]]szrc’k a:TGAT v A,a:T;FI—T:TR AT, 1k TYA
AsTHa: T YVAR AT Fpar: T EC AT MaT:T—k YABS

AT :T—k ATER:T A, Tok [Alg,TFe:o [Al,Fo=T c
ATk TvApp A;T F compute(e:o) : T OMPUTE

ATET:T A AT 7T S
A;T F absorb(r) : T BSORB A;T Fscan(r): T CAN

Fig. 9. DDC” kinding rules

and REC) restrict their type variable to kind T. This restriction simplifies the metatheory
of DDC® with little practical impact. Finally, with the introduction of potentially open host
types, we must now check in rule COMPUTE that the only (potentially) open type variables
in o are the representation-type variables bound (implicitly) in A.

At the beginning of this chapter, we mentioned that DDC® is an extension and improve-
ment of our prior work on DDC. The improvements relate to changes in the kinding rules.
In particular, we have replaced the context M of DDC, which mapped recursive-type vari-
ables to their definitions, with a simpler context A which merely assigns a kind (always
T) to open type variables. The type variables bound by recursive types are now treated as
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Normal v = unit | bottom | C(e) | Az.7 | Za:7.T
Types | 7+7|7&7 | {x:T|e} | Tseq(r,e,T)
| po.t| AT
| compute(e:o) | absorb(r) | scan(r)
Types Tu=v|Te|TT | @

Fig. 10. Revised DDC® Syntax

T — T e— e

Te—1e ve—ve (Ar.T)v— T[v/]

!
T — T =7

T2 =TT vr—vt (Qar)v — Tv/a
Fig. 11. DDC® weak-head normalization

abstract, just like the type variables bound by type abstractions. Correspondingly, the rule
for type variables (TYVAR) now has a standard form, and the premise of the rule for re-
cursive types (REC) is now nearly identical to the premise of the rule for type abstractions
(TYABS).

4.2 DDC* Normalization

To specify the rules of normalization, we must first refactor the syntax of DDC® by distin-
guishing the subset of weak-head normal types () from all types 7, as shown in Figure 10.
In addition, we must define type and value substitution for DDC*. The notation 7'[7/«/]
denotes standard capture-avoiding substitution of types into types, except for constructs
that contain an F, expression e or type o. For those constructs, the alternative substi-
tution [[7],,/cxep] [[7]ppy/cteov] is applied to the subcomponent expression or type. For
example,

compute(e:0)[r/a] = compute(e[[7] .,/ trep][[Tlppn/epe] : O{[7],ep/ rep] [[TTpnn/po])-

This definition of substitution derives from the kinding rules of DDC®. In a judgment
A,o:T;T' F 7 : K, the DDC® type variable o implicitly binds the F,, type variables aep
and appy, for any types in I'. Therefore, when replacing « in a DDC® type, we must also
make sure to replace all type variables arep and appy in constituent F,, expressions and
types in a consistent manner. We denote standard capture-avoiding substitution of terms in
DDC® types with 7[v/z]. Similarly, k[o/«] denotes standard capture-avoiding substitution
of F,, types into DDC® kinds.

Normalization of DDC® is based on a standard call-by-value small-step semantics of the
lambda calculus. We present the rules of the normalization judgment in Figure 11.

4.3 Representation Semantics

In Figure 12, we present the representation type of each DDC® primitive. While the prim-
itives are dependent types, the host does not have such types, so the translation erases all
dependency. Removing expressions from the types renders variable binding and applica-
tion useless, so we drop those forms as well. Consequently, we translate abstraction and
application according to their underlying types.
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IIT]]rep g
[unit],, = unit
ﬂbottom]]relD = none
[C(e)]iep = Biype(C) + none
[P‘x T]]rep = [[T]]rep
[ e]]rep = [[T]]rep
[ zim. 7—2]]rep = HTlﬂrep * [[TQHrep
[+ 7elep = [mlep + [m2lep
HTI & T2]]rep = [Tl]]rep * HTQ]]rep
[[{I T I e}ﬂrep = [[T]]rep + [[T]]rep
[ seq(7sep, €, Tierm)]ep, = int x ([7],, s€q)
[[a]]rep = Orep
[[/1,0( 7—]]rep = ,U«arep~[[7']],-ep
[[)‘a T]]rep = )‘areP'IIT]]rep
[r172lep = [mileplr2lep
[compute(e:o)],, =0
[absorb(7)],, = unit + none
[[scan(T)]]rep = [[T]]rep + none

Fig. 12. Representation-type interpretation function.

In more detail, the DDC® type unit consumes no input and produces only the unit
value. Correspondingly, bottom consumes no input, but uniformly fails, producing the
value none. The function By, maps each base type to a representation for successfully
parsed data. Note that this representation does not depend on the argument expression. As
base type parsers can fail, we sum this type with none to produce the actual representa-
tion type. Intersection types produce a pair of values, one for each sub-type, because the
representations of the subtypes need not be identical nor even compatible. Constrained
types produce sums, where a left branch indicates the data satisfies the constraint and the
right indicates it does not. In the latter case, the parser returns the offending data rather
than none because the error is semantic rather than syntactic. Sequences produce a host
language sequence paired with its length.

A type variable o in DDC® is mapped to a corresponding type variable ciep in F,,.
Recursive types generate recursive representation types with the type variable named ap-
propriately. Polymorphic types and their application become F, type constructors and
type application, respectively. The output of a compute is exactly the computed value,
and therefore shares its type. The output of absorb is a sum indicating whether parsing
the underlying type succeeded or failed. The type of scan is similar, but also returns an
element of the underlying type in case of success.

In Figure 13, we give the parse descriptor type for each DDC® type. Each PD type has
a header and body. This common shape allows us to define functions that polymorphically
process PDs based on their headers. Each header stores the number of errors encountered
during parsing, an error code indicating the degree of success of the parse — success, suc-
cess with errors, or failure — and the span of data described by the descriptor. Formally, the
type of the header (pd_hdr) is int xerrcode * span. Each body consists of subdescriptors
corresponding to the subcomponents of the representation and any type-specific metadata.
For types with neither subcomponents nor special metadata, we use unit as the body type.
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[unit]pp = pd-hdr * unit

[bottom]py, = pd_hdr *unit

[C(e)]pp = pd.-hdr * unit

[Az.7]ep = [rlep

[7 elpp = [rlep

[Z 271 m2]pp = pd-hdr * [71]pp * [T2]pp

[r1 + m2]pp = pd-hdr * ([71]pp + [72]pp)

[1 & m2]pp = pd_hdr * [71]pp * [72]pp

[{z:7 | e}lpp = pd-hdr * [7]pp

[T seq(Tsep, €, Tterm)|pp = pd-hdr * ([7]pp arr_pd)

[odpp = pd-hdr * appp

[pa.7]pp = pd_hdr * prapps.[7]pp

[Ae.7]pp = Aapop.[7]pp

[ m2lep = [mlpp [m2]pps

[compute(e:o)]pp = pd-hdr * unit

[absorb(7)]pp = pd_hdr *unit

[scan(7)]pp = pd-hdr * ((int * [7]pp) + unit)
[7lpp, = o where [7]pp = pd-hdr * o

Fig. 13.  Parse-descriptor type interpretation function

We discuss a few of the more complicated parse descriptors in detail. The parse de-
scriptor body for sequences contains the parse descriptors of its elements, the number of
element errors, and the sequence length. Note that the number of element errors is distinct
from the number of sequence errors, as sequences can have errors that are not related to
their elements (such as errors reading separators). We introduce an abbreviation for array
PD body types, arr_pd ¢ = int x int x (0 seq). The compute parse descriptors have no
subelements because the data they describe is not parsed from the data source. The absorb
PD type is unit as with its representation. We assume that just as the user does not want
the representation to be kept, so too the parse descriptor. The scan parse descriptor is
either unit, in case no match was found, or records the number of bits skipped before the
type was matched along with the type’s corresponding parse descriptor.

Like other types, DDC® type variables « are translated into a pair of a header and a
body. The body has abstract type appy. This translation makes it possible for polymorphic
parsing code to examine the header of a PD, even though it does not know the DDC® type
it is parsing. DDC® abstractions are translated into F,, type constructors that abstract the
body of the PD (as opposed to the entire PD) and DDC® applications are translated into F,
type applications where the argument type is the PD-body type.

It is important to note that the PD interpretation is not defined for all types. The problem
lies with the interpretation of type applic