skip to main content
10.1145/1667239.1667260acmconferencesArticle/Chapter ViewAbstractPublication PagessiggraphConference Proceedingsconference-collections
research-article

Scattering

Published:03 August 2009Publication History

ABSTRACT

Most of current computer-generated imagery represents scenes with clear atmospheres, neglecting light scattering effects, and most computer-vision systems have not enjoyed success when deployed in uncontrolled outdoor environments. Nevertheless, scattering is a fundamental aspect of light transport in a wide range of applications, whether simulating it or interpreting it, from medical imaging to driving simulators or underwater imagery. This course addresses the challenges that arise with light scattering in computer graphics and computer vision. Topics include: appearance modeling, underwater imagery, vision in bad weather, and measurement techniques.

Skip Supplemental Material Section

Supplemental Material

References

  1. Donner, C., and Jensen, H. W. Light diffusion in multi-layered translucent materials. 24, 3 (2005), 1032--1039. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Donner, C., and Jensen, H. W. A spectral BSSRDF for shading human skin. In Rendering Techniques (2006), pp. 409--417. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Donner, C., Weyrich, T., d'Eon, E., Ramamoorthi, R., and Rusinkiewicz, S. A layered, heterogeneous reflectance model for acquiring and rendering human skin. 27, 5 (2008), 1--12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Fattal, R. Single image dehazing. ACM Transactions on Graphics (SIGGRAPH 2008) 27, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Gupta, M., and Narasimhan, S. G. Legendre fluids: A unified framework for analytic reduced space modeling and rendering of participating media. In Eurographics/ACM SIGGRAPH Symposium on Computer Animation (2007) (August 2007). Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Gupta, M., Narasimhan, S. G., and Schechner, Y. Y. On controlling light transport in poor visibility environments. In Proceedings IEEE CVPR (June 2008).Google ScholarGoogle Scholar
  7. Gutierrez, D., Munoz, A., Anson, O., and Seron, F. Non-linear volume photon mapping. Rendering Techniques (Eurographics Symposium on Rendering), 291--300.Google ScholarGoogle Scholar
  8. Gutierrez, D., Seron, F., Anson, O., and Munoz, A. Visualizing underwater ocean optics. Computer Graphics Forum (EUROGRAPHICS 2008) 27, 2, 547--556.Google ScholarGoogle Scholar
  9. Hawkins, T., Einarsson, P., and Debevec, P. Acquisition of time-varying participating media. ACM Transactions on Graphics (SIGGRAPH 2005) 24, 3 (2005). Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Jensen, H. W., Marschner, S. R., Levoy, M., and Hanrahan, P. A practical model for subsurface light transport. In Proceedings of SIGGRAPH 2001 (2001), pp. 511--518. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Joshi, N., Donner, C., and Jensen, H. W. Noninvasive measurement of scattering anisotropy in turbid materials by nonnormal incident illumination. 31 (2006), 936--938.Google ScholarGoogle Scholar
  12. Levoy, M., Chen, B., Vaish, V., Horowitz, M., McDowall, I., and Bolas, M. Synthetic aperture confocal imaging. ACM Transactions on Graphics (SIGGRAPH 2004) 23, 3, 825--834. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Narasimhan, S., and Nayar, S. Structured light methods for underwater imaging: light stripe scanning and photometric stereo. OCEANS, 2005. Proceedings of MTS/IEEE (2005), 2610--2617 Vol. 3.Google ScholarGoogle ScholarCross RefCross Ref
  14. Narasimhan, S. G., Gupta, M., Donner, C., Ramamoorthi, R., Nayar, S. K., and Jensen, H. W. Acquiring scattering properties of participating media by dilution. ACM Transactions on Graphics (SIGGRAPH 2006) 25, 3 (2006). Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Narasimhan, S. G., and Nayar, S. Interactive deweathering of an image using physical models. In IEEE IEEE Workshop on Color and Photometric Methods in Computer Vision, In Conjunction with ICCV (October 2003).Google ScholarGoogle Scholar
  16. Narasimhan, S. G., and Nayar, S. K. Vision and the atmosphere. IJCV 48, 3 (2002), 233--254. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Narasimhan, S. G., and Nayar, S. K. Contrast restoration of weather degraded images. IEEE PAMI 25, 6 (June 2003), 713--724. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Narasimhan, S. G., and Nayar, S. K. Shedding light on the weather. In Proceedings of the 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (June 2003), vol. 1, pp. 665--672. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Schechner, Y. Y., and Karpel, N. Recovery of underwater visibility and structure by polarization analysis. Oceanic Engineering, IEEE Journal of 30, 3 (July 2005), 570--587.Google ScholarGoogle Scholar
  20. Schechner, Y. Y., Narasimhan, S. G., and Nayar, S. K. Instant dehazing of images using polarization. In Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (June 2001), vol. 1, pp. 325--332.Google ScholarGoogle ScholarCross RefCross Ref
  21. Sloan, P.-P., Kautz, J., and Snyder, J. Precomputed radiance transfer for real-time rendering in dynamic, low-frequency lighting environments. ACM Transactions on Graphics (SIGGRAPH 2002) 21, 3 (2002). Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Sun, B., Ramamoorthi, R., Narasimhan, S. G., and Nayar, S. K. A practical analytic single scattering model for real-time rendering. ACM Transactions on Graphics (SIGGRAPH 2005) (August 2005). Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Weyrich, T., Matusik, W., Pfister, H., Bickel, B., Donner, C., Tu, C., McAndless, J., Lee, J., Ngan, A., Jensen, H. W., and Gross, M. Analysis of human faces using a measurement-based skin reflectance model. 25 (2006), 1013--1024. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Ashikhmin, M., and Shirley, P. 2000. An anisotropic phong model. Journal of Graphics Tools 5, 2, 25--32. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Basri, R., and Jacobs, D. W. 2003. Lambertian reflectance and linear subspaces. IEEE Trans. Pattern Anal. Mach. Intell. 25, 2, 218--233. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Biri, V., Michelin, S., and Arques, D. 2004. Real-time single scattering with shadows. In In review http://igm.univ-mlv.fr/~biri/indexCA_en.html.Google ScholarGoogle Scholar
  27. Blinn, J. 1982. Light reflection functions for simulation of clouds and dusty surfaces. In SIGGRAPH 82, 21--29. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Chandrasekhar, S. 1960. Radiative Transfer. Oxford Univ. Press.Google ScholarGoogle Scholar
  29. Debevec, P. 1998. Rendering synthetic objects into real scenes: bridging traditional and image-based graphics with global illumination and high dynamic range photography. In SIGGRAPH 98, 189--198. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Dobashi, Y., Yamamoto, T., and Nishita, T. 2002. Interactive rendering of atmospheric scattering effects using graphics hardware. In Graphics Hardware Workshop 02, 99--109. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Hanrahan, P., and Krueger, W. 1993. Reflection from layered surfaces due to subsurface scattering. In SIGGRAPH 93, 165--174. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Harris, M., and Lastra, A. 2001. Real-time cloud rendering. In Eurographics 2001, 76--84.Google ScholarGoogle Scholar
  33. Hoffman, N., and Preetham, A. J. 2003. Real-time light-atmosphere interactions for outdoor scenes. Graphics programming methods, 337--352. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Jensen, H., Marschner, S., Levoy, M., and Hanrahan, P. 2001. A practical model for subsurface light transport. In SIGGRAPH 01, 511--518. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Jensen, H. W. 2001. Realistic Image Synthesis Using Photon Mapping. AK Peters. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Kajiya, J., and Herzen, B. 1984. Ray tracing volume densities. In SIGGRAPH 84, 165--174. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Koschmeider, H. 1924. Theorie der horizontalen sichtweite. Beitr. Phys. freien Atm., 12.Google ScholarGoogle Scholar
  38. Liu, X., Sloan, P.-P. J., Shum, H.-Y., and Snyder, J. 2004. All-frequency precomputed radiance transfer for glossy objects. In EuroGraphics Symposium on Rendering 04, 337--344. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Matusik, W., Pfister, H., Brand, M., and McMillan, L. 2003. A data-driven reflectance model. ACM Transactions on Graphics (SIGGRAPH 03) 22, 3, 759--769. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Max., N. L. 1986. Atmospheric illumination and shadows. In SIGGRAPH 86, 117--124. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Max, N. 1994. Efficient light propagation for multiple anisotropic volume scattering. In Eurographics Rendering Workshop 94, 87--104.Google ScholarGoogle Scholar
  42. Nakamae, E., Kaneda, K., Okamoto, T., and Nishita, T. 1990. A lighting model aiming at drive simulators. In SIGGRAPH 90, 395--404. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Narasimhan, S., and Nayar, S. 2002. Vision and the atmosphere. IJCV 48, 3 (August), 233--254. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Narasimhan, S., and Nayar, S. 2003. Shedding light on the weather. In CVPR 03, 665--672. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Nishita, T., and Nakamae, E. 1987. A shading model for atmospheric scattering considering luminous intensity distribution of light sources. In SIGGRAPH, 303--310. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Pattanaik, S., and Mudur, S. 1993. Computation of global illumination in a participating medium by monte carlo simulation. Journal of Visualization and Computer Animation 4, 3, 133--152.Google ScholarGoogle ScholarCross RefCross Ref
  47. Preetham, A. J., Shirley, P., and Smits, B. 1999. A practical analytic model for daylight. In SIGGRAPH, 91--100. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Premoze, S., Ashikhmin, M., Tesendorf, J., Ramamoorthi, R., and Nayar, S. 2004. Practical rendering of multiple scattering effects in participating media. In EuroGraphics Symposium on Rendering 04, 363--374. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Ramamoorthi, R., and Hanrahan, P. 2001. A signal-processing framework for inverse rendering. In SIGGRAPH 01, 117--128. Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. Ramamoorthi, R., and Hanrahan, P. 2002. Frequency space environment map rendering. ACM Transactions on Graphics (SIGGRAPH 02) 21, 3, 517--526. Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. Riley, K., Ebert, D., Kraus, M., Tessendorf, J., and Hansen, C. 2004. Efficient rendering of atmospheric phenomena. In EuroGraphics Symposium on Rendering 2004, 375--386. Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. Rushmeier, H., and Torrance, K. 1987. The zonal method for calculating light intensities in the presence of a participating medium. In SIGGRAPH 87, 293--302. Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. Sakas, G. 1990. Fast rendering of arbitrary distributed volume densities. In Eurographics 90, 519--530.Google ScholarGoogle Scholar
  54. Sloan, P.-P., Kautz, J., and Snyder, J. 2002. Precomputed radiance transfer for real-time rendering in dynamic, low-frequency lighting environments. ACM Transactions on Graphics (SIGGRAPH 02) 21, 3, 527--536. Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. Stam, J. 1995. Multiple scattering as a diffusion process. In Eurographics Rendering Workshop 95, 41--50.Google ScholarGoogle ScholarCross RefCross Ref
  56. Wang, R., Tran, J., and Luebke, D. 2004. All-frequency relighting of non-diffuse objects using separable BRDF approximation. In EuroGraphics Symposium on Rendering 2004, 345--354. Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. Antyufeev, S. 2000. Monte Carlo Method for Solving Inverse Problems of Radiative Transfer. Inverse and III-Posed Problems Series, VSP Publishers.Google ScholarGoogle Scholar
  58. Boss, E., and Pegau, W. S. 2001. Relationship of light scattering at an angle in the backward direction to the backscattering coefficient. Applied Optics 40 (30), 5503--5507.Google ScholarGoogle ScholarCross RefCross Ref
  59. Chandrasekhar, S. 1960. Radiative Transfer. Oxford University Press.Google ScholarGoogle Scholar
  60. Dana, K., Nayar, S., van Ginneken, B., and Koenderink, J. 1997. Reflectance and texture of real-world surfaces. In Proc CVPR, 151--157. Google ScholarGoogle ScholarDigital LibraryDigital Library
  61. Debevec, P. 1998. Rendering synthetic objects into real scenes: Bridging traditional and image-based graphics with global illumination and high dynamic range photography. Proc. SIGGRAPH 98, 189--198. Google ScholarGoogle ScholarDigital LibraryDigital Library
  62. Finsy, E. G., and Joosten, J. 1991. Maximum entropy inversion of static light scattering data for the particle size distribution by number and volume. In Advances in measurements and control of colloidal processes. Butterworth-Heineman, Ch. 30.Google ScholarGoogle Scholar
  63. Fuchs, E., and Jaffe, J. S. 2002. Thin laser light sheet microscope for microbial oceanography. OPTICS EXPRESS 10 (2), 145--154.Google ScholarGoogle ScholarCross RefCross Ref
  64. Hawkins, T., Einarsson, P., and Debevec, P. 2005. Acquisition of time-varying participating media. ACM Trans. on Graphics (SIGGRAPH) 24, 3, 812--815. Google ScholarGoogle ScholarDigital LibraryDigital Library
  65. Henyey, L., and Greenstein, J. 1941. Diffuse radiation in the galaxy. vol. 93, 70--83.Google ScholarGoogle Scholar
  66. Hulst, V. D. 1957. Light Scattering by small Particles. John Wiley and Sons.Google ScholarGoogle Scholar
  67. Ishimaru, A. 1978. Wave Propagation and Scattering in Random Media. Volume 1: Single Scattering and Transport Theory. Academic Press.Google ScholarGoogle Scholar
  68. Jaeger, D., Demeyere, H., Finsy, R., Sneyers, R., Vanderdeelen, J., Van-Der-Meeren, P., and Van-Laethem, M. 1991. Particle sizing by photon correlation spectroscopy. part i: Monodisperse latices: influence of scattering angle and concentration of dispersed material. In Part. Syst. Charact. 8, 179.Google ScholarGoogle ScholarCross RefCross Ref
  69. Jensen, H., Marschner, S., Levoy, M., and Hanrahan, P. 2001. A practical model for subsurface light transport. In Proc. SIGGRAPH 01, 511--518. Google ScholarGoogle ScholarDigital LibraryDigital Library
  70. Key, J. R. 2005. Streamer: User's guide. Tech Report, NOAA/NESDIS, Madison, Wisconsin.Google ScholarGoogle Scholar
  71. Marschner, S. 1998. Inverse rendering for computer graphics. PhD Thesis, Cornell University. Google ScholarGoogle ScholarDigital LibraryDigital Library
  72. Matusik, W., Pfister, H., Brand, M., and McMillan, L. 2003. A data-driven reflectance model. ACM Trans. on Graphics (SIGGRAPH) 22, 3, 759--769. Google ScholarGoogle ScholarDigital LibraryDigital Library
  73. McCormick, N. J. 1981. A critique of inverse solutions to slab geometry transport problems. Prog. Nucl. Energy 8.Google ScholarGoogle Scholar
  74. McCormick, N. J. 1985. Sensitivity of multiple-scattering inverse transport methods to measurement errors. JOSA A 2.Google ScholarGoogle Scholar
  75. McCormick, N. J. 1996. Analytical transport theory applications in optical oceanography. Annals of Nuclear Energy 23, 381--395.Google ScholarGoogle ScholarCross RefCross Ref
  76. Narasimhan, S. G., and Nayar, S. K. 2003. Shedding light on the weather. In CVPR 03, 665--672. Google ScholarGoogle ScholarDigital LibraryDigital Library
  77. Oishi, T. 1990. Significant relationship between the backward scattering coefficient of sea water and the scatterance at 120 degrees. Applied Optics 29 (31), 4658--4665.Google ScholarGoogle ScholarCross RefCross Ref
  78. Prahl, S. A. 1988. Light transport in tissue. PhD Thesis, University of Texas at Austin.Google ScholarGoogle Scholar
  79. Ramamoorthi, R., and Hanrahan, P. 2001. A signal processing framework for inverse rendering. Proc. SIGGRAPH 01, 117--128. Google ScholarGoogle ScholarDigital LibraryDigital Library
  80. Sullivan, S. A. 1963. Experimental study of the absorption in distilled water, artificial sea water, and heavy water in the visible region of the spectrum. JOSA 53.Google ScholarGoogle Scholar
  81. Sun, B., Ramamoorthi, R., Narasimhan, S. G., and Nayar, S. K. 2005. A practical analytic single scattering model for real time rendering. ACM Trans. on Graphics (SIGGRAPH) 24, 3, 1040--1049. Google ScholarGoogle ScholarDigital LibraryDigital Library
  82. Ward-Larson, Rushmeier, H., and Piatko. 1997. A visibility matching tone reproduction operator for high dynamic range scenes. IEEE Trans. on Visualization and Computer Graphics 3, 4, 291--306. Google ScholarGoogle ScholarDigital LibraryDigital Library
  83. {BTL90} Berger M., Trout T., Levit N.: Ray tracing mirages. IEEE Computer Graphics and Applications 10, 3 (May 1990), 36--41. Google ScholarGoogle ScholarDigital LibraryDigital Library
  84. {BW02} Born M., Wolf E.: Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light. Cambridge University Press, 2002.Google ScholarGoogle Scholar
  85. {CIB88} CIBSE: Standard File Format for Transfer of Luminaire Photometric Data. The Chartered Institution of Building Services Engineers, 1988.Google ScholarGoogle Scholar
  86. {CJ02} Cammarano M., Jensen H. W.: Time dependent photon mapping. In Proceedings of the 13th Eurographics workshop on Rendering (2002), Eurographics Association, pp. 135--144. Google ScholarGoogle ScholarDigital LibraryDigital Library
  87. {CS03} Cerezo E., Seron F.: Inelastic scattering in participating media. application to the ocean. In Proceedings of the Annual Conference of the European Association for Computer Graphics, Eurographics 2003 (2003), pp. CD-ROM.Google ScholarGoogle Scholar
  88. {DP80} Dormand J., Prince P.: A family of embeded runge-kutta formulae. Journal of Computational and Applied Mathematics 6(1) (1980), 19--26.Google ScholarGoogle Scholar
  89. {FFLV82} Fabri E., Fiorzo G., Lazzeri F., Violino P.: Mirage in the laboratory. Am. J. Physics 50(6) (1982), 517--521.Google ScholarGoogle Scholar
  90. {GD58} Gladstone J. H., Dale J.: On the influence of temperature on the refraction of light. Phil. Trans. 148 (1858), 887.Google ScholarGoogle Scholar
  91. {Gla95a} Glassner A.: Principles of Digital Image Synthesis. Morgan Kaufmann, San Francisco, California, 1995. Google ScholarGoogle ScholarDigital LibraryDigital Library
  92. {Gla95b} Glassner A. S.: A model for fluorescence and phosphorescence. In Photorealistic Rendering Techniques (1995), Sakas P. S. G., Müller S., (Eds.), Eurographics, Springer-Verlag Berlin Heidelberg New York, pp. 60--70.Google ScholarGoogle ScholarCross RefCross Ref
  93. {Grö95} Gröller E.: Nonlinear ray tracing: visualizing strange worlds. The Visual Computer 11, 5 (1995), 263--276.Google ScholarGoogle Scholar
  94. {GSMA04} Gutierrez D., Seron F., Munoz A., Anson O.: Chasing the green flash: a global illumination solution for inhomogeneous media. In Spring Conference on Computer Graphics (2004), (in cooperation with ACM SIGGRAPH A. P., Eurographics), (Eds.), pp. 95--103. Google ScholarGoogle ScholarDigital LibraryDigital Library
  95. {Haw92} Hawes S.: Quantum Fluorescence Efficiencies of Marine Fulvic and Humid Acids. PhD thesis, Dept. of Marince Science, Univ. of South Florida, 1992.Google ScholarGoogle Scholar
  96. {HW01} Hanson A. J., Weiskopf D.: Visualizing relativity. siggraph 2001 course 15, 2001.Google ScholarGoogle Scholar
  97. {JC98} Jensen H. W., Christensen P. H.: Efficient simulation of light transport in scenes with participating media using photon maps. In SIGGRAPH 98 Conference Proceedings (jul 1998), Cohen M., (Ed.), Annual Conference Series, ACM SIGGRAPH, Addison Wesley, pp. 311--320. ISBN 0-89791-999-8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  98. {LRP97} Larson G. W., Rushmeier H., Piatko C.: A visibility matching tone reproduction operator for high dynamic range scenes. IEEE Transactions on Visualization and Computer Graphics 3, 4 (Oct. 1997), 291--306. Google ScholarGoogle ScholarDigital LibraryDigital Library
  99. {Mob94} Mobley C.: Light and Water. Radiative Transfer in Natural Waters. Academic Press, Inc., 1994.Google ScholarGoogle Scholar
  100. {MTAS01} Myszkowksi K., Tawara T., Akamine A., Seidel H. P.: Perception-guided global illumination solution for animation. In Computer Graphics Proceedings, Annual Conference Series, 2001 (ACM SIGGRAPH 2001 Proceedings) (Aug. 2001), pp. 221--230. Google ScholarGoogle ScholarDigital LibraryDigital Library
  101. {Mus90} Musgrave F. K.: A note on ray tracing mirages. IEEE Computer Graphics and Applications 10, 6 (Nov. 1990), 10--12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  102. {Nem93} Nemiroff R. J.: Visual distortions near a neutron star and black hole. American Journal of Physics 61(7) (1993), 619--632.Google ScholarGoogle Scholar
  103. {PDC*03} Purcell T. J., Donner C., Cammarano M., Jensen J., Hanrahan P.: Photon mapping on programmable graphics hardware. In SIGGRAPH/Eurographics Workshop on Graphics Hardware (2003), Eurographics Association, pp. 041--050. Google ScholarGoogle ScholarDigital LibraryDigital Library
  104. {PPS97} Perez F., Pueyo X., Sillion F.: Global illumination techniques for the simulation of participating media. In Proc. of the Eigth Eurographics Workshop on Rendering (1997), pp. 16--18. Google ScholarGoogle ScholarDigital LibraryDigital Library
  105. {PTYG00} Pattanaik S., Tumblin J. E., Yee H., Greenberg. D. P.: Time-dependent visual adaptation for realistic image display. In SIGGRAPH 2000, Computer Graphics Proceedings (2000), Akeley K., (Ed.), Annual Conference Series, ACM Press/ACM SIGGRAPH/Addison Wesley Longman, pp. 47--54. Google ScholarGoogle ScholarDigital LibraryDigital Library
  106. {SGGC05} Seron F., Gutierrez D., Gutierrez G., Cerezo E.: Implementation of a method of curved ray tracing for inhomogeneous atmospheres. Computers and Graphics 29(1) (2005). Google ScholarGoogle ScholarDigital LibraryDigital Library
  107. {SL96} Stam J., Languénou E.: Ray tracing in non-constant media. In Eurographics Rendering Workshop 1996 (New York City, NY, June 1996), Pueyo X., Schröder P., (Eds.), Eurographics, Springer Wien, pp. 225--234. ISBN 3-211-82883-4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  108. {USG76} USGPC: U.S. Standard Atmosphere. United State Government Printing Office, Washington, D.C., 1976.Google ScholarGoogle Scholar
  109. {VDWGL00} Van Der Werf S., Gunther G., Lehn W.: Novaya zemlya effects and sunsets. Applied Optics 42, 3 (2000).Google ScholarGoogle Scholar
  110. {WTP01} Wilkie A., Tobler R., Purgathofer W.: Combined rendering of polarization and fluorescence effects. In Rendering Techniques '01 (Proc. Eurographics Workshop on Rendering 2001) (2001), Gortler S. J. M. K. e., (Ed.), Eurographics, Springer-Verlag, pp. 197--204. Google ScholarGoogle ScholarDigital LibraryDigital Library
  111. {YOH00} Yngve G. D., O'Brien J. F., Hodgins H.: Animating explosions. In Proceedings of the Computer Graphics Conference 2000 (SIGGRAPH-00) (New York, July 23--28 2000), Hoffmeyer S., (Ed.), ACM Press, pp. 29--36. Google ScholarGoogle ScholarDigital LibraryDigital Library
  112. {BLSS93} Blasi P., Le Saec B., Schlick C.: A rendering algorithm for discrete volume density objects. Computer Graphics Forum (Eurographics 93) 12, 3 (1993), 201--210. 4Google ScholarGoogle Scholar
  113. {BMP81} Bricaud A., Morel A., Prieur L.: Absorption by dissolved organic matter of the sea (yellow substance) in the uv and visible domains. Limnol. Oceanogr. 26, 1 (1981), 43--53. 3Google ScholarGoogle Scholar
  114. {BSF*03} Babin M., Stramski D., Ferrari G. M., Claustre H., Bricaud A., Obolensky G., Hoepffner N.: Variations in the light absorption coefficients of phytoplankton, non-algal particles, and dissolved organic matter in coastal waters around europe. J. Geophys. Res. 108(C7), 3211 (2003). 3, 9Google ScholarGoogle Scholar
  115. {Cha60} Chandrasekhar S.: Radiative Transfer. Dover Publications, Inc., 1960. 2Google ScholarGoogle Scholar
  116. {CS04} Cerezo E., Seron F. J.: Rendering natural waters taking fluorescence into account: Research articles. Comput. Animat. Virtual Worlds 15, 5 (2004), 471--484. 2 Google ScholarGoogle ScholarDigital LibraryDigital Library
  117. {FCJ07} Frisvad J. R., Christensen N. J., Jensen H. W.: Computing the scattering properties of participating media using Lorenz-Mie theory. ACM Trans. Graph. 26, 3 (2007), 60. 2, 9 Google ScholarGoogle ScholarDigital LibraryDigital Library
  118. {Gla95} Glassner A. S.: Principles of Digital Image Synthesis. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1995. 2 Google ScholarGoogle ScholarDigital LibraryDigital Library
  119. {GM83} Gordon H. R., Morel A.: Remote Assessment of Ocean Color for Interpretation of Satellite Visible Imagery: A Review, vol. 4 of Lecture Notes on Coastal and Estuarine Studies. Springer-Verlag, New York, 1983. 4Google ScholarGoogle Scholar
  120. {GMAS05} Gutierrez D., Munoz A., Anson O., Serón F. J.: Non-linear volume photon mapping. In Proc. of the Eurographics Symposium on Rendering Techniques, Konstanz, Germany, June 29 -- July 1, 2005 (2005), pp. 291--300. 2, 6, 9Google ScholarGoogle Scholar
  121. {GSO03} Green R. E., Sosik H. M., Olson R. J.: Contributions of phytoplankton and other particles to inherent optical properties in new england continental shelf waters. Limnol. Oceanogr. 48, 6 (2003), 2377--2391. 4Google ScholarGoogle Scholar
  122. {Haw92} Hawes S.: Quantum fluorescence efficiencies of marine fulvic and humid acids. PhD thesis, Dept. of Marince Science, Univ. of South Florida, 1992. 5Google ScholarGoogle Scholar
  123. {HG41} Henyey L., Greenstein J.: Diffuse radiation in the galaxy. Astrophysics Journal 93 (1941), 70--83. 4Google ScholarGoogle Scholar
  124. {JC98} Jensen H. W., Christensen P. H.: Efficient simulation of light transport in scenes with participating media using photon maps. In SIGGRAPH 98 Conference Proceedings (jul 1998), Cohen M., (Ed.), Annual Conference Series, ACM SIGGRAPH, Addison Wesley, pp. 311--320. 7 Google ScholarGoogle ScholarDigital LibraryDigital Library
  125. {JDZJ08} Jarosz W., Donner C., Zwicker M., Jensen H. W.: Radiance caching for participating media. To appear in ACM Transactions on Graphics (2008). 8 Google ScholarGoogle ScholarDigital LibraryDigital Library
  126. {Jen01} Jensen H. W.: Realistic image synthesis using photon mapping. A. K. Peters, Natick, Massachussets, 2001. 2, 6 Google ScholarGoogle ScholarDigital LibraryDigital Library
  127. {Kir94} Kirk J. T.: Light and photosynthesis in aquatic ecosystems. Cambridge University Press, New York, 1994. 3Google ScholarGoogle Scholar
  128. {KYNN91} Kaneda K., Yuan G., Nakamae E., Nishita T.: Realistic visual simulation of water surfaces taking into account radiative transfer. In Proc. of CAD/Graphics 91 (1991), pp. 25--30. 2Google ScholarGoogle Scholar
  129. {Maz02} Mazo R. M.: Brownian Motion: Fluctuations, Dynamics and Applications, vol. 112 of International Series of Monographs on Physics. Oxford University Press Inc., Great Clarendon Street, Oxford, 2002, ch. Einstein-Smoluchowski Theory, pp. 46--62. 4Google ScholarGoogle Scholar
  130. {Mob94} Mobley C. D.: Light and Water: Radiative Transfer in Natural Waters. Academic Press, Inc., San Diego, 1994. 1, 2, 3, 5, 9Google ScholarGoogle Scholar
  131. {Mor74} Morel A.: Optical Aspects of Oceanography. Academic Press, New York, 1974. 3, 4Google ScholarGoogle Scholar
  132. {Mor88} Morel A.: Optical modeling of the upper ocean in relation to its biogenous matter content (case i waters). Journal of Geophysical Research 93, C9 (1988), 10749--10768. 3Google ScholarGoogle Scholar
  133. {NKON90} Nakamae E., Kaneda K., Okamoto T., Nishita T.: A lighting model aiming at drive simulators. Computer Graphics 24, 4 (Aug. 1990), 395--404. 2 Google ScholarGoogle ScholarDigital LibraryDigital Library
  134. {NSTN93} Nishita T., Shirai T., Tadamura K., Nakamae E.: Display of the earth taking into account atmosphere scattering. In Computer Graphics (SIGGRAPH '93 Proceedings) (1993), vol. 24, pp. 175--182. 2 Google ScholarGoogle ScholarDigital LibraryDigital Library
  135. {PA01} Premoze S., Ashikhmin M.: Rendering natural waters. Comput. Graph. Forum 20, 4 (2001), 189--199. 2Google ScholarGoogle Scholar
  136. {PF97} Pope R. M., Fry E. S.: Absorption spectrum (380--700 nm) of pure water. ii. integrating cavity measurements. Applied Optics 36, 33 (1997), 8710--8723. 3Google ScholarGoogle Scholar
  137. {Pre76} Preisendorfer R. W.: Introduction, vol. 1 of Hydrologic Optics. National Technical Information Service, Springfield, IL, 1976. 1Google ScholarGoogle Scholar
  138. {RPC89} Roesler C. S., Perry M. J., Carder K. L.: Modeling in situ phytoplankton absorption from total absorption spectra in productive inland marine waters. Limnol. Oceanogr. 34, 8 (1989), 1510--1523. 3Google ScholarGoogle Scholar
  139. {RT87} Rushmeier H. E., Torrance K. E.: The zonal method for calculating light intensities in the presence of a participating medium. Computer Graphics 21, 4 (July 1987), 293--302. 2 Google ScholarGoogle ScholarDigital LibraryDigital Library
  140. {SB81} Smith R. C., Baker K. S.: Optical properties of the clearest natural waters (200--800 nm). Appl. Opt. 20 (1981), 177--184. 3, 4Google ScholarGoogle Scholar
  141. {SBM01} Stramski D., Bricaud A., Morel A.: Modeling the inherent optical properties of the ocean based on the detailed composition of planktonic community. Applied Optics 40 (2001), 2929--2945. 4, 5Google ScholarGoogle Scholar
  142. {SCP94} Spinrad R. W., Carder K. L., Perry M. J. (Eds.): Ocean Optics. No. 25 in Oxford Monographs on Geology and Geophysics. Oxford University Press, 1994. 2Google ScholarGoogle Scholar
  143. {SGA*07} Sundstedt V., Gutierrez D., Anson O., Banterle F., Chalmers A.: Perceptual rendering of participating media. ACM Transactions of Applied Perception 4, 3 (2007). 8 Google ScholarGoogle ScholarDigital LibraryDigital Library
  144. {SLP87} Sathyendranath S., Lazzara L., Prieur L.: Variations in the spectral values of specific absorption of phytoplankton. Limnol. Oceanogr. 32, 2 (1987), 403--415. 3, 4Google ScholarGoogle Scholar
  145. {TN95} Tadamura K., Nakamae E.: Computer Graphics: Developments in Virtual Environments. Academic Press, 1995, ch. Modeling the colour of Water in Lightning Design, pp. 97--114. 2 Google ScholarGoogle ScholarDigital LibraryDigital Library
  146. {Wal69} Walrafen G. E.: Continuum model of water--an erroneous interpretation. Journal of Chemical Physics 50, 1 (January 1969), 567--569. 5Google ScholarGoogle Scholar
  147. R. D. Ballard. The Discovery of the Titanic. Warner Books, 1988.Google ScholarGoogle Scholar
  148. R. Basri and D. W. Jacobs. Photometric stereo with general, unknown lighting. In CVPR, 2001.Google ScholarGoogle ScholarCross RefCross Ref
  149. F. M. Caimi, D. M. Kocak, and V. L. Asper. Developments in laser-line scanned undersea surface mapping and image analysis systems for scientific applications. In Proc. MTS/IEEE Oceans, 1996.Google ScholarGoogle ScholarCross RefCross Ref
  150. S. Chandrasekhar. Radiative Transfer. Dover Publications, Inc., 1960.Google ScholarGoogle Scholar
  151. P. C. Y. Chang, J. C. Flitton, K. I. Hopcraft, E. Jakeman, D. L. Jordan, and J. G. Walker. Improving visibility depth in passive underwater imaging by use of polarization. App. Opt., 42 (15), 2003.Google ScholarGoogle Scholar
  152. S. Y. Chen and Y. F. Li. Self-recalibration of a colour-encoded light system for automated 3-d measurements. MeasureSciTech, 14(1), 2003.Google ScholarGoogle Scholar
  153. G. R. Fournier, D. Bonnier, J. L. Forand, and P. W Pace. Range-gated underwater laser imaging system. Opt. Eng., 32 (9), 1993.Google ScholarGoogle Scholar
  154. R. T. Frankot and R. Chellappa. A method for enforcing integrability in shape from shading algorithms. PAMI, 10(4), 1988. Google ScholarGoogle ScholarDigital LibraryDigital Library
  155. E. Fuchs and J. S. Jaffe. Thin laser light sheet microscope for microbial oceanography. OPTICS EXPRESS, 10 (2), 2002.Google ScholarGoogle Scholar
  156. G. D. Gilbert and J. C. Pernicka. Improvement of underwater visibility by reduction of backscatter with a circular polarization technique. Applied Optics, 6 (4):741--746, 1967.Google ScholarGoogle Scholar
  157. M. D. Grossberg and S. K. Nayar. The raxel imaging model and ray-based calibration. IJCV, 61(2), 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  158. A. Hertzmann and S. M. Seitz. Shape and materials by example: a photometric stereo approach. In CVPR, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  159. D. Q. Huynh, R. A. Owens, and P. E. Hartmann. Calibrating a structured light stripe system: A novel approach. IJCV, 33(1), 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  160. J. S. Jaffe, J. McLean, M. P. Strand, and K. D. Moore. Underwater optical imaging: Status and prospects. Tech. Report, Scripps Institution of Oceanography, La Jolla, 2002.Google ScholarGoogle Scholar
  161. C. Je, S. W. Lee, and R. H. Park. High-contrast color-stripe pattern for rapid structured-light range imaging. In ECCV, 2004.Google ScholarGoogle ScholarCross RefCross Ref
  162. D. M. Kocak, F. M. Caimi, T. H. Jagielo, and J. Kloske. Laser projection photogrammetry and video system for quantification and mensuration. MTS/IEEE Oceans, 2002.Google ScholarGoogle ScholarCross RefCross Ref
  163. M. Levoy, B. Chen, V. Vaish, M. Horowitz, I. McDowall, and M. Bolas. Synthetic aperture confocal imaging. In SIGGRAPH, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  164. S. G. Narasimhan and S. K. Nayar. Vision and the atmosphere. IJCV, 48(3). Google ScholarGoogle ScholarDigital LibraryDigital Library
  165. P. Naulleau and D. Dilworth. Motion-resolved imaging of moving objects embedded within scattering media by the use of time-gated speckle analysis. App. Opt., 35 (26), 1996.Google ScholarGoogle Scholar
  166. Y. Sato, H. Kitagawa, and H. Fujita. Shape measurement of curved objects using multiple slit-ray projections. PAMI, 4(6), 1982.Google ScholarGoogle Scholar
  167. D. Scharstein and R. Szeliski. High-accuracy stereo depth maps using structured light. In CVPR, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  168. Y. Y. Schechner and N. Karpel. Attenuating natural flicker patterns. In Proc. MTS/IEEE Oceans, 2004.Google ScholarGoogle ScholarCross RefCross Ref
  169. Y. Y. Schechner and N. Karpel. Clear underwater vision. In Proc. CVPR, 2004.Google ScholarGoogle ScholarCross RefCross Ref
  170. J. S. Tyo, M. P. Rowe, Jr. E. N. Pugh, and N. Engheta. Target detection in optically scattering media by polarization-difference imaging. App. Opt., 35 (11), 1996.Google ScholarGoogle Scholar
  171. J. G. Walker, P. C. Y. Chang, and K. I. Hopcraft. Visibility depth improvement in active polarization imaging in scattering media. App. Opt., 39 (27), 2000.Google ScholarGoogle Scholar
  172. D. Walther, D. R. Edgington, and C. Koch. Detection and tracking of objects in underwater video. In Proc. CVPR, 2004.Google ScholarGoogle ScholarCross RefCross Ref
  173. Authors Website. http://www.cs.cmu.edu/~srinivas/.Google ScholarGoogle Scholar
  174. P. M. Will and K. S. Pennington. Grid coding: A preprocessing technique for robot and machine vision. AI, 2, 1971. Google ScholarGoogle ScholarDigital LibraryDigital Library
  175. R. J. Woodham. Photometric method for determining surface orientation from multiple images. OptEng, 19(1), 1980.Google ScholarGoogle Scholar
  176. L. Zhang, B. Curless, and S. M. Seitz. Rapid shape acquisition using color structured light and multi-pass dynamic programming. In The 1st IEEE International Symposium on 3D Data Processing, Visualization, and Transmission, 2002.Google ScholarGoogle ScholarCross RefCross Ref
  177. F. M. Caimi, F. R. Dalgleish, T. E. Giddings, J. J. Shirron, C. Mazel, and K. Chiang. Pulse versus CW laser line scan imaging detection methods: Simulation results. In Proc. IEEE OCEANS, pages 1--4, 2007. 5Google ScholarGoogle ScholarCross RefCross Ref
  178. S. Chandrasekhar. Radiative Transfer. Dover Publications, Inc., 1960. 1Google ScholarGoogle Scholar
  179. T. Chen, H. P. A. Lensch, C. Fuchs, and H.-P. Seidel. Polarization and phase-shifting for 3D scanning of translucent objects. In Proc. IEEE CVPR, pages 1--8, 2007. 5Google ScholarGoogle ScholarCross RefCross Ref
  180. F. Cozman and E. Krotkov. Depth from scattering. In Proc. IEEE CVPR, pages 801--806, 1997. 1 Google ScholarGoogle ScholarDigital LibraryDigital Library
  181. T. E. Giddings, J. J. Shirron, and A. Tirat-Gefen. EODES-3: An electro-optic imaging and performance prediction model. In Proc. IEEE OCEANS, 2:1380--1387, 2005. 5Google ScholarGoogle ScholarCross RefCross Ref
  182. G. D. Gilbert and J. C. Pernicka. Improvement of underwater visibility by reduction of backscatter with a circular polarization technique. Applied Optics, 6(4):741--746, 1967. 2, 3Google ScholarGoogle Scholar
  183. M. Gupta and S. G. Narasimhan. Light transport web-page. http://graphics.cs.cmu.edu/projects/LightTransport/. 1, 5Google ScholarGoogle Scholar
  184. V. I. Haltrin. One-parameter two-term henyey-greenstein phase function for light scattering in seawater. Applied Optics, 41(6):1022--1028, 2002. 3, 6Google ScholarGoogle Scholar
  185. J. Jaffe. Computer modeling and the design of optimal underwater imaging systems. IEEE Journal of Oceanic Engineering, 15(2):101--111, 1990. 2, 4, 5Google ScholarGoogle Scholar
  186. D. M. Kocak and F. M. Caimi. The current art of underwater imaging with a glimpse of the past. MTS Journal, 39:5--26, 2005. 2, 4Google ScholarGoogle Scholar
  187. M. Levoy, B. Chen, V. Vaish, M. Horowitz, I. McDowall, and M. Bolas. Synthetic aperture confocal imaging. ACM Trans. Graph., 23(3):825--834, 2004. 7 Google ScholarGoogle ScholarDigital LibraryDigital Library
  188. S. G. Narasimhan. Models and algorithms for vision through the atmosphere. In Columbia Univ. Dissertation, 2004. 1 Google ScholarGoogle ScholarDigital LibraryDigital Library
  189. S. G. Narasimhan, M. Gupta, C. Donner, R. Ramamoorthi, S. K. Nayar, and H. W. Jensen. Acquiring scattering properties of participating media by dilution. ACM Trans. Graph., 25(3):1003--1012, 2006. 6, 7 Google ScholarGoogle ScholarDigital LibraryDigital Library
  190. S. G. Narasimhan and S. K. Nayar. Contrast restoration of weather degraded images. 25(6):713--724, 2003. 1 Google ScholarGoogle ScholarDigital LibraryDigital Library
  191. S. G. Narasimhan, S. K. Nayar, B. Sun, and S. J. Koppal. Structured light in scattering media. In In Proc. IEEE ICCV, pages 420--427, 2005. 2, 4, 5 Google ScholarGoogle ScholarDigital LibraryDigital Library
  192. S. K. Nayar, G. Krishnan, M. D. Grossberg, and R. Raskar. Fast separation of direct and global components of a scene using high frequency illumination. ACM Trans. Graph., 25(3):935--944, 2006. 2, 3 Google ScholarGoogle ScholarDigital LibraryDigital Library
  193. Y. Y. Schechner and Y. Averbuch. Regularized image recovery in scattering media. IEEE Trans. PAMI, 29(9):1655--1660, 2007. 5 Google ScholarGoogle ScholarDigital LibraryDigital Library
  194. Y. Y. Schechner and N. Karpel. Recovery of underwater visibility and structure by polarization analysis. IEEE Journal of Oceanic Engineering, 30(3):570--587, 2005. 1Google ScholarGoogle Scholar
  195. Y. Y. Schechner, S. G. Narasimhan, and S. K. Nayar. Polarization-based vision through haze. Applied Optics, 42(3):511--525, 2003. 2, 3Google ScholarGoogle Scholar
  196. W. A. Shurcliff and S. S. Ballard. Polarized Light, pages 98--103. Van Nostrand, Princeton, N.J., 1964. 2Google ScholarGoogle Scholar
  197. B. Skerry and H. Hall. Successful Underwater Photography. New York: Amphoto books, 2002. 2, 5Google ScholarGoogle Scholar
  198. K. Tan and J. P. Oakley. Physics-based approach to color image enhancement in poor visibility conditions. JOSA A, 18(10):2460--2467, 2001. 1Google ScholarGoogle Scholar
  199. T. Treibitz and Y. Y. Schechner. Instant 3Descatter. In Proc. IEEE CVPR, volume 2, pages 1861--1868, 2006. 3, 8 Google ScholarGoogle ScholarDigital LibraryDigital Library
  200. T. Treibitz and Y. Y. Schechner. Active polarization descattering. IEEE Trans. PAMI, To appear, 2008. 2, 5 Google ScholarGoogle ScholarDigital LibraryDigital Library
  201. T. Treibitz, Y. Y. Schechner, and H. Singh. Flat refractive geometry. In Proc. IEEE CVPR, 2008. 2Google ScholarGoogle ScholarCross RefCross Ref
  202. H. van de Hulst. Light Scattering by Small Particles. Chapter 5. Wiley, New York, 1957. 8Google ScholarGoogle Scholar
  203. K. J. Voss and E. S. Fry. Measurement of the mueller matrix for ocean water. Applied Optics, 23:4427--4439, 1984. 7, 8Google ScholarGoogle Scholar
  204. S. Zhang and S. Negahdaripour. 3D shape recovery of planar and curved surfaces from shading cues in underwater images. IEEE Journal of Oceanic Engineering, 27:100--116, 2002. 1Google ScholarGoogle Scholar
  205. Acharya, P. K., Berk, A., Anderson, G. P., Larsen, N. F., Tsay, S. C., and Stamnes, K. H. 1999. Modtran4: Multiple scattering and BRDF upgrades to modtran. In SPIE Proc. Optical Spectroscopic Techniques and Instrumentation for Atmospheric and Space Research III, p. 3756.Google ScholarGoogle Scholar
  206. Allard, E. 1876. Memoire sur l'intensite' et la portee des phares. Dunod: Paris.Google ScholarGoogle Scholar
  207. Bouguer, P. 1729. Traite' d'optique sur la gradation de la lumiere.Google ScholarGoogle Scholar
  208. Chandrasekhar, S. 1960. Radiative Transfer. Dover Publications: New York.Google ScholarGoogle Scholar
  209. Chu, T. S. and Hogg, D. C. 1968. Effects of precipitation on propagation at 0.63, 3.5 and 10.6 microns. The Bell System Technical Journal.Google ScholarGoogle Scholar
  210. Cozman, F. and Krotkov, E. 1997. Depth from scattering. In Proceedings of the 1997 Conference on Computer Vision and Pattern Recognition, vol. 31, pp. 801--806. Google ScholarGoogle ScholarDigital LibraryDigital Library
  211. Gordon, J. and Church, P. 1966. Overcast sky luminances and directional luminous reflectances of objects and backgrounds under overcast skies. Applied Optics, 5:919.Google ScholarGoogle ScholarCross RefCross Ref
  212. Hardy, A. C. 1967. How large is a point source? Journal of Optical Society of America, 57(1).Google ScholarGoogle ScholarCross RefCross Ref
  213. Henderson, S. T. 1977. Daylight and its Spectrum. Wiley: New York.Google ScholarGoogle Scholar
  214. Hidy, G. M. 1972. Aerosols and Atmospheric Chemistry. Academic Press: New York.Google ScholarGoogle Scholar
  215. Horn, B. K. P. 1986. Robot Vision. The MIT Press: Cambridge, MA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  216. IRIA. 1978. The Infrared Handbook. Infrared Information and Analysis Center, Environmental Research Institute of Michigan.Google ScholarGoogle Scholar
  217. Koenderink, J. J. and Richards, W. A. 1992. Why is snow so bright? Journal of Optical Society of America, 9(5):643--648.Google ScholarGoogle ScholarCross RefCross Ref
  218. Kopeika, N. S. 1998. A System Engineering Approach to Imaging. SPIE Press.Google ScholarGoogle Scholar
  219. Koschmieder, H. 1924. Theorie der horizontalen sichtweite. Beitr. Phys. Freien Atm., 12:33--53, 171--181.Google ScholarGoogle Scholar
  220. Langer, M. S. and Zucker, S. W. 1994. Shape from shading on a cloudy day. JOSA-A, 11(2):467--478.Google ScholarGoogle ScholarCross RefCross Ref
  221. Mason, B. J. 1975. Clouds, Rain, and Rainmaking. Cambridge University Press: Cambridge.Google ScholarGoogle Scholar
  222. McCartney, E. J. 1975. Optics of the Atmosphere: Scattering by Molecules and Particles. John Wiley and Sons: New York.Google ScholarGoogle Scholar
  223. Middleton, W. E. K. 1949. The effect of the angular aperture of a telephotometer on the telephotometry of collimated and non-collimated beams. Journal of Optical Society of America, 39:576--581.Google ScholarGoogle ScholarCross RefCross Ref
  224. Middleton, W. E. K. 1952. Vision Through the Atmosphere. University of Toronto Press.Google ScholarGoogle Scholar
  225. Mie, G. 1908. A contribution to the optics of turbid media, especially colloidal metallic suspensions. Ann. of Physics, 25(4):377--445.Google ScholarGoogle ScholarCross RefCross Ref
  226. Minnaert, M. 1954. The Nature of Light and Color in the Open Air. Dover: New York.Google ScholarGoogle Scholar
  227. Moon, P. and Spencer, D. E. 1942. Illumination from a non-uniform sky. Illum Eng., 37:707--726.Google ScholarGoogle Scholar
  228. Myers, J. N. 1968. Fog. Scientific American, pp. 75--82.Google ScholarGoogle ScholarCross RefCross Ref
  229. Narasimhan, S. G. and Nayar, S. K. 2000. Chromatic framework for vision in bad weather. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Google ScholarGoogle Scholar
  230. Narasimhan, S. G. and Nayar, S. K. 2001. Vision and the weather. In Proceedings of SPIE Conference on Human Vision and Electronic Imaging VI, p. 4299.Google ScholarGoogle Scholar
  231. Nayar, S. K. and Narasimhan, S. G. 1999. Vision in bad weather. In Proceedings of the 7th International Conference on Computer Vision. Google ScholarGoogle ScholarDigital LibraryDigital Library
  232. Nieto-Vesperinas, M. and Dainty, J. C. 1990. Scattering in Volumes and Surfaces. North-Holland: New York.Google ScholarGoogle Scholar
  233. Oakley, J. P. and Satherley, B. L. 1998. Improving image quality in poor visibility conditions using a physical model for degradation. IEEE Trans. on Image Processing, 7. Google ScholarGoogle ScholarDigital LibraryDigital Library
  234. Ohtake, T. 1970. Factors affecting the size distribution of raindrops and snowflakes. Journal of Atmospheric Science, 27:804--813.Google ScholarGoogle ScholarCross RefCross Ref
  235. Porch, W. M. 1975. Visibility of distant mountains as a measure of background aerosol pollution. Applied Optics, 14.Google ScholarGoogle Scholar
  236. Rensch, D. B. and Long, R. K. 1970. Comparative studies of extinction and backscattering by aerosols, fog, and rain at 10.6 and 0.63 microns. Applied Optics, 9(7).Google ScholarGoogle Scholar
  237. Shafer, S. 1985. Using color to separate reflection components. Color Research and Applications, pp. 210--218.Google ScholarGoogle ScholarCross RefCross Ref
  238. Van De Hulst. 1957. Light Scattering by Small Particles. John Wiley and Sons: New York.Google ScholarGoogle Scholar
  239. Yitzhaky, Y., Dror, I., and Kopeika, N. S. 1998. Restoration of altmospherically blurred images according to weather-predicted atmospheric modulation transfer function. Optical Engineering, 36.Google ScholarGoogle Scholar
  240. T. E. Boult and L. B. Wolff, "Physically-Based Edge Labelling," Proc. IEEE Conf. Computer Vision and Pattern Recognition, 1991.Google ScholarGoogle Scholar
  241. B. Cairns, B. E. Carlson, A. A. Lacis, and E. E. Russell, "An Analysis Of Ground-Based Polarimetric Sky Radiance Measurements," Proc. SPIE, vol. 3121, 1997.Google ScholarGoogle Scholar
  242. S. Chandrasekhar, Radiative Transfer. Dover Publications, Inc., 1960.Google ScholarGoogle Scholar
  243. D. B. Chenault and J. L. Pezzaniti, "Polarization Imaging through Scattering Media," Proc. SPIE, vol. 4133, 2000.Google ScholarGoogle Scholar
  244. K. L. Coulson, "Polarization of Light in the Natural Environment," Proc. SPIE, vol. 1166, 1989.Google ScholarGoogle Scholar
  245. L. J. Denes, M. Gottlieb, B. Kaminsky, and P. Metes, "Aotf Polarization Difference Imaging," Proc. SPIE, vol. 3584, 1998.Google ScholarGoogle Scholar
  246. S. D. Gedzelman, "Atmospheric Optics in Art," Applied Optics, vol. 30, 1991.Google ScholarGoogle Scholar
  247. J. Gordon and P. Church, "Overcast Sky Luminances and Directional Luminous Reflectances of Objects and Backgrounds under Overcast Skies," Applied Optics, vol. 5, p. 919, 1966.Google ScholarGoogle Scholar
  248. L. L. Grewe and R. R. Brooks, "Atmospheric Attenuation Reduction through Multisensor Fusion," Sensor Fusion: Architectures, Algorithms, and Applications II, Proc. SPIE, vol. 3376, Apr. 1998.Google ScholarGoogle Scholar
  249. Van De Hulst, Light Scattering by Small Particles. John Wiley and Sons, 1957.Google ScholarGoogle Scholar
  250. R. L. Lee Jr., "Horizon Brightness Revisited: Measurements and a Model of Clear-Sky Radiances," Applied Optics, vol. 20, pp. 4620--4628, 1994.Google ScholarGoogle Scholar
  251. N. S. Kopeika, "General Wavelength Dependence of Imaging through the Atmosphere," Applied Optics, vol. 20, no. 9, May 1981.Google ScholarGoogle Scholar
  252. N. S. Kopeika, A System Engineering Approach to Imaging. SPIE Press, 1998.Google ScholarGoogle Scholar
  253. D. K. Lynch, "Step Brightness Changes of Distant Mountain Ridges and Their Perception," Applied Optics, vol. 30, 1991.Google ScholarGoogle Scholar
  254. S. Mahadev and R. C. Henry, "Color Perception through Atmospheric Haze," J. Optical Soc. Am. A, vol. 17, no. 5, May 2000.Google ScholarGoogle Scholar
  255. E. J. McCartney, Optics of the Atmosphere: Scattering by Molecules and Particles. John Wiley and Sons, 1975.Google ScholarGoogle Scholar
  256. W. E. K. Middleton, Vision through the Atmosphere. Univ. of Toronto Press, 1952.Google ScholarGoogle ScholarCross RefCross Ref
  257. M. Minnaert, The Nature of Light and Color in the Open Air. Dover Publications, Inc., 1954.Google ScholarGoogle Scholar
  258. T. Mitsunaga and S. K. Nayar, "Radiometric Self Calibration," Proc. IEEE Conf. Computer Vision and Pattern Recognition, 1999.Google ScholarGoogle ScholarCross RefCross Ref
  259. P. Moon and D. E. Spencer, "Illumination from a Non-Uniform Sky," Illuminating Eng., vol. 37, pp. 707--726, 1942.Google ScholarGoogle Scholar
  260. S. G. Narasimhan and S. K. Nayar, "Chromatic Framework for Vision in Bad Weather," Proc. IEEE Conf. Computer Vision and Pattern Recognition, 2000.Google ScholarGoogle ScholarCross RefCross Ref
  261. S. G. Narasimhan and S. K. Nayar, "Removing Weather Effects from Monochrome Images," Proc. IEEE Conf. Computer Vision and Pattern Recognition, 2001.Google ScholarGoogle Scholar
  262. S. G. Narasimhan and S. K. Nayar, "Vision and the Atmosphere," Int'l J. Computer Vision, vol. 48, no. 3, pp. 233--254, Aug. 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  263. S. K. Nayar and S. G. Narasimhan, "Vision in Bad Weather," Proc. Seventh Int'l Conf. Computer Vision, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  264. J. P. Oakley and B. L. Satherley, "Improving Image Quality in Poor Visibility Conditions Using a Physical Model for Degradation," IEEE Trans. Image Processing, vol. 7, Feb. 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  265. "Museum of Science," Leonardo's Perspective. http://www.mos.org/sln/Leonardo/InvestigatingAerialP.html, 1997.Google ScholarGoogle Scholar
  266. M. J. Rakovic, G. W. Kattawar, M. Mehrubeoglu, B. D. Cameron, L. V. Wang, S. Rastegar, and G. L. Cote, "Light Backscattering Polarization Patterns from Turbid Media: Theory and Experiment," Applied Optics, vol. 38, 1999.Google ScholarGoogle Scholar
  267. M. P. Rowe, E. N. Pugh Jr., J. S. Tyo, and N. Engheta, "Polarization-Difference Imaging: A Biologically Inspired Technique for Observation through Scattering Media," Optical Letters, vol. 20, 1995.Google ScholarGoogle Scholar
  268. Y. Y. Schechner, S. G. Narasimhan, and S. K. Nayar, "Instant Dehazing of Images Using Polarization," Proc. IEEE Conf. Computer Vision and Pattern Recognition, 2001.Google ScholarGoogle Scholar
  269. Y. Y. Schechner, S. G. Narasimhan, and S. K. Nayar, "Polarization Based Vision through Haze," Applied Optics, special issue: light and color in the open air, vol. 42, no. 3, Jan. 2003.Google ScholarGoogle Scholar
  270. S. Shafer, "Using Color to Separate Reflection Components," Color Research and Applications, pp. 210--218, 1985. Google ScholarGoogle ScholarDigital LibraryDigital Library
  271. C. Stauffer and W. E. L. Grimson, "Adaptive Background Mixture Models for Real-Time Tracking," Proc. IEEE Conf. Computer Vision and Pattern Recognition, 1999.Google ScholarGoogle Scholar
  272. K. Tan and J. P. Oakley, "Enhancement of Color Images in Poor Visibility Conditions," Proc. Int'l Conf. Image Processing, vol. 2, Sept. 2000.Google ScholarGoogle Scholar
  273. K. Tan and J. P. Oakley, "Physics Based Approach to Color Image Enhancement in Poor Visibility Conditions," J. Optical Soc. Am. A, vol. 18, no. 10, pp. 2460--2467, Oct. 2001.Google ScholarGoogle Scholar
  274. S. Ullman, "On the Visual Detection of Light Sources," Biological Cybernetics, pp. 205--212, 1976.Google ScholarGoogle Scholar
  275. J. G. Walker, P. C. Y. Chang, and K. I. Hopcraft, "Visibility Depth Improvement in Active Polarization Imaging in Scattering Media," Applied Optics, vol. 39, 1995.Google ScholarGoogle Scholar
  276. W. L. Wolfe and G. J. Zissis, The Infrared Handbook. Prepared for Office of Naval Research, Dept. of the Navy, 1978.Google ScholarGoogle Scholar
  277. Y. Yitzhaky, I. Dror, and N. S. Kopeika, "Restoration of Altmospherically Blurred Images According to Weather-Predicted Atmospheric Modulation Transfer Function," Optical Eng., vol. 36, Nov. 1998.Google ScholarGoogle Scholar
  278. L. Grewe and R. R. Brooks, "Atmospheric attenuation reduction through multi-sensor fusion," in Sensor Fusion: Architectures, Algorithms, and Applications II, B. V. Dasarathy, ed., Proc. SPIE <b>3376</b>, 102--109 (1998).Google ScholarGoogle Scholar
  279. N. S. Kopeika, A System Engineering Approach to Imaging (SPIE, Bellingham, Wash., 1998), pp. 446--452.Google ScholarGoogle Scholar
  280. J. P. Oakley and B. L. Satherley, "Improving image quality in poor visibility conditions using a physical model for contrast degradation," IEEE Trans. Imag. Proc. <b>7</b>, 167--179 (1998). Google ScholarGoogle ScholarDigital LibraryDigital Library
  281. K. Tan and J. P. Oakley, "Physics-based approach to color image enhancement in poor visibility conditions," J. Opt. Soc. Am. A <b>18</b>, 2460--2467 (2001).Google ScholarGoogle Scholar
  282. S. G. Narasimhan and S. K. Nayar, "Chromatic framework for vision in bad weather," in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (Institute of Electrical and Electronics Engineers, New York, 2000), Vol. I, pp. 598--605.Google ScholarGoogle Scholar
  283. S. G. Narasimhan and S. K. Nayar, "Removing weather effects from monochrome images," in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (Institute of Electrical and Electronics Engineers, New York, 2001), Vol. II, pp. 186--193.Google ScholarGoogle Scholar
  284. S. K. Nayar and S. G. Narasimhan, "Vision in bad weather," in Proceedings of the IEEE International Conference on Computer Vision (Institute of Electrical and Electronics Engineers, New York, 1999), pp. 820--827. Google ScholarGoogle ScholarDigital LibraryDigital Library
  285. P. S. Pencikowski, "Low-cost vehicle-mounted enhanced vision system comprised of a laser illuminator and range-gated camera," in Enhanced and Synthetic Vision, J. G. Verly, ed., Proc. SPIE <b>2736</b>, 222--227 (1996).Google ScholarGoogle Scholar
  286. B. T. Sweet and C. L. Tiana, "Image processing and fusion for landing guidance," in Enhanced and Synthetic Vision, J. G. Verly, ed., Proc. SPIE <b>2736</b>, 84--95 (1996).Google ScholarGoogle Scholar
  287. R. C. Henry, S. Mahadev, S. Urquijo, and D. Chitwood, "Color perception through atmospheric haze," J. Opt. Soc. Am. A <b>17</b>, 831--835 (2000).Google ScholarGoogle Scholar
  288. D. K. Lynch, "Step brightness changes of distant mountain ridges and their perception," Appl. Opt. <b>30</b>, 3508--3513 (1991).Google ScholarGoogle Scholar
  289. S. D. Gedzelman, "Atmospheric optics in art," Appl. Opt. <b>30</b>, 3514--3522 (1991).Google ScholarGoogle Scholar
  290. F. Cozman and E. Krotkov, "Depth from scattering," in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (Institute of Electrical and Electronics Engineers, New York, 1997), pp. 801--806. Google ScholarGoogle ScholarDigital LibraryDigital Library
  291. W. A. Shurcliff and S. S. Ballard, Polarized Light (Van Nostrand, Princeton, N.J., 1964), pp. 98--103.Google ScholarGoogle Scholar
  292. G. P. Können, Polarized Light in Nature (Cambridge University, Cambridge, UK, 1985), pp. 1--10, 29--54, 60--62, 131--137, 144--145.Google ScholarGoogle Scholar
  293. B. Cairns, B. E. Carlson, A. A. Lacis, and E. E. Russell, "An analysis of ground-based polarimetric sky radiance measurements," in Polarization: Measurement, Analysis, and Remote Sensing, D. H. Goldstein and R. A. Chipman, eds., Proc. SPIE <b>3121</b>, 382--393 (1997).Google ScholarGoogle Scholar
  294. K. L. Coulson, "Polarization of light in the natural environment," in Polarization Considerations for Optical Systems II, R. A. Chipman, ed., Proc. SPIE <b>1166</b>, 2--10 (1989).Google ScholarGoogle Scholar
  295. S. J. Hitzfelder, G. N. Plass, and G. W. Kattawar, "Radiation in the earth's atmosphere: its radiance, polarization, and ellipticity," Appl. Opt. <b>15</b>, 2489--2500 (1976).Google ScholarGoogle Scholar
  296. D. K. Lynch and P. Schwartz, "Rainbows and fogbows," Appl. Opt. <b>30</b>, 3415--3420 (1991).Google ScholarGoogle Scholar
  297. M. S. Quinby-Hunt, L. L. Erskine, and A. J. Hunt, "Polarized light scattering by aerosols in the marine atmospheric boundary layer," Appl. Opt. <b>36</b>, 5168--5184 (1997).Google ScholarGoogle Scholar
  298. M. J. Raković, G. W. Kattawar, M. Mehrübeoǧlu, B. D. Cameron, L. V. Wang, S. Rastegar, and G. L. Coté, "Light back-scattering polarization patterns from turbid media: theory and experiment," Appl. Opt. <b>38</b>, 3399--3408 (1999).Google ScholarGoogle Scholar
  299. D. B. Chenault and J. L. Pezzaniti, "Polarization imaging through scattering media," in Polarization Analysis, Measurement, and Remote Sensing III, D. B. Chenault, M. J. Guggin, W. G. Egan, and D. H. Goldstein, eds., Proc. SPIE <b>4133</b>, 124--133 (2000).Google ScholarGoogle Scholar
  300. L. J. Denes, M. Gottlieb, B. Kaminsky, and P. Metes, "AOTF polarization difference imaging," in 27th AIPR Workshop: Advances in Computer-Assisted Recognition, R. J. Mericsko, ed., Proc. SPIE <b>3584</b>, 106--115 (1998).Google ScholarGoogle Scholar
  301. O. Emile, F. Bretenaker, and A. Le Floch, "Rotating polarization imaging in turbid media," Opt. Lett. <b>21</b>, 1706--1708 (1996).Google ScholarGoogle Scholar
  302. X. Gan, S. P. Schilders, and Min Gu, "Image enhancement through turbid media under a microscope by use of polarization gating method," J. Opt. Soc. Am. A <b>16</b>, 2177--2184 (1999).Google ScholarGoogle Scholar
  303. H. Horinaka, K. Hashimoto, K. Wada, T. Umeda, and Y. Cho, "Optical CT imaging in highly scattering media by extraction of photons preserving initial polarization," in International Symposium on Polarization Analysis and Applications to Device Technology, T. Yoshizawa and H. Yokota, eds., Proc. SPIE <b>2873</b>, 54--57 (1996).Google ScholarGoogle Scholar
  304. M. P. Rowe, E. N. Pugh Jr., J. S. Tyo, and N. Engheta, "Polarization-difference imaging: a biologically inspired technique for observation through scattering media," Opt. Lett. <b>20</b>, 608--610 (1995).Google ScholarGoogle Scholar
  305. J. G. Walker, P. C. Y. Chang, and K. I. Hopcraft, "Visibility depth improvement in active polarization imaging in scattering media," Appl. Opt. <b>39</b>, 4933--4941 (2000).Google ScholarGoogle Scholar
  306. Y. Y. Schechner, J. Shamir, and N. Kiryati, "Polarization and statistical analysis of scenes containing a semireflector," J. Opt. Soc. Am. A <b>17</b>, 276--284 (2000).Google ScholarGoogle Scholar
  307. H. Farid and E. H. Adelson, "Separating reflections from images by use of independent component analysis," J. Opt. Soc. Am. A <b>16</b>, 2136--2145 (1999).Google ScholarGoogle Scholar
  308. S. K. Nayar, X. S. Fang, and T. Boult, "Separation of reflection components using color and polarization," Int. J. Comput. Vision <b>21</b>, 163--186 (1997). Google ScholarGoogle ScholarDigital LibraryDigital Library
  309. S. Rahmann and N. Canterakis, "Reconstruction of specular surfaces using polarization imaging," in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (Institute of Electrical and Electronics Engineers, New York, 2001), Vol. 1, pp. 149--155.Google ScholarGoogle Scholar
  310. M. Saito, Y. Sato, K. Ikeuchi, and H. Kashiwagi, "Measurement of surface orientations of transparent objects by use of polarization in highlight," J. Opt. Soc. Am. A <b>16</b>, 2286--2293 (1999).Google ScholarGoogle Scholar
  311. L. B. Wolff, "Polarization vision: a new sensory approach to image understanding," Image Vision Comput. <b>15</b>, 81--93 (1997). Google ScholarGoogle ScholarDigital LibraryDigital Library
  312. C. F. Bohren and A. B. Fraser, "At what altitude does the horizon cease to be visible?" Am. J. Phys. <b>54</b>, 222--227 (1986).Google ScholarGoogle Scholar
  313. E. J. McCartney, Optics of the Atmosphere: Scattering by Molecules and Particles (Wiley, New York, 1976).Google ScholarGoogle Scholar
  314. J. S. Tyo, M. P. Rowe, E. N. Pugh Jr., and N. Engheta, "Target detection in optically scattering media by polarization-difference imaging," Appl. Opt. <b>35</b>, 1855--1870 (1996).Google ScholarGoogle Scholar
  315. R. L. Lee Jr., "Digital imaging of clear-sky polarization," Appl. Opt. <b>37</b>, 1465--1476 (1998).Google ScholarGoogle Scholar
  316. E. Hecht, Optics, 3rd ed. (Addison-Wesley, New York, 1998), pp. 340--342.Google ScholarGoogle Scholar
  317. S. Chandrasekhar, Radiative Transfer (Dover, New York, 1960), pp. 24--37, 280--284.Google ScholarGoogle Scholar
  318. M. Ben-Ezra, "Segmentation with invisible keying signal," in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (Institute of Electrical and Electronics Engineers, New York, 2000), Vol. 1, pp. 32--37.Google ScholarGoogle Scholar
  319. T. Prosch, D. Hennings, and E. Raschke, "Video polarimetry: a new imaging technique in atmospheric science," Appl. Opt. <b>22</b>, 1360--1363 (1983).Google ScholarGoogle Scholar
  320. A. M. Shutov, "Videopolarimeters," Sov. J. Opt. Technol. <b>60</b>, 295--301 (1993).Google ScholarGoogle Scholar
  321. L. B. Wolff, "Polarization camera for computer vision with a beam splitter," J. Opt. Soc. Am. A <b>11</b>, 2935--2945 (1994).Google ScholarGoogle Scholar
  322. A. S. Glassner, Principles of Digital Image Synthesis (Morgan Kaufmann, San Francisco, Calif., 1995), Appen. G.4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  323. R. L. Lee Jr., "Horizon brightness revisited: measurements and a model of clear-sky radiances," Appl. Opt. <b>33</b>, 4620--4628 (1994).Google ScholarGoogle Scholar
  324. Y. Y. Schechner, S. G. Narasimhan, and S. K. Nayar, "Instant dehazing of images using polarization," in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (Institute of Electrical and Electronics Engineers, New York, 2001), Vol. 1, pp. 325--332.Google ScholarGoogle Scholar
  325. J. E. Solomon, "Polarization imaging," Appl. Opt. <b>20</b>, 1537--1544 (1981).Google ScholarGoogle Scholar
  326. For the calculation of the path radiance integral, we assume k to be distance invariant. This is because typically most of the light in the scene comes from the Sun and sky and thus does not change much along the line of sight. Moreover, we assume that multiple scattering (which effects the angular scattering distribution) is dominated by single scattering.Google ScholarGoogle Scholar

Index Terms

  1. Scattering

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in
        • Published in

          cover image ACM Conferences
          SIGGRAPH '09: ACM SIGGRAPH 2009 Courses
          August 2009
          4249 pages
          ISBN:9781450379380
          DOI:10.1145/1667239

          Copyright © 2009 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 3 August 2009

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article

          Acceptance Rates

          Overall Acceptance Rate1,822of8,601submissions,21%

          Upcoming Conference

          SIGGRAPH '24

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader