

Pós-Graduação em Ciência da Computação

“A Software Component Quality Framework”

By

Alexandre Alvaro

Ph.D THESIS

Universidade Federal de Pernambuco

posgraduacao@cin.ufpe.br
www.cin.ufpe.br/~posgraduacao

RECIFE, 05/2009

ii

UNIVERSIDADE FEDERAL DE PERNAMBUCO

CENTRO DE INFORMÁTICA

PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

ALEXANDRE ALVARO

“A Software Component Quality Framework"

ESTE TRABALHO FOI APRESENTADO À PÓS-GRADUAÇÃO EM
CIÊNCIA DA COMPUTAÇÃO DO CENTRO DE INFORMÁTICA DA
UNIVERSIDADE FEDERAL DE PERNAMBUCO COMO REQUISITO
PARCIAL PARA OBTENÇÃO DO GRAU DE DOUTOR EM CIÊNCIA DA
COMPUTAÇÃO.

A PHD. THESIS PRESENTED TO THE FEDERAL UNIVERSITY
OF PERNAMBUCO IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE OF PHD IN COMPUTER
SCIENCE.

 ADVISOR: Silvio Romero de Lemos Meira

RECIFE, MAY/2009

Álvaro, Alexandre
 A software component quality framework / Alexandre

Alvaro. – Recife : O Autor, 2009.
 xv, 208 folhas : il., fig., tab.

 Tese (doutorado) – Universidade Federal de
Pernambuco. CIn. Ciência da Computação, 2009.

 Inclui bibliografia e apêndices

 1. Componentes de software - Qualidade. 2. Modelo de

qualidade de componentes. 3. Técnicas e processos de
avaliação de componentes. I. Título.

 004 CDU (2.ed.) UFPE
 005 CDD (22.ed.) BC - 2009 - 098

iii

To my wonderful and well-beloved family:
Valdir and Maria

Denise, Fabio, Eduardo and Murilo
And to the love of my life:

Mariana

iv

cknowledgements

This thesis embodies a large effort on my part, but it could not have been

developed without the support of many people. I would like to thank all those

who have helped me along this journey, knowing that I will never be able to

truly express my gratefulness.

First of all, I would like to thank my advisor, Silvio Romero de Lemos

Meira, who always gave me support during this long journey. He is an incredible

and open-minded person who I had the opportunity of sharing some (a lot of)

ideas about the most important topics about computer science besides the

pleasure of drinking some beers and talking in weekends. Moreover, he always

gave me support during my return for my hometown, believing that I could

finish my PhD even with the distance. I must repeat the same phrase that I put

in the acknowledgements of my Master degree: “He is the advisor that all post-

graduate students would like to work with”. Thank you, a lot!!

In particular, I would like to thank my Thesis members, Alexandre

Vasconcelos, Hermano Perrelli de Moura, Andre Luis Medeiros Santos, Renata

Pontin de Mattos Fortes and Ricardo Falbo for the time input and many

stimulating discussions. Their comments greatly helped to improve my thesis.

I am thankful, again, to Alexandre Vasconcelos, for giving me insights in

software quality, which helped in the definition of the component quality

framework, and for always being available to read my papers. In addition, he

gave me the contact of Danilo Scalet who indicated me to participate of the

software quality committee in Brazil (ABNT NBR ISO/IEC 25000).

I am deeply grateful to all of my friends that shared some moments with

me. Thanks Ricardo Alexandre Afonso (Alonso) for his company during this

A

v

period in Recife. He is a very comic person that aid me to support living far from

my family. All the parties, drinks, travelling, jobs, time to talk about the life,

about our future, the Saturdays in the Boa Viagem beach, among other things

that we done were very special for my life. Of course, my life in Recife became

better due to his company. In the same way, thanks also Ricardo Argenton

Ramos (RAR) for his company in Recife and for all wonderful lunches we did

together.

Thanks for my friends at Sorocaba-SP (Bruno and Neto). Even with the

distance, they were always available for talking and giving me force for

continuing this work. Moreover, thanks to my friends Fabio Ogawa and Cleber,

who are always interested in my future ways, in order to remember together the

old times and put in practice the “dreams” of the university. I am very thankful

to all my friends that always listen to me, my questions about life, the future and

everything.

I also want to thanks to the entire RiSE group for their support in this

whole time. Particularly Eduardo Almeida and Vinicius Garcia, the person who I

lived and worked for a long period. They were always available to help me in

some circumstances. Thanks Daniel Lucrédio for all of his attention during all of

this work. Its support in all the time – in the English, in the papers, in the future

– was very important to me. Thanks also for the careful revision of this thesis.

Finally, I would like to thank C.E.S.A.R. (Recife Center for Advanced

Studies and Systems), and again Silvio Meira, for providing me the means to put

my work in a real practice environment. And to the Informatics Center at UFPE

for making available its infrastructure.

And of course, I offer very special thanks to my beloved family. My mom

and papa for their happiness, love and company in some difficult moments. I

would like to thank them for being always available with constant support in the

hardest situations, when I needed them the most, even so distant. Sorry for

staying so far during this long time, the homesickness was enormous and for

our happiness I came back. So, I have a piece of music for you two:

“As vezes é tormenta,
Fosse uma navegação.

Pode ser que o barco vire
Também pode ser que não

vi

Já dei meia volta ao mundo

Levitando de tesão
Tanto gozo e sussurro

Já impressos no colchão...

Pois sempre tem
A cama pronta

E rango no fogão, fogão...

Luz acesa
Me espera no portão

Pra você ver
Que eu tô voltando pra casa

E vê! ê! ê! ê! ê!
Que eu tô voltando pra casa

Outra vez...”

(Casa – Lulu Santos)

Mom and papa, I love you two, so much!!

Grateful thanks to my lovely sister, Denise, who was always present in all

days that I was distant and always trying to decrease the distance between my

hometown and Recife. Her support in some moments during this period was

fundamental for me. Now, I´m back and share the good moments together with

her and her family. Thanks for Deba, I love you. Very special thanks to Fabio,

for his company in some moments in Sorocaba/SP, for all barbecues, beers,

joking and talking. Thanks Fabão. Thanks for my friend Eduardo, he is a very

sweet and smart children that I love playing with him. He touches my heart

some times when saying for me don´t go far away and stay with him to play.

Now, I´m back. I love you Du!! Thanks for the newer people of my family,

Murilo, the most beautiful and likeable baby that I know.

A special thanks for Mariana, who tried to be patient during my journey in

Recife since 2004. Every single moment far from her love was very hard for me.

She is the person that gives me support, motivation and inspiration to continue

my work until the end (since so many times were not so easy doing so). Thanks

a lot for understanding and comprehending the difficulties that we passed

during this time. I hope to be with you all of my life. I love you so much my

dear!!

vii

So, they are the most important people in all of my life. I hope for that one

day I will give them as much as they have given to me.

I am so grateful for all the people that contributed with something during

the development of this work. Mainly, thanks for my Mom, my Papa, my sister

Deba, my friends Fabão, Eduardo, Murilo baby and my love Mariana. Without

them, I would not be where I am now. They will always be in my heart!!

viii

Ando devagar porque já tive pressa
E levo esse sorriso porque já chorei demais

Hoje me sinto mais forte, mais feliz quem sabe
Só levo a certeza de que muito pouco eu sei

Ou nada sei

Conhecer as manhas e as manhãs,
O sabor das massas e das maçãs,
É preciso amor pra poder pulsar,
É preciso paz pra poder sorrir,
É preciso a chuva para florir

Todo mundo ama um dia todo mundo chora,
Um dia a gente chega, no outro vai embora

Cada um de nós compõe a sua história
Cada ser em si carrega o dom de ser capaz

E ser feliz

Conhecer as manhas e as manhãs,
O sabor das massas e das maçãs,
É preciso amor pra poder pulsar,
É preciso paz pra poder sorrir,
É preciso a chuva para florir

Ando devagar porque já tive pressa
E levo esse sorriso porque já chorei demais

Cada um de nós compõe a sua história,
Cada ser em si carrega o dom de ser capaz

E ser feliz

 (Tocando em Frente, Renato Teixeira)

ix

esumo

Um grande desafio da Engenharia de Software Baseada em Componentes

(ESBC) é a qualidade dos componentes utilizados em um sistema. A

confiabilidade de um sistema baseado em componentes depende da

confiabilidade dos componentes dos quais ele é composto. Na ESBC, a busca,

seleção e avaliação de componentes de software é considerado um ponto chave

para o efetivo desenvolvimento de sistemas baseado em componentes. Até agora

a indústria de software tem se concentrado nos aspectos funcionais dos

componentes de software, deixando de lado uma das tarefas mais árduas, que é

a avaliação de sua qualidade. Se a garantia de qualidade de componentes

desenvolvidos in-house é uma tarefa custosa, a garantia da qualidade utilizando

componentes desenvolvidos externamente – os quais frequentemente não se

tem acesso ao código fonte e documentação detalhada – se torna um desafio

ainda maior. Assim, esta Tese introduz um Framework de Qualidade de

Componentes de Software, baseado em módulos bem definidos que se

complementam a fim de garantir a qualidade dos componentes de software. Por

fim, um estudo experimental foi desenvolvido e executado de modo que se possa

analisar a viabilidade do framework proposto.

Palavras Chave: Componentes de Software, Qualidade de Componentes de

Software, Modelo de Qualidade de Componentes, Técnicas para Avaliação de

Componentes e Processo de Avaliação de Componentes.

R

x

bstract

A major problem with Component-Based Software Engineering (CBSE) is the

quality of the components used in a system. The reliability of a component-

based software system depends on the reliability of the components that it is

made of. In CBSE, the proper search, selection and evaluation process of

components is considered the cornerstone for the development of any effective

component-based system. So far the software industry was concentrated on the

functional aspects of components, leaving aside the difficult task of assessing

their quality. If the quality assurance of in-house developed software is a

demanding task, doing it with software developed elsewhere, often without

having access to its source code and detailed documentation, presents an even

greater concern. So, this Thesis introduces a Software Component Quality

Framework, based upon well-defined modules that complement each other

looking for assurance the component quality in a consistent way. An

experimental study was developed and executed in order to analyze the viability

of using such a framework.

Keywords: Software Components, Software Component Quality, Component

Quality Model, Component Evaluation Techniques and Component Evaluation

Process.

A

xi

ist of Figures

FIGURE 1.1 THE FRAMEWORK FOR SOFTWARE REUSE…………………………03

FIGURE 1.2 SOFTWARE COMPONENT QUALITY FRAMEWORK………………04

FIGURE 1.3 SUMMARY OF SURVEY RESPONSE (BASS ET AL., 2000)………05

FIGURE 3.1 NUMBER OF COMPANIES CERTIFIED ISO 9000, CMMI AND
MPS.br..……………………………………………………………………………………....……………26

FIGURE 3.2 SQUARE ARCHITECTURE (ISO/IEC 25000, 2005)………………..27

FIGURE 3.3 ISO/IEC 25040……………………………………………………………………..32

FIGURE 3.4 PROCESS OF OBTAINING, CERTIFYING AND STORING
COMPONENTS…………………………………………………………………………….........35

FIGURE 4.1 STRUCTURE OF PREDICTION-ENABLED COMPONENT
TECHNOLOGY (WALLNAU, 2003)……………………………………………………..47

FIGURE 4.2 RESEARCH ON SOFTWARE COMPONENT CERTIFICATION
TIMELINE..50

FIGURE 5.1 SOFTWARE COMPONENT QUALITY FRAMEWORK…………......56

FIGURE 5.2 RELATIONS AMONG THE QUALITY MODEL ELEMENTS……..64

FIGURE 5.3 SUMMARY OF THE CQM………………………………………………………74

FIGURE 7.1 COMPONENT EVALUATION PROCESS.......................................99

FIGURE 7.2 ESTABLISH EVALUATION REQUIREMENTS STEPS...............100

FIGURE 7.3 SPECIFY THE EVALUATION STEPS...105

FIGURE 7.4 DESIGN THE EVALUATION STEPS..109

FIGURE 7.5 EXECUTE THE EVALUATION STEPS...113

FIGURE 8.1 SUBJECT'S TIME SPENT IN THE EXPERIMENTAL
STUDY...125

FIGURE 8.2 COMPONENT QUALITY MEASURED: PERSISTENCE
MANAGER AND ARTIFACT MANAGER..130

FIGURE 8.3 COMPONENT QUALITY MEASURED: ASSET SEARCHER,
ASSET CATALOG AND INDEXER..132

L

xii

ist of Tables

TABLE 3.1 SOFTWARE QUALITY STANDARDS……………………………………..25
TABLE 3.2 CHARACTERISTICS AND SUB-CHARACTERISTICS IN SQUARE

PROJECT…………………………………………………………………………………………..31

TABLE 5.1 CHANGES IN THE PROPOSED COMPONENT QUALITY
MODEL, IN RELATION TO ISO/IEC 25010…………………...........................58

TABLE 5.2 THE PROPOSED COMPONENT QUALITY MODEL, WITH THE
SUB-CHARACTERISTICS BEING DIVIDED INTO TWO KINDS:
RUNTIME AND DEVELOPMENT TIME……………………………………………..63

TABLE 5.3 COMPONENT QUALITY ATTRIBUTES FOR SUB-
CHARACTERISTICS THAT ARE OBSERVABLE AT RUNTIME……...........65

TABLE 5.4 COMPONENT QUALITY ATTRIBUTES FOR SUB-
CHARACTERISTICS THAT ARE OBSERVABLE DURING LIFE CYCLE...67

TABLE 5.5 ADDITIONAL INFORMATION………………………………………………73
TABLE 6.1 GUIDELINES FOR SELECTING EVALUATION LEVEL………......77
TABLE 6.2 SOFTWARE COMPONENT TECHNIQUES MODEL………………..86
TABLE 6.3a COMPONENT QUALITY ATTRIBUTES X EVALUATION
TECHNIQUES…………………………………………………………………………………………..87

TABLE 6.3b COMPONENT QUALITY ATTRIBUTES X EVALUATION
TECHNIQUES……………………………………………………………………………………………..88

TABLE 6.3c COMPONENT QUALITY ATTRIBUTES X EVALUATION
TECHNIQUES…………………………………………………………………………………………89

TABLE 7.1 EXAMPLE OF IMPORTANCE’S DEFINITION……………………….103

TABLE 7.2 EXAMPLE OF QUALITY ATTRIBUTES DEFINITION……………105
TABLE 7.3 EXAMPLE OF DEFINE SCTM………………………………………………106
TABLE 7.4 EXAMPLE OF TOOLS SELECTION………………………………………111
TABLE 7.5 EXAMPLE OF DATA COLLECTION……………………………………..114
TABLE 8.1 SUBJECT'S PROFILE IN THE EXPERIMENTAL STUDY...........126
TABLE 8.2 QUALITY ATTRIBUTES SELECTED FOR SCTM I......................127
TABLE 8.3 QUALITY ATTRIBUTES SELECTED FOR SCTM II....................127
TABLE 8.4 EVALUATION TECHNIQUES SELECTED TO THE

COMPONENTS EVALUATED IN SCTM I...128

TABLE 8.5 EVALUATION TECHNIQUES SELECTED TO THE
COMPONENTS EVALUATED IN SCMT II...130

L

xiii

cronyms

Term Description

B2B Business to Business

CBD Component-Based Development

CBSE Component-Based Software Engineering

CMU/SEI Carnegie Mellon University’s Software Engineering Institute

COTS Commercial Off-The-Self

CBSD Component-Based Software Development

CQM Component Quality Model

COM Component Object Model

CCM CORBA Component Model

CMMI Capability Maturity Model Integrated

EJB Enterprise JavaBeans

GQM Goal Question Metric Paradigm

ISO International Organization for Standardization

IEC International Electro-technical Commission

PECT Prediction-Enabled Component Technology

PACC Predictable Assembly from Certifiable Components

RiSE Reuse in Software Engineering group

SCETM Software Component Evaluation Techniques Model

SQuaRE Software Product Quality Requirements and Evaluation

OMG Object Management Group

XML eXtensible Markup Language

A

xiv

ontents

1. INTRODUCTION ...1

1.1 MOTIVATION ... 1
1.1.1 Software Components Inhibitors ...4
1.1.2 The Future of Software Components..6
1.1.3 The Brazilian Industry Relevance .. 7

1.2 PROBLEM STATEMENT..8
1.3 OVERVIEW OF THE PROPOSED SOLUTION ..9
1.4 STATEMENT OF THE CONTRIBUTIONS .. 10
1.5 OUT OF SCOPE ..11
1.6 ORGANIZATION OF THE THESIS ... 12

2. SOFTWARE REUSE .. 15

2.1 COMPONENT-BASED DEVELOPMENT (CBD).. 19
2.1.1 Software Components..20

2.2 SUMMARY ..22

3. SOFTWARE QUALITY AND CERTIFICATION 23

3.1 ISO/IEC 25000 (SQUARE PROJECT) ..26
3.2.1 ISO/IEC 2501N (QUALITY MODEL DIVISION) ..30
3.2.2 ISO/IEC 2504N (QUALITY EVALUATION DIVISION)..................................32
3.2.3 ISO/IEC 2502N (QUALITY MEASUREMENT DIVISION)33
3.3 SOFTWARE COMPONENT CERTIFICATION ..33
3.4 SUMMARY ..36

4. SOFTWARE COMPONENT CERTIFICATION: A SURVEY37

4.1 EARLY AGE: MATHEMATICAL AND TEST-BASED MODELS38
4.2 SECOND AGE: TESTING IS NOT ENOUGH TO ASSURE COMPONENT QUALITY...43
4.3 FAILURES IN SOFTWARE COMPONENT CERTIFICATION...............................49
4.4 CONCLUSION OF THE STUDY ...50
4.5 SUMMARY .. 51

5. SOFTWARE COMPONENT QUALITY FRAMEWORK AND
COMPONENT QUALITY MODEL ..52

5.1 OVERVIEW OF THE FRAMEWORK...53
5.2 THE COMPONENT QUALITY MODEL (CQM) ..56
5.2.1 CHANGES IN RELATION TO ISO/IEC 25010 .. 57
5.2.2 QUALITY CHARACTERISTICS THAT WERE ADAPTED FROM ISO/IEC 25010 .. 61

C

xv

5.2.3 SUMMARY ..63
5.3 COMPONENT QUALITY ATTRIBUTES ..64
5.4 OTHER RELEVANT COMPONENT INFORMATION ... 73
5.5 SUMMARY .. 73

6. EVALUATION TECHNIQUES FRAMEWORK AND METRICS
FRAMEWORK ..75

6.1 A SOFTWARE COMPONENT MATURITY MODEL (SCTM).............................76
6.2 METRICS FRAMEWORK ... 91
6.2.1 METRICS TO TRACK THE CQM PROPERTIES ...93
6.2.2 METRICS TO TRACK THE CERTIFICATION TECHNIQUES PROPERTIES95
6.2.3 METRICS TO TRACK THE CERTIFICATION PROCESS PROPERTIES..................96
6.3 SUMMARY ..97

7. COMPONENT EVALUATION PROCESS...................................... 98

7.1 THE COMPONENT EVALUATION PROCESS ..98
7.1.1 ESTABLISH EVALUATION REQUIREMENTS ACTIVITY99
7.1.2 SPECIFY THE EVALUATION ACTIVITY.. 104
7.1.3 DESIGN THE EVALUATION ACTIVITY .. 109
7.1.4 EXECUTE THE EVALUATION ACTIVITY...112
7.1.5 PROCESS SUMMARY...115
7.2 SUMMARY ...115

8. EXPERIMENTAL STUDY .. 116

8.1 SOFTWARE COMPONENT QUALITY FRAMEWORK – AN EXPERIMENTAL STUDY
 117
8.2 DEFINITION OF THE EXPERIMENTAL STUDY ...117
8.3 PLANNING OF THE EXPERIMENTAL STUDY..117
8.4 THE PROJECT USED IN THE EXPERIMENTAL STUDY 123
8.5 THE INSTRUMENTATION... 123
8.6 THE OPERATION .. 123
8.7 THE ANALYSIS AND INTERPRETATION ... 126
8.8 LESSONS LEARNED... 135
8.9 SUMMARY .. 135

9. CONCLUSIONS ... 137

9.1 RESEARCH CONTRIBUTIONS ... 138
9.2 RELATED WORK... 139
9.3 FUTURE WORK .. 139
9.4 ACADEMIC CONTRIBUTIONS.. 140
9.5 OTHER PUBLICATIONS.. 144
9.6 SUMMARY .. 145

REFERENCES... 147

APPENDIX A. METRICS EXAMPLE .. 167

APPENDIX B. COMPONENT QUALITY EVALUATION FORM188

APPENDIX C. QUESTIONNAIRES USED IN THE EXPERIMENTAL
STUDY... 200

1

Introduction

1.1 Motivation

One of the most compelling reasons for adopting component-based

approaches in software development is the premise of reuse. The idea is to build

software from existing components primarily by assembling and replacing

interoperable parts. The implications for reduced development time and

improved product quality make this approach very attractive (Krueger, 1992).

Reuse is a “generic” denomination, encompassing a variety of techniques

aimed at getting the most from design and implementation work. The top

objective is to avoid reinvention, redesign and reimplementation when building

a new product, by capitalizing on previous done work that can be immediately

deployed in new contexts. Therefore, better products can be delivered in shorter

times, maintenance costs are reduced because an improvement to one piece of

design work will enhance all the projects in which it is used, and quality should

improve because reused components have been well tested (D’Souza et al.,

1999), (Jacobson et al., 1997).

Software reuse is not a new idea. Since McIlroy’s pioneer work, “Mass

Produced Software Components” (McIlroy, 1968), the idea of reusing software

components in large scale is being pursued by developers and research groups.

This effort is reflected in the literature, which is very rich in this particular area

of software engineering.

Most of this works follow McIlroy’s idea: “the software industry is weakly

founded and one aspect of this weakness is the absence of a software

component sub-industry” (pp. 80). The existence of a market, in which

1

Chapter 1 – Introduction

2

developers could obtain components and assemble them into applications, was

always envisioned.

The influence of McIlroy’s work has led the research in creation of

component repository systems, involving complex mechanisms to store, search

and retrieve assets. This can be seen in a software reuse libraries survey (Mili et

al., 1998), where Mili et al. discuss about 50 works that deal with the reuse

problem.

On the other hand, these works do not consider an essential requirement

for these systems: the assets quality. In a real environment, a developer that

retrieves a faulty component from the repository would certainly lose his trust

on the system, becoming discouraged to make new queries. Thus, it is extremely

important to assert the quality of the assets that are stored into the repository

before making them available for reuse. Despite this importance, the software

engineering community had not explored these issues until recently. In this

way, a new research area arose: components quality assurance (Wohlin et al.,

1994), (Mingins et al., 1998), (Morris et al., 2001), (Schmidt, 2003), (Wallnau,

2003). However, several questions still remain unanswered, such as: (i) how

component quality assurance should be carried out? (ii) what are the

requirements for a component evaluation process? and, (iii) who should

perform it? (Goulão et al., 2002a). This is the reason why there is still no well-

defined standard to perform component quality assurance (Voas et al., 2000),

(Morris et al., 2001).

In this context, the main goal of this thesis is investigating effective ways

to demonstrate that component quality assurance is practically viable to

researcher and software/quality engineer. Through component quality, some

benefits can be achieved, such as: higher quality levels, reduced maintenance

time, investment return, reduced time-to-market, among others. According to

Weber et al. (Weber et al., 2002), the need for quality assurance in software

development has exponentially increased in the past few years.

Moreover, this thesis is part of a bigger project whose main idea is to

develop a robust framework for software reuse (Almeida et al., 2004), in order

to establish a standard for component development; to develop a repository

system; and to develop a component quality framework. This project has been

Chapter 1 – Introduction

3

developed in a collaboration between the industry and academia (the RiSE

group1 and two universities), in order to generate a well-defined model for

developing, evaluating quality, storing and, after that, making it possible for

software factories to reuse software components.

The framework (Figure 1.1) that is being developed has two modules. The

first module (on the left) is composed of best practices related to software reuse.

Non-technical factors, such as education, training, incentives, and

organizational management are considered. This module constitutes a

fundamental step before the introduction of the framework in the organization.

The second module (on the right) is composed of important technical aspects

related to software reuse, such as processes, environments, tools, and a

component quality framework, which is the focus of this thesis.

Figure 1.1. The Framework for Software Reuse.

The process of evaluation components quality is not a simple one. First,

there should exist a component quality model. Differently from other

software product quality models, such as (McCall et al., 1977), (Boehm et al.,

1978), (Hyatt et al., 1996), (ISO/IEC 9126, 2001), (Georgiadou, 2003), this

model should consider Component-Based Development (CBD) characteristics,

and describe attributes that are specific to the promotion of reuse2. With a

1 Reuse in Software Engineering (RiSE) group – http://www.rise.com.br.
2 The component quality model was developed as part of my MSc. degree in computer science
and upgraded during this thesis.

Chapter 1 – Introduction

4

component quality model in hand, there must be a series of techniques that

allow one to evaluate if a component conforms to the model. The correct usage

of these techniques should follow a well-defined and controllable component

evaluation process. Finally, a set of metrics are needed, in order to track the

components properties and the enactment of the evaluation process.

These four main issues: (i) a Component Quality Model, (ii) a Quality

Techniques Framework, (iii) a Metrics Framework, and (iv) a Evaluation

Process, are the modules of a Software Component Quality Framework that is

being investigated as a part of the RiSE project.

Figure 1.2. Software Component Quality Framework.

The framework will allow that the components produced in a Software

Reuse Environment are certified before being stored on a Repository System. In

this way, software engineers would have a greater degree of trust in the

components that are being reused.

1.1.1 Software Components Inhibitors

To assess the market for Component-Based Software Engineering (CBSE),

the Carnegie Mellon University’s Software Engineering Institute (CMU/SEI)

studied industry trends in the use of software components. The study (Bass et

al., 2000), conducted from September 1999 to February 2000, examined

software components from both technical and business perspectives.

A distinct set of inhibitors to adopting software component technology

emerged from the conducted surveys and interviews with earlier adopters of

Chapter 1 – Introduction

5

software component technology. A summary from a Web survey of component

adopters is presented in Figure 1.3.

Figure 1.3. Summary of Survey Responses (Bass et al., 2000).

From this data and from the interviews, the study concluded that the

market perceives the following key inhibitors for component adoption,

presented here in decreasing order of importance:

• Lack of available components;

• Lack of stable standards for component technology;

• Lack of certified components; and

• Lack of an engineering method to consistently produce quality

systems from components.

The software engineering community is already attempting to reduce the

gaps related to the two first inhibitors. A look at the main Internet component

market, ComponentSource3, which contains more than 5,000 components

(seven years ago it had less than 1,000 (Trass et al., 2000)), leads to conclude

that there is a large increase in the availability of reusable assets. In the same

period, component technologies have obtained considerable maturity, especially

3 http://www.componentsource.com

Chapter 1 – Introduction

6

those related to JavaBeans, Enterprise JavaBeans (EJB), and Microsoft .NET

technologies. Thus, the software engineering community is trying to establish

stable standards for component technology, each one for a particular market

niche.

However, in relation to the third inhibitor, the community is still a

fledgling. Further research is required in order to assure the production of

certified components, especially when combined with the lack of component-

based software engineering techniques that deliver predictable properties (the

last inhibitor).

The concern with components quality assurance reflects a natural

progression of concerns: first demonstrates that it is possible to build and

sustain a component-based system at all, and then improve the overall quality of

components and the consumers’ trust in these components.

According to Voas (Voas, 1998), to foster an emerging software

component marketplace, it must be clear for buyers whether a component’s

impact is positive or negative. Ideally, buyers should have this information

before buying a component. Component buyers could then choose an

appropriate component according to its quality level. With this information,

system builders could make better design decisions and be less fearful of

liability concerns, and component vendors could expect a growing marketplace

for their products.

1.1.2 The Future of Software Components

Important researches on software components, such as (Heineman et al.,

2001), (Heineman et al., 2001), (Crnkovic, 2001), (Wallnau, 2003), (Wallnau,

2004), (Schneider & Han, 2004) and (Andreou & Tziakouris, 2007) point that

the future of software components is quality assurance. These authors state that

quality assurance is a necessary precondition for CBSE to be successfully

adopted and to achieve the associated economic and social benefits that CBSE

could yield. With the success of CBSE, software developers will have more time

to develop, instead of spending their time addressing problems associated with

understanding and fixing someone else’s code. Components with quality used

during development will have predetermined and well-established criteria, thus

Chapter 1 – Introduction

7

reducing the risk of system failure and increasing the likelihood that the system

will comply with design standards.

When the system is developed using a CBSE approach, the use of

components with quality could provide objective evidence that the components

meet rigorous specifications including data on intended use. This approach does

not permit the designer to forego inherently safe system design practices.

Instead, quality procedures reduce the risk of system failure by providing

information about a software component risk mitigation rules, such as the

anticipation about the software failure state and return to the last stable state

with notice to the system administrator. The objective is to build safe systems

from well-documented and proven components. And if these components are

independently assessed, the confidence that the information accompanying

these components meets their requirements will be greater.

1.1.3 The Brazilian Industry Relevance
In 2007 it was accomplished a study by SOFTEX (Softex, 2007) in

conjunction with the Departamento de Política Científica e Tecnológica da

Unicamp and financed by Ministério de Ciência e Tecnologia (MCT), with the

idea of evaluating the main contribution that CBSE can bring to the Brazilian

Software Industry. A set of CBD specialists discussed technical and economical

aspects related to the software component adoption by the national industry

and defined the main goals to achieve it, namely:

• Quality of the software developed;

• Maintainability;

• Reliability; and

• Service-Oriented Architecture (SOA) evolution.

According to those specialists, the quality and reliability of the

components developed and availability in the market are the main aspects to

increase the component adoption degree in Brazilian organizations. One of the

interesting aspects pointed out is the fact that reusing a component without

quality could be worse than not reusing anything.

Chapter 1 – Introduction

8

Additionally, a survey involving 57 Brazilian small, medium and large

software organizations was accomplished (Lucrédio et al., 2007) and it could be

noted that the quality of the components available in the market is a critical

factor for the software reuse success like other aspects: systematic reuse

process, CASE tools usage, product family approach, independent reusable

assets development team, among others. Basically, this study presented the

same line of reasoning of the previously study, where an asset without quality

could be a risk-factor to the software development project.

In this way, according to SEI (Bass et al., 2003), Softex (Softex, 2007) and

Brazilian software organizations (Lucrédio et al., 2007), it was considering that

the component quality are an essential aspect to the CBSE adoption and

software reuse success around the world.

1.2 Problem Statement

The growing use of commercial components in large systems makes

selection and evaluation of components an essential activity. Many

organizations struggle in their attempts to select and evaluate an appropriate

component in their system. For this reason, a well-defined and consistent

software component quality assurance is essential for the component market

adoption (i.e. without a efficient mechanism to select/evaluate the component

quality, the organization will often select components with low quality and,

therefore, it will be discouraged to select other components in the future and

would certainly lose its trust on the component market).

According to Morris et al. (Morris et al., 2001), there is a lack of an

effective assessment of software components. Besides, the international

standards that addresses software products’ quality issues have shown to be too

general for dealing with the specific characteristics of components. While some

of their characteristics are appropriate to the evaluation of components, others

are not well suited for that task.

Even so, the software engineering community has expressed many and

often diverging requirements to CBSE and trustworthy components. A unified

and prioritized set of CBSE requirements for trustworthy components is a

challenge in itself (Goulão et al., 2002a), (Schmidt, 2003).

Chapter 1 – Introduction

9

Moreover, there is a lack of processes, methods, techniques and tools that

support the component quality assurance activity (Alvaro et al., 2005a). The

current processes and methods only deal with specific aspects of software

component (Alvaro et al., 2005a) and were not evaluated into industrial

scenarios. In fact, they are based on the researchers’ experience, and the real

efficiency of evaluating software components using these process/methods

remains unknown.

In this way, the target problem that this thesis intends to work with is the

lack of mechanisms available on the literature for evaluates the software

component quality degree, providing consistent and well-define framework for

software component quality evaluation.

1.3 Overview of the Proposed Solution
The component market, which is a priori condition to maximize the intra-

and inter-organizational software reusability, cannot emerge without supplying

high-quality products. Organizations whose aim is to construct software by

integrating components – rather than developing software from scratch – will

not be able to meet their objectives if they cannot find sufficient number of

components and component versions that satisfy certain functional and quality

requirements. Without a quality level, the component usage may have

catastrophic results (Jezequel et al., 1997). However, the common belief is that

the market components are not reliable and this prevents the emergence of a

mature software component market (Trass et al., 2000). Thus, the components

market quality problems must be resolved in order to increase the reliability,

and third-party quality assurance programs would help to acquire trust in the

market components (Heineman et al., 2001).

Motivated by these ideas, the main goal of this thesis is to define a

Software Component Quality Framework that is composed of four inter-related

modules in order to assure the component quality degree. This framework was

proposed with basis in a survey on the state-of-the-art in component quality

assurance area (Alvaro et al., 2005a), which will be presented on chapter 4.

Different from other approaches of the literature (Goulão et al., 2002b), (Beus-

Dukic et al., 2003), (Cho et al., 2001), (Gui and Scott, 2007) that provide only

isolated aspects to assure the component quality, this thesis tries to investigate

Chapter 1 – Introduction

10

and make available a framework with some necessary mechanisms to execute

the component evaluation activities. After that, a set of evaluations are planned

to be executed in order to analyze the efficiency of the framework proposed in

measuring the quality of the component provided by the main component

markets and a Brazilian software factory.

Through these evaluations it is expected a continuously evolution of the

whole framework in the way that the software industry can start to trust on it

and evaluate its own software components.

1.4 Statement of the Contributions

The main contributions of this research are:

1. A survey of the state-of-the-art of component quality assurance

(Alvaro et al., 2005a), in an attempt to analyze this area and

possible trends to follow. This survey was developed during the

MSc. degree and upgraded during the PhD. degree;

2. The development of a Software Component Quality Framework

aiming to provide a well-defined mechanism to evaluate the

software component quality (Alvaro et al., 2007a);

3. A refinement of the Component Quality Model (CQM) (Alvaro et al.,

2005b), (Alvaro et al., 2005c), (Alvaro et al., 2005d), developed

during my MSc. degree (Alvaro, 2005), in order to adapt it to the

new standard for Software Product Quality Requirements and

Evaluation (SQuaRE) project (ISO/IEC 25000, 2005); and a

preliminary evaluation of the CQM also developed during my MSc.

degree (Alvaro et al., 2006a), (Alvaro et al., 2006b);

4. The development of a Software Component Evaluation Techniques

Model (SCETM) in order to provide different thoroughness levels of

evaluation techniques and a set of guidelines for selecting those

evaluation levels (Alvaro et al., 2007b);

5. The development of a Component Evaluation Process in order to

provide a high quality and consistent evaluation process (Alvaro et

al., 2007c), (Alvaro et al., 2007d);

Chapter 1 – Introduction

11

6. The development of a Metrics Framework that is composed of a set

of valuable measures to be considered as a starting point during the

component evaluations; and

7. The development of an Experimental Study in order to analyze if the

proposed framework meets its proposed goals.

1.5 Out of Scope
In order to assure quality to whatever kind of software component it is

necessary to develop a well-consistent framework that provide all insights

necessary to do this task. However, due to scope limitations, there are other

possibilities and work directions that were discarded in this thesis. Thus, the

following issues are not directly addressed by this work:

• Formal Proof: Meyer (Meyer, 2003) proposes a formal approach in

order to acquire trust on software components. His idea is to build

software components with fully proved properties. The intention is to

develop software components that could be reliable to the software

market. This thesis does not consider formal quality assurance mainly

because the software component market is not inclined to formally

specify their software components. This kind of approach is highly

expensive, in terms of development time and level of expertise that is

needed, and component developers still do not know if it is cost

effective to spend effort in this direction without having specific

requirements such as strict time constraints or high reliability. Even

so, the Software Component Techniques Model (SCETM), which will

be presented in this thesis, provides formal proof evaluation

techniques that could be useful in some scenarios, depending on the

customer’s necessities and the cost/benefit to do so;

• Prediction of the Component Assembly: CMU/SEI (Wallnau,

2003) attempts to predict the assembly of software components. This

is an ongoing work and the current SEI research line. The SEI’s

intention is to predict the reliability level of the CBSE in order to

determine which quality properties the customer can expect from the

system that will be developed using certain components. Besides SEI,

there are also other works found in literature that focus on this area

Chapter 1 – Introduction

12

(Stafford et al., 2001), (Hissam et al., 2003). This thesis does not

consider this approach for the same reasons that do not consider

formal approaches, i.e. it is an expensive approach, and developers

are not willing to take high risks in spending effort without knowing if

it is cost effective. Also, the first beta tools about this research are

available to download since August of 2008

(http://www.sei.cmu.edu/pacc/starter-kit.html). One of the SEI's

main researchers, Kurt Wallnau (Wallnau, 2004), even states that the

viability of this approach is still unknown. Due to this immaturity,

this thesis focuses on other aspects of the software component

quality.

Additionally, this thesis considered that the first step is evaluate the

quality of the component available and after that the quality of the

system composed by the selected components. For this reason, the

component assembly prediction was not addressed here but should be

considered as future work; and

• Cost Model: Cost estimation is a key requirement for CBSE before

the actual development activities can proceed. Cost is a function of the

enterprise itself, its particular development process, the selected

solution, and the management and availability of the resource during

the development project (Cechich et al., 2003), (Mahmooda et al,

2005). A cost model is useful to help the software engineering during

the analysis of the software component available to purchase (or to

select or to evaluate). However, it just makes sense when, first, you

have defined processes, methods, techniques and tools to execute the

selection and/or the evaluation task in order to identify the

cost/benefit to purchase or to evaluate a component. In this case, the

whole framework that is the basis for component evaluation will be

considered in this first moment and, after that a cost model for

helping organizations to define if it is viable evaluate certain kind of

components (or nor) will be useful.

1.6 Organization of the Thesis
The remainder of this thesis is organized as follows.

Chapter 1 – Introduction

13

Chapter 2 presents a brief overview of the software reuse, software

components and component-based development areas. The main concepts of

these topics are considered.

Chapter 3 describes the aspects related to the software quality and the

software component quality assurance concepts. The intention is to show that

software reuse depends on quality.

Chapter 4 presents the survey of the state-of-the-art of the software

component quality assurance area that was performed. The failure cases that

can be found in literature are also described in this chapter.

Chapter 5 briefly presents the Software Component Quality Framework

proposed and its related modules. Moreover, the first module is described, the

Component Quality Model (CQM), showing its characteristics, its sub-

characteristics, the quality attributes and the metrics that are related to the

model.

Chapter 6 presents the Evaluation Techniques Framework which is

composed of the Software Component Evaluation Techniques Model (SCETM).

The model presents a set of evaluation levels in order to provide flexibility to the

component evaluation. Still on, a set of guidance is shown aiming the evaluation

team during the levels selection. Moreover, the Metrics Framework and the

paradigm adopted to define the metrics are also presented. Some few examples

of metrics usage are presented. Additionally, Appendix A is composed of

valuable examples of metrics usage in the component evaluation context.

Chapter 7 presents the Software Component Evaluation Process,

describing all activities and steps that should be followed to execute the

component evaluation activity in a more controllable way.

Chapter 8 presents the definition, planning, operation, analysis and

interpretation of the experimental study which evaluates the viability of the

proposed process.

Chapter 9 summarizes the main contributions of this work, presents the

related works, the concluding remarks and the future work.

Chapter 1 – Introduction

14

Appendix A presents a set of examples of metrics in order to help the

software evaluators during the software component evaluation process.

Appendix B presents the template to document the software component

evaluation process activity.

Appendix C presents the questionnaires used in the experimental study.

15

Software Reuse

Reuse products, processes and other knowledge will be the key to enable

the software industry to achieve a dramatic improvement in productivity and

quality that is required to satisfy anticipated growing demands (Basili et al.,

1991), (Mohagheghi and Conradi, 2007). However, failing in the adoption of

reuse can cost precious time and resources, and may make management

skeptical, not willing to try it again. But if your competitors do it successfully

and you do not, you may lose a market share and possibly an entire market

(Frakes & Isoda, 1994). In other words, if a certain organization does not adopt

software reuse before its competitors, it will probably be out of the market, and

has a great possibility of crashing.

According to Krueger (Krueger, 1992), software reuse is the process of

creating software systems from existing software, instead of building from

scratch. Typically, reuse involves the selection, specialization, and integration of

artifacts, although different reuse techniques may emphasize some of these

aspects. A number of authors (Basili et al., 1996), (Rada et al., 1997), (D’Souza et

al., 1999) state that software reuse is the practice of using an artifact in more

than one software system.

The most commonly reused software product is source code, which is the

final and the most important product of the development activity. In addition to

the source code, any intermediary product of the software life cycle can be

reused, such as (D’Souza et al., 1999): compiled code, test cases, models, user

interfaces and plans/strategies.

According to Basili et al. (Basili et al., 1991), the following assumptions

should be considered in the software reuse area:

2

Chapter 2 – Software Reuse

16

• All experience can be reused: Traditionally, the emphasis has been

on reusing concrete assets, mainly source code. This limitation reflects

the traditional view that software is equals to code. It ignores the

importance or reusing all kinds of software experience, including

products, processes, and other knowledge. The term “product” refers to

either a concrete document or artifact created during a software

project, or a product model describing a class of concrete documents or

artifacts with common characteristics. The term “process” refers to

either a concrete activity of action aimed at creating some software

product, or a process model describing a class of activities or actions

with common characteristics. The term “other knowledge” refers to

anything useful for software development, including quality and

productivity models or models of the application that is being

implemented;

• Reuse typically requires some modification of the assets

being reused: The degree of modification depends on how many, and

to what degree, existing assets characteristics differ from those

required. The time of modification depends on when the reuse

requirements for a project or class of projects are known;

• Analysis is necessary to determine if, and when, reuse is

appropriate: Reuse pay-off is not always easy to evaluate. There is a

need to understand: which are the reuse requirements; how well the

available reuse candidates are qualified to meet these requirements;

and the mechanisms available to perform the necessary modification;

• Reuse must be integrated into the specific software

development: Reuse is intended to make software development more

effective. In order to achieve this objective, it is needed to tailor reuse

practices, methods and tools to the respective development process

(decide when, and how, to identify, modify and integrate existing

reusable assets.).

Additionally, the primary motivation to reuse software assets is to reduce

the time and effort required to build software systems. The quality of software

systems is enhanced by reusing quality software assets, which also reduces the

time and effort spent in maintenance (Krueger, 1992). Some of the most

Chapter 2 – Software Reuse

17

important improvements that can be achieved through reuse are summarized

below (Lim, 1994).

• Increased Productivity. By avoiding redundancy in development

efforts, software engineers can accomplish more in less time;

• Reduced Maintenance Cost. By reusing high-quality assets, defects

are reduced. Furthermore, maintenance efforts are centralized and

updates or corrections to one asset can in general propagate easily to

consumers;

• Reduced Training Cost. By reusing assets, software engineers can

easily transfer knowledge that was acquired in different projects.

Reusing assets leads to reusing the knowledge associated with these

assets. This can greatly reduce the training that is necessary for

software engineers to become familiar with the new systems;

• Increased Quality. When an asset’s cost can be amortized through a

large number of usages, it becomes feasible to invest substantial effort

in improving its quality. This improvement is seamlessly reflected in

the quality of all the products where the asset is used;

• Support for Rapid Prototyping. A library of reusable assets can

provide a very effective basis for quickly building application

prototypes;

• Specialization. Reuse allows organizations to capture specialized

domain knowledge from producers and leverage this knowledge across

the organization.

Sametinger (Sametinger, 1997) agrees with these improvements and

presents others that are worth mentioning:

• Reliability: Using well-tested assets increases the reliability of a

software system. Furthermore, the use of an asset in several systems

increases the chance of errors to be detected and strengthens

confidence in that asset;

• Redundant work, development time: Developing every system

from scratch means redundant development of many parts such as user

interfaces, communication, basic algorithms, etc. This can be avoided

Chapter 2 – Software Reuse

18

when these parts are available as reusable assets and can be shared,

resulting in less development and less associated time and costs;

• Time to Market: The success or failure of a software product is very

often determined by its time-to-market. Using reusable assets will

result in a reduction of that time; and

• Documentation: Even though documentation is very important for

the maintenance of a system, it is often neglected. By reusing assets, the

amount of documentation that must be written is also reduced. Also, it

increases the importance of what is written: only the overall structure

of the software system and the newly developed assets have to be

documented. The documentation of reusable assets can be shared

among many software systems.

Given such important and powerful improvements, the conclusion is that

software reuse provides a competitive advantage to the company that adopts it.

Some relevant software reuse experience can be found in literature (Endres,

1993), (Griss, 1994), (Frakes & Isoda, 1994), (Joos, 1994), (Griss et al., 1995),

(Morisio et al., 2002). Other survey that relates advantages, success and failure

cases, myths and inhibitors for software reuse adoption is presented in (Almeida

et al., 2007a).

Although the benefits of software reuse are known, it is a complex task to

put reuse in practice. Just by grouping some software parts into a library and

offering them to the developers is not enough. Instead, the assets have to be

carefully designed and developed, in order to offer an effective reuse in all steps

of the development process. Besides, there are several factors that directly or

indirectly influence the effectiveness of software reuse, such as: well-defined

management, software reuse metrics, certification, system repositories, software

reuse process, training, organizational incentives, politics, and economical

issues, among others.

Some techniques that aim to promote reuse include: domain engineering

(Prieto-Díaz, 1990), (Arango, 1994), design patterns (Gamma et al., 1995),

product lines (Clements et al., 2001), frameworks (D’Souza et al., 1999), and,

component-based development (Brereton et al., 2000), (Meyer et al., 1999).

Chapter 2 – Software Reuse

19

This last technique is the most commonly used in order to promote reuse and is

presented next.

2.1 Component-Based Development (CBD)

Until a few years ago, the development of most software products that are

available in the market were based on monolithic blocks, formed by a

considerable number of related parts, where these relations were, mostly,

implicit. Component-Based Development (CBD) appeared as a new perspective

for the software development, aiming at the rupture of these monolithic blocks

into interoperable components, decreasing the complexity of the development,

as well as its costs, through the use of components that, in principle, are

adequate for other applications (Sametinger, 1997).

Only recently, CBD has been considered as an important technique in

software development. Some factors fostered new interest in this area, providing

necessary motivation to believe that CBD can be now more effective and

perform in large scale. Among these factors, some can be mentioned (D’Souza et

al., 1999):

• The Development of the Internet, which increases the concerns about

distributed computation;

• The change of the systems that are structured in mainframe-based

architectures into systems that are based on client/server architectures,

leading the developers to consider applications not anymore as

monolithic systems but as a set of interoperable subsystems; and

• The use of standards in the applications construction, such as those

established by the Object Management Group (OMG) (OMG, 2007),

Component Object Model (COM) (Microsoft COM, 2007), CORBA

Component Model (CCM) (OMG CCM, 2002) and Enterprise Java

Beans (EJB) (DeMichiel, 2002).

According to Vitharana (Vitharana, 2003) the key CBD advantages in

future software development efforts are the following:

• Reduced lead time. Building complete business applications from an

existing pool of components;

Chapter 2 – Software Reuse

20

• Leveraged costs developing individual components. Reusing

them in multiple applications;

• Enhanced quality. Components are reused and tested in many

different applications; and

• Maintenance of component-based applications. Easy

replacement of obsolete components with new enhanced ones.

The CBD is supposed to reduce the cost and time to market of software

applications while increasing their quality. Since components are reused in

several occasions, they are likely to be more reliable than software developed

from scratch, as they were tested under a larger variety of conditions. Cost and

time savings result from the effort that would otherwise be necessary to develop

and integrate the functionalities provided by the components in each new

software application. In this way, the CBD is the promises of some organizations

to promote reuse and the component markets have grown exponentially due to

demand for productivity in software development. However, the component

area is still immature and future research is needed.

2.1.1 Software Components

The exact concept of component in CBD is not yet a consensus, due to the

relative novelty of this area4. Each research group characterizes, according to its

own context, what a software component is and, thus, there is not a common

definition for this term in literature.

Since the first CBD workshop, in 1998, in Kyoto, several definitions have

been presented; each one putting into evidence a specific aspect of a component.

In Heineman’s book (Heineman et al., 2001), a group formed by specialists in

CBSE relates that after eighteen months a consensus was achieved about what

would be a software component.

4 In 1998, the Workshop on Component-Based Software Engineering (CBSE) was first held, in

conjunction with the 20th International Conference on Software Engineering (ICSE). Also in

1998, Clemens Szyperski published his first book on software components, which was reedited

and the second version launched in 2002 (Szyperski, 2002).

Chapter 2 – Software Reuse

21

According to these specialists, a software component is a software element

that conforms to a component model and that can be independently deployed

and composed without modification according to a composition pattern.

Clements Szyperski (Szyperski, 2002) presents a number of definitions of

what software components are or should be, trying to define a standard

terminology ranging from the semantics of the components and component

systems. His concept is sufficient to establish a satisfactory definition about

what is a component in CBD, and will be used as basis in this thesis:

“A software component is a unit of composition with contractually

specified interfaces and explicit context dependencies only. A software

component can be independently deployed and is subject to third-party

composition” (pp. 36).

The contractually specified interfaces are important in order to form a

common layer between the developer/analyst/architect/designer (i.e. a person

who needs a component) and the component developer. The explicit context

dependencies refer to what the deployment environment must provide so that

the components can function properly. Still, for a component to be

independently deployable, it needs to be well separated from its environment

and other components. Finally, for a component to be composed with other

component by a third-party it must be sufficiently self-contained, i.e. the

function that the component performs must be fully performed within itself.

The component interfaces define how this component can be reused and

interconnected with other components. The interfaces allow clients of a

component, usually other components, to access its services. Normally, a

component has multiple interfaces, corresponding to different services.

In (Szyperski, 2002), Szyperski defines an interface as a set of operation

signatures that can be invoked by a client. Each operation’s semantics is

specified, and this specification plays a dual role as it serves both providers

implementing the interface and clients using the interface.

According to Heineman et al. (Heineman et al., 2001), there are two types

of interfaces: provided and required. A component supports a provided

interface if it contains the implementation of all operations defined by this

Chapter 2 – Software Reuse

22

interface. On the other hand, a component needs a required interface if it

depends on other software elements to support this interface.

In these two cases, the connections between the components are

accomplished through its interfaces. However, there are cases where this

connection is not direct, being necessary the usage of another component,

designed exclusively to intermediate this connection. This type of component is

usually known as connector (Heineman et al., 2001).

John Williams, in (Heineman et al., 2001), classified software components

into three categories:

• GUI components. The most prevalent type of component in the

marketplace. GUI components encompass all the buttons, sliders, and

other widgets used in user interfaces;

• Service components. They provide access to common services

needed by applications. These include database access, access to

messaging and transaction services, and system integration services.

One common characteristic of service components is that they all use

additional infrastructure or systems to perform their functions; and

• Domain components. These are what most developers think of

when they talk about business components. Reusable domain

components are also difficult to design and build. They may have their

own application context dependencies as part of an application

infrastructure. Moreover, these components require a high level of

domain expertise to build and deploy.

2.2 Summary

This chapter presented the main concepts of software reuse, showing its

advantage to the software industries and the main benefits that it can provide

when successfully adopted. One of the techniques that promote reuse,

component-based development, was also detailed. Additionally, this Chapter

presents definitions on software components, and a brief explanation of

software components assumptions.

23

Software Quality

The explosive growth of the software industry in recent years has focused

attention on the problems long associated with software development:

uncontrollable costs, missed schedules, and unpredictable quality. To remain

competitive, software factories must deliver high quality products on time and

within budget (Slaughter et al., 1998), (Hatton, 2007). The quality in software

products was always envisioned by customers.

According to Boegh et al. (Boegh et al., 1993), software quality is

something feasible, relative, substantially dynamic and evolutionary, adapting

itself to the level of the objectives to be achieved. To reach high quality levels is

costly; thus, the important is to focus on the level that is required by the

customer.

One of the main objectives of software engineering is to improve the

quality of software products, establishing methods and technologies to build

software products within given time limits and available resources. Given the

direct correlation that exists between software products and processes, the

quality area could be divided into two main topics (Pressman, 2005):

• Software Product Quality: aiming to assure the quality of the

generated product (e.g. ISO/IEC 25000 (ISO/IEC 25000, 2005),

ISO/IEC 25051 (ISO/IEC 25051, 2006), ISO/IEC 25040 (ISO/IEC

25040), (McCall et al., 1977), (Boehm et al., 1978), among others); and

• Software Processes Quality: looking for the definition, evaluation

and improvement of software development processes (e.g. Capability

Maturity Model Integrated (CMMI) (CMMI, 2006), ISO/IEC 15504

(ISO/IEC 15504-7, 2008), (Drouin, 1995), among others).

3

Chapter 3 – Software Quality and Certification

24

Focusing on software product quality, according to the standard ISO

9000:2000 (ISO 9000, 2005), software quality is the totality of the

characteristics of an entity that assure itself the capacity of satisfying the explicit

and implicit user’s necessities.

It can be noticed that this definition needs complementation, mainly to

better define the terms entity and explicit and implicit necessities. Entity is a

product/process/service whose quality needs to be assured; the explicit

necessities are the conditions and objectives captured by the producer; and the

implicit necessities include the differences between the users, the time

evolution, the ethical implications, the security questions, and other subjective

visions.

According to the definition, the quality of a product or service is evaluated

according to its capability of fulfilling the user necessities. Thus, to guide the

quality of a software system means to identify which characteristics need to be

developed in order to determine the user necessities and to assure its quality.

However, in general, there is still no consensus about how to define and

categorize software product quality characteristics. This thesis follows, as much

as possible, a standard terminology, in particular that defined by ISO 9126.

“A quality characteristic is a set of properties of a software product, by

which its quality can be described and evaluated. A characteristic may be

refined into multiple levels of sub-characteristics.”

This definition suggests that quality is more complex than it appears, i.e.,

to assure some software quality characteristic, there could be some sub-

characteristics. Also, it may be very difficult to determine the quality attributes

of each sub-characteristics in order to perform future evaluation and

measurement.

An interesting aspect about software quality is that without the customer’s

recognition, achieving quality is worthless. In this sense, the software must pass

through an official certification process, so that the customer may trust that the

quality is really present.

Actually, many institutions concern in creating standards to properly

evaluate the quality of the software product and software development

Chapter 3 – Software Quality and Certification

25

processes. In order to provide a general vision, Table 3.1 shows a set of national

and international standards in this area.

Table 3.1. Software quality standards.

Standards Overview

ISO/IEC 9126 Software Products Quality Characteristics

ISO/IEC 14598
Guides to evaluate software product, based on practical
usage of the ISO 9156 standard

ISO/IEC 25051 Requirements for Quality of COTS

ISO/IEC 25000 Software Product Quality Requirements and Evaluation

IEEE P1061 Standard for Software Quality Metrics Methodology

ISO 12207 Software Life Cycle Process

NBR ISO 8402 Quality Management and Assurance

NBR ISO 9000-1-2
Model for quality assurance in Design, Development,
Test, Installation and Servicing

NBR ISO 90003
Quality Management and Assurance. Application of the
ISO 9001 standard to the software development process

ISO/IEC 9000 Quality Management Systems model

CMMI

SEI’s model for judging the maturity of the software
processes of an organization and for identifying the key
practices that are required to increase the maturity of
these processes

ISO/IEC 15504 It is a framework for the assessment of software processes

MPS.br Brazilian software process improvement model

The software market has grown in the last years, as well as the necessity of

producing software with quality. Thus, obtaining quality certificates has been a

major concern for software companies. Figure 3.1 shows how this tendency

influenced the Brazilian software companies until nowadays5.

The number of companies looking for standards to assure the quality of

their products or processes has grown drastically in the recent past. The graph

on the left shows this growth in relation to ISO 9000, which assures the Quality

Management and Assurance. The graph on the right shows this growth in

relation to CMMI, which assures the software development processes quality.

Although this study shows the state of the Brazilian companies, the same

tendency can be observed in other countries, as the need for quality assurance in

software product and processes is an actual reality of software companies

around the world.

5 http://www.softex.br

Chapter 3 – Software Quality and Certification

26

Figure 3.1. Number of companies certified ISO 9000, CMMI and MPS.br

However, there is still no standard or effective process to certificate the

quality of pieces of software, such as components. As shown in chapter 1, this is

one of the major inhibitors to the adoption of CBD. However, some ideas of

software product quality assurance may be seen in the SQuaRE project

(described next), which will be adopted as basis for defining a consistent quality

framework for software components.

3.1 ISO/IEC 25000 (SQuaRE project)
The SQuaRE (Software Product Quality Requirements and Evaluation)

project (ISO/IEC 25000, 2005) has been created specifically to make two

standards converge, trying to eliminate the gaps, conflicts, and ambiguities that

they present. These two standards are the ISO/IEC 9126 (ISO/IEC 9126, 2001),

which define a quality model for software product, and ISO/IEC 14598

Chapter 3 – Software Quality and Certification

27

(ISO/IEC 14598, 1998), which define a software product evaluation process,

based on the ISO/IEC 9126.

Thus, the general objective for this next series is to respond to the evolving

needs of users through an improved and unified set of normative documents

covering three complementary quality processes: quality requirements

specification, measurement and evaluation. The motivation for this effort is to

supply those responsible for developing and acquiring software products with

quality engineering instruments supporting both the specification and

evaluation of quality requirements.

SQuaRE also include criteria for the specification of quality requirements

and their evaluation, and recommended measures of software product quality

attributes, which can be used by developers, acquirers and evaluators. However,

it is important to say that this is an ongoing standard which has been

developed/refined since 2005 until now.

SQuaRE consists of 5 divisions as shows in Figure 3.2. The letters n

presented in both divisions represent the possibility to provide more standards

in each division.

Figure 3.2. SQuaRE Architecture (ISO/IEC 25000, 2005)

The Quality Requirements Division (ISO/IEC 2503n) (ISO/IEC

25030, 2007) contains the standard for supporting the specification of quality

Chapter 3 – Software Quality and Certification

28

requirements, either during software product quality requirement elicitation or

as an input for an evaluation process. This division includes:

• Quality requirements and guide: to enable software product

quality to be specified in terms of quality requirements;

The Quality Model Division (ISO/IEC 2501n) (ISO/IEC 25010)

contains the detailed quality model and its specific characteristics and sub-

characteristics for internal quality, external quality and quality in use. This

division includes:

• Quality model and guide: to describe the model for software

product internal and external quality, and quality in use. The

document presents the characteristics and sub-characteristics for

internal and external quality and characteristics for quality in use.

The Product Quality General Division (ISO/IEC 2500n) (ISO/IEC

25000, 2005) contains an unit standard that defining all common models,

terms and definitions referred to by all other standards in the SQuaRE series.

Readers are reminded that the Quality Management theme will deal with

software products, in contrast to the distinct processes of Quality Management

as defined in the ISO 9000 family of standards. This division includes two unit

standards:

• Guide to SQuaRE: to provide the SQuaRE structure, terminology,

document overview, intended users and associated parts of the

series, as well as reference models;

• Planning and management: to provide the requirements and

guidance for planning and management support functions for

software product evaluation.

The standards in the Quality Measurement Division (ISO/IEC

2502n) (ISO/IEC 25020, 2007) were derived from ISO/IEC 9126 and ISO/IEC

14598. This division covers the mathematical definitions and guidance for

practical measurements of internal quality, external quality and quality in use.

In addition, it includes the definitions for the measurement primitives for all

other measures. This module has influence of Goal-Question-Metric (GQM)

(Basili et al., 1994), Practical Software Measurement (PSM) (McGarry et al.,

Chapter 3 – Software Quality and Certification

29

2002) and ISO/IEC 15939 (ISO/IEC 15939, 2007). This theme also contains the

Evaluation Module to support the documentation of measurements. This

division includes:

• Measurement reference model and guide: to present introductory

explanations, the reference model and the definitions that is

common to measurement primitives, internal measures, external

measures and quality in use measures. The document also provides

guidance to users for selecting (or developing) and applying

appropriate measures;

• Measurement primitives: to define a set of base and derived

measures, being the measurement constructs for the internal

quality, external quality and quality in use measurements;

• Measures for internal quality: to define a set of internal measures

for quantitatively measuring internal software quality in terms of

quality characteristics and sub-characteristics;

• Measures for external quality: to define a set of external measures

for quantitatively measuring external software quality in terms of

quality characteristics and sub-characteristics;

• Measures for quality in use: to define a set of measures for

measuring quality in use. The document will provide guidance on

the use of the quality in use measures.

The Quality Evaluation Division (ISO/IEC 2504n) (ISO/IEC

25040) contains the standards for providing requirements, recommendations

and guidelines for software product evaluation, whether performed by

evaluators, acquirers or developers. This division includes:

• Quality evaluation overview and guide: to identify the general

requirements for specification and evaluation of software quality

and to clarify the generic concepts. It will provide a framework for

evaluating the quality of a software product and for stating the

requirements for methods of software product measurement and

evaluation;

Chapter 3 – Software Quality and Certification

30

• Process for developers: to provide requirements and

recommendations for the practical implementation of software

product evaluation when the evaluation is conducted in parallel

with development;

• Process for acquirers: to contain requirements, recommendations

and guidelines for the systematic measurement, assessment and

evaluation of software product quality during acquisition of

“commercial-off-the-shelf” (COTS) software products or custom

software products, or for modifications to existing software

products;

• Process for evaluators: to provide requirements and

recommendations for the practical implementation of software

product evaluation, when several parties need to understand,

accept and trust evaluation results;

• Documentation for the evaluation module: to define the structure

and content of the documentation to be used to describe an

Evaluation Module.

The next section will present more details about Quality Model Division,

Quality Evaluation Division and Quality Measurement Division. These three

divisions are the basis of the SQuaRE project and contain the

guidelines/techniques that guide this thesis during the software component

quality framework proposal. It is important to say that these five modules of

SQuaRE have been in its draft version and, probably, some modification will be

done until its final version.

3.2.1 ISO/IEC 2501n (Quality Model Division)

The ISO/IEC 2501n (ISO/IEC 25010) is an evolution of the ISO/IEC 9126

-1 (ISO/IEC 9126, 2001) standard, which provides a quality model for software

product. At moment, this division contains only one standard: 25010 – Quality

Model and guide. This is an ongoing standard in development.

The Quality Model Division does not prescribe specific quality

requirements for software, but rather defines a quality model, which can be

applied to every kind of software. This is a generic model that can be applied to

Chapter 3 – Software Quality and Certification

31

any software product by tailoring it to a specific purpose. The ISO/IEC 25010

defines a quality model that comprises six characteristics and 27 sub-

characteristics (Table 3.2). The six characteristics are described next:

• Functionality: The capability of the software to provide functions

which meet stated and implied needs when the software is used under

specified conditions;

• Reliability: The capability of the software to maintain the level of

performance of the system when used under specified conditions;

• Usability: The capability of the software to be understood, learned,

used and appreciated by the user, when used under specified

conditions;

• Efficiency: The capability of the software to provide the required

performance relative to the amount of resources used, under stated

conditions;

• Maintainability: The capability of the software to be modified; and

• Portability: The capability of software to be transferred from one

environment to another.

Table 3.2. Characteristics and Sub-Characteristics in SQuaRE project.

Characteristics Sub-Characteristics

Functionality
Suitability, Accuracy, Interoperability, Security,
Functionality Compliance

Reliability
Maturity, Fault Tolerance, Recoverability, Reliability
Compliance

Usability
Understandability, Learnability, Operability,
Attractiveness, Usability Compliance

Efficiency
Time Behavior, Resource Utilization, Efficiency
Compliance

Maintainability
Analyzability, Changeability, Stability, Testability,
Maintainability Compliance

Portability
Adaptability, Installability, Replaceability, Coexistence,
Portability Compliance

The usage quality characteristics (i.e. characteristics that can be obtained

from the end-user usage feedback) are called Quality in Use characteristics and

are modeled with four characteristics: effectiveness, productivity, security and

satisfaction.

Chapter 3 – Software Quality and Certification

32

The main drawback of the existing international standards, in this case the

ISO/IEC 25010, is that they provide very generic quality models and guidelines,

which are very difficult to apply to specific domains such as COTS components

and CBSE. Thus, the quality characteristics of this model should be analyzed in

order to define the component quality characteristics.

A quality model serves as a basis for determining if a piece of software has

a number of quality attributes. In conventional software development, to simply

use a quality model is often enough, since the main stakeholders that are

interested in software quality are either the developers or the customers that

hired these developers. In both cases, the quality attributes may be directly

observed and assured by these stakeholders.

3.2.2 ISO/IEC 2504n (Quality Evaluation Division)
The ISO/IEC 2504n (ISO/IEC 25040) is an evolution of the ISO/IEC

14598 (ISO/IEC 14598, 2001) standard, which provides a generic model of an

evaluation process, supported by the quality measurements from GQM, PSM

and ISO/IEC 15939. This process is specified in four major sets of activities for

an evaluation, together with the relevant detailed activities (Figure 3.2). This is

an ongoing standard in development.

Figure 3.3. ISO/IEC 25040

Chapter 3 – Software Quality and Certification

33

The ISO/IEC 2504n is divided in five standards: ISO/IEC 25040 –

Evaluation reference model and guide; ISO/IEC 25041 – Evaluation modules;

ISO/IEC 25042 – Evaluation process for developers; ISO/IEC 25043 –

Evaluation process for acquirers; and ISO/IEC 25044 – Evaluation process for

evaluators. Besides providing guidance and requirements for the software

product evaluation process (ISO/IEC 25040 and ISO/IEC 25041), it provides

other three standards that contain guides for different perspectives of software

product evaluation: developers, acquires and evaluators.

3.2.3 ISO/IEC 2502n (Quality Measurement
Division)

The ISO/IEC 2502n (ISO/IEC 25020, 2007) division tries to improve the

quality measurements provided by previous standards like ISO/IEC 9126-2

(external metrics) (ISO/IEC 9126-2, 2003), ISO/IEC 9126-3 (internal metrics)

(ISO/IEC 9126-3, 2003) and ISO/IEC 9126-4 (quality in use metrics) (ISO/IEC

9126-4, 2003). However, this standard improves some aspects of quality

measurement and the most significantly is the adoption of the Goal-Question-

Metrics (GQM) paradigm (Basili et al., 1994).

The ISO/IEC 2502n is divided in five standards: ISO/IEC 25020 -

Measurement reference model and guide; ISO/IEC 25021 – Measurement

primitives; ISO/IEC 25022 – Measurement of internal quality; ISO/IEC 25023

– Measurement of external quality; and ISO/IEC 25024 – Measurement of

quality in use. These standards contain some examples on how to define metrics

for different kinds of perspectives, such as internal, external and quality in use.

3.3 Software Component Quality
Once presented the main standards to reach software product quality, this

section will discuss the main concepts involving software components

quality/certification, which is an attempt to achieve trust in software

components.

According to Stafford et al. (Stafford et al., 2001), certification, in general,

is the process of verifying a property value associated with something, and

providing a certificate to be used as proof of validity.

Chapter 3 – Software Quality and Certification

34

A “property” can be understood as a discernable feature of “something”,

such as latency and measured test coverage, for example. After verifying these

properties, a certificate must be provided in order to assure that this “product”

has determined characteristics.

Focusing on a certain type of certification, in this case component

certification, Councill (Councill, 2001) has given a satisfactory definition about

what software component certification is, definition that was adopted in this

thesis:

“Third-party certification is a method to ensure that software

components conform to well-defined standards; based on this certification,

trusted assemblies of components can be constructed.”

To prove that a component conforms to well-defined standards, the

certification process must provide certificate evidence that it fulfills a given set

of requirements. Thus, trusted assembly – application development based on

third-party composition – may be performed based on the previously

established quality levels.

Still, third party certification is often viewed as a good way of bringing

trust in software components. Trust is a property of an interaction and is

achieved to various degrees through a variety of mechanisms. For example,

when purchasing a light bulb, one expects that the base of the bulb will screw

into the socket in such a way that it will produce the expected amount of light.

The size and threading has been standardized and a consumer “trusts” that the

manufacturer of any given light-bulb has checked to make certain that each bulb

conforms to that standard within some acceptable tolerance of some set of

property values. The interaction between the consumer and the bulb

manufacturer involves an implicit trust (Stafford et al., 2001).

In the case of the light-bulb there is little fear that significant damage

would result if the bulb did not in fact exhibit the expected property values. This

is not the case when purchasing a gas connector. In this case, explosion can

occur if the connector does not conform to the standard. Gas connectors are

certified to meet a standard, and nobody concerning with safety would use a

connector that does not have such a certificate attached. Certification is a

mechanism by which trust is gained. Associated with certification is a higher

Chapter 3 – Software Quality and Certification

35

requirement for and level of trust than can be assumed when using implicit trust

mechanisms (Stafford et al., 2001).

When these notions are applied to CBSE, it makes sense to use different

mechanisms to achieve trust, depending upon the level of trust that is required.

In order to achieve trust in components, it is necessary to obtain the

components that will be evaluated. According to Frakes et al. (Frakes & Terry,

1996), components can be obtained from existing systems through

reengineering, designed and built from scratch, or purchased. After that, the

components are certified, in order to achieve some trust level, and stored into a

repository system, as shows in Figure 3.3.

A component is certifiable if it has properties that can be demonstrated in

an objective way, which mean that they should be described in sufficient detail,

and with sufficient rigor, to enable their certification (Wallnau, 2003). In order

to do that is needed a well-defined component quality model, which

incorporates the most common software quality characteristics that are present

in the already established models, such as functionally, reliability and

performance plus the characteristics that are inherent to CBSE.

Figure 3.4. Process of obtaining, certifying and storing components

Regarding the certification process, the CBSE community is still far from

reaching a consensus on how it should be carried out, what are its requirements

Chapter 3 – Software Quality and Certification

36

and who should perform it. Still on, third party certification can face some

difficulties, particularly due to the relative novelty of this area (Goulao et al.,

2002a).

3.4 Summary
This chapter presented the main concepts about software quality and, in the

context of this thesis, quality related to software components. It also presented

SQuaRE project, a software product quality requirements and evaluation

standard that has some ideas regarding component quality assurance. Since

trust is a critical issue in CBSE, this chapter also presented some concepts of

component certification. As shown, this is a still immature area, and some

research is needed in order to acquire the reliability that the market expects

from CBSE.

37

Software Component
Certification: A
Survey

In order to look for plausible answers for the questions discussed in

chapter 1, this chapter presents a survey of the state-of-the-art in software

component certification research (Alvaro et al., 2005a), in an attempt to analyze

this trend in CBSE/CBD and to probe some of the component certification

research directions. In this way, works related to certification process in order to

evaluate software component quality are surveyed, however the literature

contains several works related to software component quality achievement, such

as: component testing (Councill, 1999), (Beydeda & Gruhn, 2003), component

verification (Wallin, 2002), component contracts (Beugnard et al., 1999),

(Reussner, 2003), among others (Kallio et al., 2001), (Cho et al., 2001). Since

the focus of this survey is on processes for assuring component quality, it does

not cover these works, which deal only with isolated aspects of component

quality.

Existing literature is not that rich in reports related to practical software

component certification experience, but some relevant research works explore

the theory of component certification in academic scenarios. In this sense, this

chapter presents a survey of software component certification research, since

the early 90’s until today. The timeline can be “divided” into two ages: from

1993 to 2001 the focus was mainly on mathematical and test-based models and

after 2001 the researches focused on techniques and models based in predicting

quality requirements.

During the survey it could be noted that since the beginning the literature

presents works related to software component certification which means that

the research was trying to propose such a model/standard/insights to certified

software components. However, during the years the research started to think

4

Chapter 4 – Software Component Certification: A Survey

38

that the market was not mature/prepared for certification in software

components. In this way, the works started to proposed ways to evaluate/assure

quality in software components, independent of associated any kind of

certification.

4.1 Early age: Mathematical and Test-Based
Models

Most research published in this period focus on mathematical and test-

based models. In 1993, Poore et al. (Poore et al., 1993) developed an approach

based on the usage of three mathematical models (sampling, component and

certification models), using test cases to report the failures of a system later

analyzed in order to achieve a reliability index. Poore et al. were concerned in

estimating the reliability of a complete system, and not just the reliability of

individual software units, although, they did consider how each component

affected the system reliability.

After that, in 1994, Wohlin et al. (Wohlin et al., 1994) presented the first

method of component certification using modeling techniques, making it

possible not only to certify components but to certify the system containing the

components as well. The method is composed of the usage model and the usage

profile. The usage model is a structural model of the external view of the

components, complemented with a usage profile, which describes the actual

probabilities of different events that are added to the model. The failure

statistics from the usage test form the input of a certification model, which

makes it possible to certify a specific reliability level with a given degree of

confidence.

An interesting point of this approach is that the usage and profile models

can be reused in subsequent certifications, with some adjustments that may be

needed according to each new situation. However, even reusing those models,

the considerable amount of effort and time that is needed makes the

certification process a hard task.

Two years later, in 1996, Rohde et al. (Rohde et al., 1996) had provided a

synopsis of in-progress research and development in reuse and certification of

software components at Rome Laboratory of the US Air Force, where a

Certification Framework (CF) for software components was being developed.

Chapter 4 – Software Component Certification: A Survey

39

The purpose of the CF was: to define the elements of the reuse context that are

important to certification; to define the underlying models and methods of

certification; and, finally, to define a decision-support technique to construct a

context-sensitive process for selecting and applying the techniques and tools to

certify components. Additionally, Rohde et al. had developed a Cost/Benefit

plan that describes a systematic approach to evaluate the costs and benefits of

applying certification technology within a reuse program. After analyzing this

certification process, Rohde et al. found some points that should be better

formulated in order to increase the certification quality, such as the techniques

to find errors (i.e. the major errors are more likely to be semantic, not locally

visible, rather than syntactic, which this process was looking for) and thus the

automatic tools that implements such techniques.

In summary, Rohde et al. considered only the test techniques to obtain the

defects result in order to certificate software components. This is only one of the

important techniques that should be applied to the component certification.

In 1998, the Trusted Components Initiative (TCI)6, a loose affiliation of

researchers with a shared heritage in formal interface specification, stood out of

the pack representative of TCI is the use of pre/post conditions on APIs (Meyer,

1997), supporting compositional reasoning, but only about a restricted set of

behavioral properties of assemblies. Quality attributes, such as security,

performance, availability, and so forth, are beyond the reach of these assertion

languages.

The major advanced achievement of TCI was the practical nature of the

experiments conducted.

In this same year, Voas (Voas, 1998) defined a certification methodology

using automated technologies, such as black-box testing and fault injection to

determine if a component fits into a specific scenario.

This methodology uses three quality assessment techniques to determine

the suitability of a candidate COTS (Commercial Off-The-Shelf) component: (i)

Black-box component testing is used to determine whether the component

quality is high enough; (ii) System-level fault injection is used to determine

6 http://www.trusted-components.org

Chapter 4 – Software Component Certification: A Survey

40

how well a system will tolerate a faulty component; (iii) Operational system

testing is used to determine how well the system will tolerate a properly

functioning component, since even these components can create system wide

problems.

The methodology can help developers to decide whether a component is

right for their system or not, showing how much of someone else’s mistakes the

components can tolerate.

According to Voas, this approach is not foolproof and perhaps not well-

suited to all situations. For example, the methodology does not certify that a

component can be used in all systems. In other words, Voas focused his

approach in certifying a certain component within a specific system and

environment, performing several types of tests according to the three

techniques that were cited before.

Another work involving component test may be seen in (Wohlin and

Regnell, 1998), where Wohlin and Regnell extended their previous research

(Wohlin et al., 1994), now, focusing on techniques for certifying both

components and systems. Thus, the certification process includes two major

activities: (i) usage specification (consisting of a usage model and profiles) and

(ii) certification procedure, using a reliability model.

The main contribution of that work is the division of components into

classes for certification and the identification of three different ways for

certifying software systems: (i) Certification process, in which the functional

requirements implemented in the component are validated during usage-based

testing in the same way as in any other testing technique; (ii) Reliability

certification of component and systems, in which the component models

that were built are revised and integrated to certificate the system that they

form; and, (iii) Certify or derive system reliability, where the focus is on

reusing the models that were built to certify new components or systems.

In this way, Wohlin and Regnell provided some methods and guidelines

for suitable directions to support software component certification. However,

the proposed methods are theoretical without experimental study. According to

Wohlin et al., “both experiments in a laboratory environment and industrial

case studies are needed to facilitate the understanding of component

Chapter 4 – Software Component Certification: A Survey

41

reliability, its relationship to system reliability and to validate the methods

that were used only in laboratory case studies” (pp. 09). Until now, no progress

in those directions was achieved.

The state of the art, up to around 1999, was that components were being

evaluated only with the results of the tests performed in the components.

However, there was no well-defined way to measure the efficiency of the results.

In 2000, Voas et al. (Voas et al., 2000) defined some dependability metrics in

order to measure the reliability of the components, and proposed a methodology

for systematically increasing dependability scores by performing additional test

activities. This methodology helps to provide better quality offerings, by forcing

the tests to only improve their score if the test cases have a greater tendency to

reveal software faults. Thus, these metrics and methodology do not consider

only the number of tests that a component received but also the “fault revealing”

ability of those test cases. This model estimates the number of test cases

necessary in order to reveal the seeded errors. Beyond this interesting point, the

Voas et al. work was applied to a small amount of components into an academic

scenario. Even so, the methodology presented some limitations, such as: the

result of the “fault revealing” ability was not satisfactory; the metrics needed

more precision; and, there was a lack of tools to automate the process.

Additionally, this methodology was not applied to the industry, which makes its

evaluation difficult.

In 2001, Morris et al. (Morris et al., 2001) proposed an entirely different

model for software component certification. The model was based on the tests

that developers supply in a standard portable form. So, the purchasers can

determine the quality and suitability of purchased software.

This model is divided in four steps: (i) Test Specification, which uses

XML (eXtensible Markup Language) files to define some structured elements

that represent the test specifications; (ii) Specification Document Format,

which describes how the document can be used or specified by a tester; (iii)

Specified Results, which are directly derived from a component’s

specification. These results can contain an exact value or a method for

computing the value, and are stored in the test specifications of the XML

elements; and, (iv) Verificator, which evaluates a component. In other words,

Chapter 4 – Software Component Certification: A Survey

42

Morris built a tool that reads these XML files and performs the respective tests

in the components, according to the parameters defined in XML files.

This model has some limitations for software component certification,

such as: additional cost for generating the tests, developer resources to build

these tests, and the fact that it was conceived only for syntactic errors. However,

as cited above, the majority of errors are likely to be semantic, not locally visible,

rather than syntactic, which was the aim of the model.

Although this period was mainly focused on mathematical and test-based

models, there were different ideas around as well. A first work that can be

cited was published in 1994. Merrit (Merrit, 1994) presented an interesting

suggestion: the use of components certification levels. These levels depend on

the nature, frequency, reuse and importance of the component in a particular

context, as it follows:

• Level 1: A component is described with keywords and a summary is

stored for automatic search. No tests are performed; the degree of

completeness is unknown;

• Level 2: A source code component must be compiled and metrics are

determined;

• Level 3: Testing, test data, and test results are added; and

• Level 4: A reuse manual is added.

Although simple, these levels represent an initial component quality

model. To reach the next level, the component efficiency and documentation

should be improved. The closer to level four, the higher is the probability that

the component is trusty and may be easily reused. Moreover, Merrit begins to

consider other important characteristics related to component certification,

such as attaching some additional information to components, in order to

facilitate their recovery, defining metrics to assure the quality of the

components, and providing a component reutilization manual in order to help

its reuse in other contexts. However, this is just a suggestion of certification

levels and no practical work was actually done to evaluate it.

A second work that goes beyond mathematical and test-based models,

discussing important issues of certification, was a panel presented in ICSE’2000

Chapter 4 – Software Component Certification: A Survey

43

- International Conference on Software Engineering, by Councill et al. (Councill

et al., 2000). The panel had the objective of discussing the necessity of trust

assurance in components. CBSE researchers participated in this discussion, and

all of them agreed that the certification is essential to increase software

component adoption and thus its market. Through certification, consumers may

know the trust level of components before acquiring them.

Besides these contributions, the main advance achieved in this period was

the fact that component certification began to attract attention and started to be

discussed in the main CBSE workshops (Crnkovic et al., 2001), (Crnkovic et al.,

2002).

4.2 Second age: Testing is not enough to assure
component quality

After a long time considering only tests to assure component reliability

levels, around 2000, the research on the area started to change focus, and other

issues began to be considered in component certification, such as reuse level

degree, reliability degree, among other properties.

In 2001, Stafford et al. (Stafford et al., 2001) developed a model for the

component marketplaces that supports prediction of system properties prior to

component selection. The model is concerned with the question of verifying

functional and quality-related values associated with a component. This work

introduced notable changes in this area, since it presents a CBD process with

support for component certification according to the credentials, provided by

the component developer. Such credentials are associated to arbitrary

properties and property values with components, using a specific notation such

as <property,value,credibility>. Through credentials, the developer chooses the

best components to use in the application development based on the

“credibility” level.

Stafford et al. also introduced the notion of active component dossier, in

which the component developer packs a component along with everything

needed for the component to be used in an assembly. A dossier is an abstract

component that defines certain credentials, and provides benchmarking

mechanisms that, given a component, will fill in the values of these credentials.

Chapter 4 – Software Component Certification: A Survey

44

Stafford et al. finalized their work with some open questions, such as: how

to certify measurement techniques? What level of trust is required under

different circumstances? Are there other mechanisms that might be used to

support trust? If so, are there different levels of trust associated with them and

can knowledge of these differences be used to direct the usage of different

mechanisms under different conditions?

Besides these questions, there are others that must be answered before a

component certification process is achieved, some of these apparently as simple

as: what does it mean to trust a component? (Hissam et al., 2003), or as

complex as: what characteristics of a component make it certifiable, and what

kinds of component properties can be certified? (Wallnau, 2003).

Concurrently, in 2001, Councill (Councill, 2001) had examined other

aspects of component certification, describing, primarily, the human, social,

industrial, and business issues required to assure trusted components. These

issues were mainly concerned with questions related to software faults and in

which cases these can be prejudicial to people; the cost-benefit of software

component certification; the certification advantage to minimize project

failures, and the certification costs related with the quantity of money that the

companies will save with this technique. The aspects considered in this work

had lead Councill in assuring, as well as Heineman (Heineman et al., 2000),

(Heineman et al., 2001), Crnkovic (Crnkovic, 2001) and Wallnau (Wallnau,

2003), that certification is strictly essential for software components.

In this same year, Woodman et al. (Woodman et al., 2001) analyzed some

processes involved in various approaches to CBD and examined eleven potential

CBD quality attributes. According to Woodman et al., only six requirements are

applicable to component certification: Accuracy, Clarity, Replaceability,

Interoperability, Performance and Reliability. But these are “macro-

requirements” that must be split into some “micro-requirements” in order to aid

in the measurement task. Such basic requirement definition is among the first

efforts to specify a set of properties that should be considered when dealing with

component certification. However, all of these requirements should be

considered and classified in an effective component quality model in order to

achieve a well-defined certification process.

Chapter 4 – Software Component Certification: A Survey

45

In 2002, Comella-Dorda et al. (Comella-Dorda et al., 2002) proposed a

COTS software product evaluation process. The process contain four activities,

as follows: (i) Planning the evaluation, where the evaluation team is

defined, the stakeholders are identified, the required resources is estimated and

the basic characteristics of the evaluation activity is determined; (ii)

Establishing the criteria, where the evaluation requirements are identified

and the evaluation criteria is constructed; (iii) Collecting the data, where the

component data are collected, the evaluations plan is done and the evaluation is

executed; and (iv) Analyzing the data, where the results of the evaluation are

analyzed and some recommendations are given.

With the same objective, in 2003 Beus-Dukic et al. (Beus-Dukic et al.,

2003) proposed a method to measure quality characteristics of COTS

components, based on the latest international standards for software product

quality (ISO/IEC 9126, ISO/IEC 12119 and ISO/IEC 14598). The method is

composed of four steps, as follows: (i) Establish evaluation requirements,

which include specifying the purpose and scope of the evaluation, and specifying

evaluation requirements; (ii) Specify the evaluation, which include selecting

the metrics and the evaluation methods; (iii) Design the evaluation, which

considers the component documentation, development tools, evaluation costs

and expertise required in order to make the evaluation plan; and (iv) Execute

the evaluation, which include the execution of the evaluation methods and the

analysis of the results.

Although similar to the previous work Comella-Dorda et al. and Beus-

Dukic et al.’s work are based on international standards for software product

quality, basically, the ISO 14598 principles. However, the method proposed was

not evaluated in a real case study, and, thus its real efficiency in evaluating

software components is still unknown.

In 2003, Hissam et al. (Hissam et al., 2003) introduced Prediction-

Enabled Component Technology (PECT) as a means of packaging predictable

assembly as a deployable product. PECT is meant to be the integration of a

given component technology with one or more analysis technologies that

support the prediction of assembly properties and the identification of the

required component properties and their possible certifiable descriptions. This

Chapter 4 – Software Component Certification: A Survey

46

work, which is an evolution of Stafford et al.’s work (Stafford et al., 2001),

attempts to validate the PECT and its components, giving credibility to the

model, which will be further discussed in this section.

Another approach was proposed by McGregor et al. in 2003 (McGregor et

al., 2003), defining a technique to provide component-level information to

support prediction of assembly reliabilities based on properties of the

components that form the assembly. The contribution of this research is a

method for measuring and communicating the reliability of a component in a

way that it becomes useful to describe components intended to be used by other

parties. The method provides a technique for decomposing the specification of

the component into logical pieces about which it is possible to reason.

In McGregor et al.’s (McGregor et al., 2003), some “roles” (component

services) are identified through the component documentation and the

developer may have listed the roles, identifying the services that participate in

those roles. The reliability test plan identifies each of the roles and, for each

role, the services that implement the role, providing reliability information

about each role that the component is intended to support. However, this

method is not mature enough in order to have its real efficiency and efficacy

evaluated in a proper way. According to McGregor et al., this method is a

fundamental element in an effort to construct a PECT (Hissam et al., 2003).

During 2003, a CMU/SEI’s report (Wallnau, 2003) extended Hissam et.

al. work (Hissam et al., 2003), describing how component technology can be

extended in order to achieve Predictable Assembly from Certifiable Components

(PACC). This new initiative is developing technology and methods that will

enable software engineers to predict the runtime behavior of assemblies of

software components from the properties of those components. This requires

that the properties of the components are rigorously defined, trusted and

amenable to certification by independent third parties.

SEI’s approach to PACC is PECT, which follows Hissam et al.’s work

(Hissam et al., 2003). PECT is still an ongoing research project that focuses on

analysis – in principle any analysis could be incorporated. It is an abstract

model of a component technology, consisting of a construction framework and a

reasoning framework. In order to concretize a PECT, it is necessary to choose an

Chapter 4 – Software Component Certification: A Survey

47

underlying component technology, to define restrictions on that technology to

allow predictions, and to find and implement proper analysis theories. The

PECT concept is portable, since it does not include parts that are bound to any

specific platform. Figure 4.1 shows an overview of this model.

Figure 4.1. Structure of Prediction-Enabled
Component Technology (Wallnau, 2003).

A system built within the PECT framework can be difficult to understand,

due to the difficulty of mapping the abstract component model into the concrete

component technology. It is even possible that systems that look identical at the

PECT level behave differently when realized on different component

technologies.

Although PECT is highly analyzable and portable, it is not very

understandable. In order to understand the model, the mapping to the

underlying component technology must be understood as well.

This is the current SEI research framework for software component

quality. This model requires a better maturation by the software engineering

community in order to achieve trust on it. Therefore, some future works are

being accomplished, such as: tools development to automate the process, the

applicability analysis of one or more property theories, non-functional

requirements certification, among others. Moreover, there is still the need for

applying this model in industry scenarios and evaluating the validity of the

certification.

In another work, in 2003, Meyer (Meyer, 2003) highlighted the main

concepts behind a trusted component along two complementary directions: a

“low road”, leading to certification of existing components (e.g. defining a

component quality model), and a “high road”, aimed at the production of

Chapter 4 – Software Component Certification: A Survey

48

components with fully proved correctness properties. In the first direction,

Meyer was concerned with establishing the main requirements that a

component must have. Meyer’s intention is to define a component quality

model, in order to provide a certification service for existing components –

COM, EJB, .NET, OO libraries. This model - still under development - has five

categories. When all properties in one category are achieved, the component has

the corresponding quality level.

In the second direction, Meyer analyzed the previous work in order to

construct a model that complements its certification process. The intention is to

develop components with mathematically proved properties.

In 2003, Gao et al. (Gao et al., 2003) published the first book about

software component quality, called “Testing and Quality Assurance for

Component Based Software”. The book presented the state-of-the-art in

component-based software testing, showing the current issues, challenges,

needs, and solutions in this critical area. It also discusses the advances in

component-based testing and quality assurance.

In 2005, Alvaro et al. (Alvaro et al., 2005c) presented a Component

Quality Model describing mainly the quality attributes and related metrics for

the components evaluation. The model developed was based on ISO/IEC 9126

and a set of updates in the Characteristics and Sub-Characteristics were

provided in order to be used in a software component context. At least, some

metrics were presented in order to provide means to measure the quality

characteristic proposed in the model.

Later, Alvaro et al. (Alvaro et al., 2006a) presented a preliminary

evaluation of the Component Quality Model presented in (Alvaro et al., 2005c)

in order to analyze the results of using the model. In that way, the results were

considered satisfactory once five from six null hypotheses were rejected during

the experimental study.

In 2007, Andreou & Tziakouris (Andreou & Tziakouris, 2007) proposed a

quality framework for developing and evaluating original components, along

with an application methodology that facilitates their evaluation. The

framework was based on the ISO/IEC 9126 quality model which is modified and

refined in order to reflect better the notion of original components. The quality

Chapter 4 – Software Component Certification: A Survey

49

model introduced can be tailored according to the organization and the domain

needs of the targeted component. The idea of this model is the same of the

model proposed in (Alvaro, 2005) however some quality characteristics of

ISO/IEC 9126 were eliminated from the model.

At least, in 2008, (Choi et al., 2008) proposed an in-house Component

Quality Model which includes metrics for component quality evaluation,

tailoring guidelines for evaluations, and reporting formats of evaluations. The

model proposed was based on ISO/IEC 9126 and Choi et al. have applied this

Component Quality Model to embedded system development projects. The

future works will try to automate some quality characteristics through a set of

tools developed in Samsung – Korea labs. The model proposed in this work is

specific to embedded system domain which means that the literature started to

tailor some models to specific kind of domains.

4.3 Failures in Software Component Certification

The previous section presented a survey related to the component

certification research. This section describes two failure cases that can be found

in the literature. The first failure occurred in the US government, when trying

to establish criteria for certificating components, and the second failure

happened with an IEEE committee, in an attempt to obtain a component

certification standard.

(i) Failure in National Information Assurance Partnership

(NIAP). One of the first initiatives attempting to achieve trusted components

was the NIAP. The NIAP is an U.S. Government initiative originated to meet the

security testing needs of both information technology (IT) consumers and

producers. NIAP is a collaboration between the National Institute of Standards

and Technology (NIST) and the National Security Agency (NSA). It combines

the extensive IT security experience of both agencies to promote the

development of technically sound security requirements for IT products,

systems and measurement techniques.

Thus, from 1993 until 1996, NSA and the NIST used the Trusted Computer

Security Evaluation Criteria (TCSEC), a.k.a. “Orange Book.”7, as the basis for the

7 http://www.radium.ncsc.mil/tpep/library/tcsec/index.html

Chapter 4 – Software Component Certification: A Survey

50

Common Criteria8, aimed at certifying security features of components. Their

effort was not crowned with success, at least partially because it had defined no

means of composing criteria (features) across classes of components and the

support for compositional reasoning, but only for a restricted set of behavioral

assembly properties (Hissam et al., 2003).

(ii) Failure in IEEE. In 1997, a committee was gathered to work on the

development of a proposal for an IEEE standard on software components

quality. The initiative was eventually suspended, in this same year, since the

committee came to a consensus that they were still far from getting to the point

where the document would be a strong candidate for a standard (Goulao et al.,

2002a).

4.4 Conclusion of the Study

Figure 4.2 summarizes the timeline of research on the software

component certification area, where the dotted line marks the main change in

this research area, from 1993 to 2008 (Figure 4.2). Besides, there were two

projects that failed (represented by an “X”), one project that was too innovative

for its time (represented by a circle) and two projects related to certification

concepts, the requirements and discussion about how to achieve component

certification (represented by a square). The arrows indicate that a work was

extended by another.

Figure 4.2. Research on software component certification timeline.

The research in the component certification area follows two main

directions based on: (i) Formalism: How to develop a formal way to predict

8 http://csrc.nist.gov/cc

Chapter 4 – Software Component Certification: A Survey

51

component properties? (e.g. PECT model) and How to build components with

fully proved correctness properties? (e.g. Meyer’s “high road” model); and (ii)

Component Quality Model: How to establish a well-defined component

quality model and what kinds of component properties can be certified? (e.g.

Meyer’s “low road” model).

However, these works still need some effort to conclude the proposed

models and to prove its trust, and require a definition on which requirements

are essential to measure quality in components. Even so, a unified and

prioritized set of CBSE requirements for reliable components is a challenge in

itself (Schmidt, 2003).

4.5 Summary

This chapter presented a survey related to the state-of-the-art in the

software component certification research. Some approaches found in the

literature, including the failure cases, were described. Through this survey, it

can be noticed that software components certification is still immature and

further research is needed in order to develop processes, methods, techniques,

and tools aiming to obtain well-defined standards for component quality

evaluation.

52

Software Component
Quality Framework
and Component
Quality Model

After the survey of the state-of-the-art in software component certification

research was accomplished (presented in chapter 4), it was noted that there is a

lack of processes, methods, techniques and tools available on the literature to be

used for evaluating component quality. This need for processes, methods,

techniques and tools to perform the component quality assurance is pointed out

by several researchers (Voas, 1998), (Morris et al., 2001), (Wallnau, 2003),

(Alvaro et al., 2005), and was evidenced by studies accomplished by SEI (Bass et

al., 2003), Softex (Softex, 2007) and Lucrédio et al. (Lucrédio et al., 2007). Most

researchers agree that component quality is an essential aspect of the CBSE

adoption and software reuse success.

Motivated by the needs pointed out in chapter 4, a software component

quality framework is proposed. The framework tries to be as complete as

possible, in order to provide insights required for the evaluator to execute the

component evaluation. Its idea is to improve the lack of consistency between the

available standards for software product quality (ISO/IEC 9126), (ISO/IEC

14598), (ISO/IEC 12119), also including the software component quality

context. These standards provide a high-level definition of characteristics and

metrics for software product but don’t provide ways to be used in an effective

way, becoming very difficult to apply them without acquiring more knowledge

from other sources (i.e. books, papers, etc.).

Thus, the main goal of the proposed component quality framework is to

provide modules that are consistent enough, each one complementing each

other, in order to be self-sufficiency (i.e. the information needed to do the

5

Chapter 5 – Software Component Quality Framework and Component Quality

Model

53

component evaluation task are available). In this task, a recent standard is

useful, the SQuaRE project9, which has been developed/improved until

nowadays. In this way, based on this standard, it is necessary to define a

Component Quality Model (CQM)10. However, there are several difficulties in

the development of such a model, such as: (1) which quality characteristics

should be considered, (2) how to evaluate them, and (3) who should be

responsible for such evaluation (Goulão et al., 2002a).

In general, one of the core goals to achieve quality in components is to

acquire reliability on it and, in this way, increase the component market

adoption. Usually, the software component evaluation occurs through models

that measure its quality. These models describe and organize the component

quality characteristics that will be considered during the evaluation. So, to

measure the quality of a software component it is necessary to develop a quality

model.

In this way, an overview of the proposed framework is presented in this

chapter, and it also presents a Component Quality Model, its characteristics and

sub-characteristics, and the quality attributes that compose the model. Next

chapters will present the others modules with more details.

5.1 Overview of the Framework
Based on a robust framework for software reuse (Almeida et al., 2004) –

presented on chapter 1 – which is being developed by the Reuse in Software

Engineering (RiSE) group, there must be a layer that considers the quality

aspects of the assets developed during the software reuse process. This layer is

essential once the assets reused without quality can decrease the improvements

expected with software reuse benefits (Frakes & Fox, 1995) i.e. reusable assets

9 The SQuaRE project presented in Chapter 3 has been developed with this intention but this

initiative started in 2005 and until nowadays there are huge efforts around the world in order to

finish the first version of the whole standard.
10 The model proposed here is an evolution of the Component Quality Model presented on

Alvaro’s MSc. Dissertation (Alvaro, 2005), where the previous model was based on ISO/IEC

9126 and this presented here has becoming compatible to the SQuaRE project (ISO/IEC 25000,

2005).

Chapter 5 – Software Component Quality Framework and Component Quality

Model

54

without quality can impact the quality of the whole system and some effort will

be needed to correct the errors and faults found. According to Councill

(Councill, 2001), it is better to develop your components and system from

scratch than reuse an asset without quality or with unknown quality, instead of

having the risk to impact the project planning, quality and time-to-market.

However, the process of evaluating software component quality is not a

simple one. First, there should be a component quality model. Differently

from other software product quality models, such as (McCall et al., 1977),

(Boehm et al., 1978), (Hyatt et al., 1996), (ISO/IEC 9126, 2001), (Georgiadou,

2003), this model should consider Component-Based Development (CBD)

characteristics, sub-characteristics and describe quality attributes that are

specific to promote reuse. Moreover, it should be consistent enough to provide

characteristics that complement each other with the intention of providing a

good quality model to the software component context.

With a component quality model in hand, there must be a series of

evaluation techniques that allow one to evaluate if a component conforms to

the model. It is very useful to provide the techniques that can be correlated to

the quality characteristics proposed on the quality model. Thus, this module is

very important once it is impossible to evaluate the quality of the software

component without a set of efficient evaluation techniques that cover one or

more quality characteristics provided by the component quality model (first

module). Moreover, the techniques provided should consider a set of levels in

order to provide different depth of evaluation.

Consistent and good evaluation results can only be achieved by following a

high quality and consistent evaluation process (Comella-Dorda et al., 2002). So,

the correct usage of these evaluation techniques should follow a well-defined

and controllable component evaluation process. Through this process the

evaluation can be carried out more precisely and effectively, once the evaluator

has some guidelines, templates and activities to follow. In addition, the main

goal of a well-defined process is that the certification can be repeatable and

reproducible among different evaluators.

Chapter 5 – Software Component Quality Framework and Component Quality

Model

55

Finally, a set of metrics are needed, in order to track the components

properties, the completeness of the component quality model proposed, the

efficiency of the evaluation techniques used and the enactment of the

certification process. The metrics are important to obtain the feedback of the

whole framework and improve the quality of the modules.

These four main issues (i) a Component Quality Model, (ii) a Evaluation

Techniques Framework, (iii) a Metrics Framework, and (iv) a Evaluation

Process, are the modules of a Software Component Quality Framework (Figure

5.1).

The framework will allow that the components produced in a Software

Reuse Environment are certified before being stored in a Repository System. In

this way, software engineers would have a greater degree of trust in the

components that are being reused and becoming more encouraged reusing

assets from the repository system.

According to the three perspectives considered in the SQuaRE project,

which was presented on chapter 3, this framework could be used according to

the following perspectives: acquirers, evaluators and developers. In the first

perspective, it should be considered if the customer has a set of components that

contain the same requirements and functionalities, but have different costs,

performance, and reliability attributes, among others. In this case, the

framework could be applied in order to define which component best fits the

customer needs and application/domain context. The second perspective

should be considered for software component evaluation required by companies

in order to achieve trust on its own components, looking for developing more

reliable applications or to sell components with higher quality. The third

perspective should be considered for developers know the way that the

framework will evaluate its components and to develop the component

according to the framework, looking for increasing the component quality.

Chapter 5 – Software Component Quality Framework and Component Quality

Model

56

Figure 5.1. Software Component Quality Framework.

5.2 The Component Quality Model (CQM)

The CQM proposed is based on SQuaRE project (ISO/IEC 25000, 2005),

named ISO/IEC 25010 standard, with adaptations for components. The model

is composed of marketing characteristics and some relevant component

information that is not supported in other component quality models (Goulão et

al., 2002b), (Bertoa et al., 2002), (Meyer, 2003), (Simão et al., 2003), which

will be presented next.

Although recent, some component quality models (Goulão et al., 2002b),

(Bertoa et al., 2002), (Meyer, 2003), (Simão et al., 2003) are described in the

literature and analyzed in order to identify directions for proposing a well-

defined quality model for software component evaluation. The negative and

positive points of each model were considered in this study, aiming the

identification of the characteristics that are really important to such a model.

In this way, after analyzing these models and the ISO/IEC 25010, a CQM

was developed11 (Alvaro et al., 2005b), (Alvaro et al., 2005c), (Alvaro et al.,

2005d). The proposed CQM is composed of seven characteristics, as follows:

• Functionality: This characteristic expresses the ability of a software

component to provide the required services and functions, when used

under specified conditions;

11 The CQM was proposed during my Master degree in Computer Science (Alvaro, 2005) and

during this time it was made compatible with the evolution of the ISO/IEC 9126 standard, the

SQuaRE project.

Chapter 5 – Software Component Quality Framework and Component Quality

Model

57

• Reliability: This characteristic expresses the ability of the software

component to maintain a specified level of performance, when used

under specified conditions;

• Usability: This characteristic expresses the ability of a software

component to be understood, learned, used, configured, and

executed, when used under specified conditions;

• Efficiency: This characteristic expresses the ability of a software

component to provide appropriate performance, relative to the

amount of resources used;

• Maintainability: This characteristic describes the ability of a

software component to be modified;

• Portability: This characteristic is defined as the ability of a software

component to be transferred from one environment to another; and

• Marketability: This characteristic expresses the marketing

characteristics of a software component.

Although the model is proposed following the ISO/IEC 25010 standard,

some changes were made in order to develop a consistent model to evaluate

software components:

• The characteristics that were identified as relevant to the component

context were maintained;

• One sub-characteristic that proved to be not interesting to evaluate

components was eliminated (Analyzability);

• The name of one of the sub-characteristics was changed in order to

adequate it to the component context (from Instalability to

Deployability);

• Another level of characteristics was added, containing relevant

marketing information for a software component evaluation process;

• Some sub-characteristics that complement the CQM with important

component information were established.

5.2.1 Changes in relation to ISO/IEC 25010
According to ISO/IEC 25010 (ISO/IEC 25010, 2005), the model should be

tailored in order to represent better the domain/context that will be indented to

Chapter 5 – Software Component Quality Framework and Component Quality

Model

58

work during the evaluation. In this sense, table 5.1 summarizes the changes that

were performed in relation to ISO/IEC 25010. The characteristics and sub-

characteristics that are represented in bold were not present in ISO/IEC 25010.

They were added due to the need for evaluating certain CBSD-related properties

that were not covered on ISO/IEC 25010. The sub-characteristic that is crossed

was present in ISO/IEC 25010, but was removed from the proposed model.

Finally, the sub-characteristic in italics had its name changed.

Table 5.1. Changes in the Proposed Component Quality
Model, in relation to ISO/IEC 25010.

Characteristics Sub-Characteristics

Functionality Suitability
Accuracy
Interoperability
Security
Self-sufficiency
Compliance

Reliability Maturity
Recoverability
Fault Tolerance
Compliance

Usability Understandability
Configurability
Learnability
Operability
Compliance

Efficiency Time Behavior
Resource behavior
Scalability
Compliance

Maintainability Analyzability
Stability
Changeability
Testability
Compliance

Portability Deployability
Replaceability
Adaptability
Reusability
Compliance

Marketability Price
Time to market
Targeted market
Licensing

Chapter 5 – Software Component Quality Framework and Component Quality

Model

59

The Self-sufficiency sub-characteristic is intrinsic to software

components and must be analyzed.

The Configurability is an essential feature that the developer must

analyze in order to determine if a component can be easily configured. Through

this sub-characteristic, the developer is able to preview the complexity of

deploying the component into a certain context.

The Scalability sub-characteristic is relevant to the model because it

expresses the ability of the component to support major data volumes

processing. So, the developer will know if the component supports the data

demand of his/her application.

The reason why software factories have adopted component-based

approaches to software development is the promisse of reuse. Thus, the

Reusability sub-characteristic is very important to be considered in this model.

A brief description of each new sub-characteristic is presented, as follows:

• Self-sufficiency: The function that the component performs must

be fully performed within itself;

• Configurability: The ability of the component to be configurable

(e.g. through a XML file or a text file, the number of parameters, etc.);

• Scalability: The ability of the component to accommodate major

data volumes without changing its implementation; and

• Reusability: The ability of the component to be reused. This

characteristic evaluates the reusability level through some points,

such as: the abstraction level, if it is platform-specific or not, if the

business rules are interlaced with interface code or SQL code, among

others.

Additionally, one sub-characteristic was removed in order to adequate the

model to the component context (crossed). In the Maintainability

characteristic, the Analyzability sub-characteristic disappeared. Its main

concern, according to ISO/IEC 25010, is to assert if there are methods for

performing auto-analysis, or identifying parts to be modified. Since a

component is developed with some functionality in mind, this kind of auto-

Chapter 5 – Software Component Quality Framework and Component Quality

Model

60

analysis methods is rarely developed. In fact, practical experience has shown

that components do not have Analyzability characteristics (Bertoa et al., 2003).

For this reason, it was decided, in conjunction with the Reuse in Software

Engineering (RiSE) members and software and quality engineers of a Brazilian

software factory, that the proposed Component Quality Model, similarly to

(Goulão et al., 2002b), (Bertoa et al., 2002), would not contemplate this

characteristic.

Concurrently, a sub-characteristic had its name changed, as well as its

meaning in this new context: the Installability, which in the proposed model

has the new name of Deployability. After developed, the components are

deployed (not installed) in an execution environment to make possible their

usage by other component-based applications that will be further developed.

Through this modification, the understandability of this sub-characteristic

becomes clearer to the component context.

Another characteristic that changed its meaning was Usability. The reason

is that the end-users of components are the application developer and designers

that have to build new applications with them, more than the people (end-users)

that have to interact with them. Thus, the usability of a component should be

interpreted as its ability to be used by the application developer when

constructing a software product or a system with it.

Basically, the other characteristics of the model maintain the same

meaning for software components than for software products, except for little

adaptations that are necessary to bring the ISO/IEC 25010 characteristics

definition to the component context.

Besides, another important characteristic was proposed, called

Marketability (last row of table 5.1). This characteristic expresses the marketing

characteristics of a software component and become important to be analyzed in

a software component evaluation process, such as:

• Price: The cost of the component;

• Time to market: The time consumed to make the component

available on the market;

• Targeted market: The targeted market volume; and

Chapter 5 – Software Component Quality Framework and Component Quality

Model

61

• Licensing: The kind of licensing that the software component is

available.

This information are important to analyze some factors that bring

credibility to the component customers (i.e. developers and designers), for

example, the kind of component license is interesting for the costumer analyzed

the cost/benefit of buy the component; the target market of a component

describes which domains a certain component can be applied; etc.

5.2.2 Quality characteristics that were adapted from
ISO/IEC 25010

The previous section presented the major changes, in relation to ISO/IEC

25010, that were introduced in the proposed component quality model. This

section presents the sub-characteristics from ISO/IEC 25010 that were

maintained in the proposed model, with some adaptation to better reflect the

CBSD scenario. The characteristics with their respective sub-characteristics are

described next:

Functionality:

• Suitability: This sub-characteristic expresses how well the

component fits the specified requirements;

• Accuracy: This sub-characteristic evaluates the percentage of results

obtained with the correct precision level demanded;

• Interoperability: The ability of a component to interact with

another component (data and interface compatibility);

• Security: This sub-characteristic indicates how the component is

able to control the access to its provided services; and

• Compliance: This sub-characteristic indicates if a component is

conforming to any standard (e.g. international standard, certificated

in any organization, etc.).

Reliability:

• Maturity: This sub-characteristic evaluates the component evolution

when it is launched to the market (e.g. number of versions launched

to correct bugs, number of bugs corrected, time to make the versions

available, etc.);

Chapter 5 – Software Component Quality Framework and Component Quality

Model

62

• Recoverability: This sub-characteristic indicates whether the

component can handle error situations, and the mechanism

implemented in that case (e.g. exceptions);

• Fault Tolerance: This sub-characteristic indicates whether the

component can maintain a specified level of performance in case of

faults; and

• Compliance: This sub-characteristic indicates if a component is

conforming to any standard (e.g. international standard, certificated

in any organization, etc.).

Usability:

• Understandability: This sub-characteristic measure the degree of

easiness to understand the component (e.g. documentation,

descriptions, demos, API’s, tutorial, code, etc.);

• Learnability: This sub-characteristic measures the time and effort

needed to master some specific tasks (e.g. usage, configuration,

administration of the component);

• Operability: This sub-characteristic measure the ease to operate a

component and to integrate the component into the final system; and

• Compliance: This sub-characteristic indicates if a component is

conforming to any standard (e.g. international standard, certificated

in any organization, etc.).

Efficiency:

• Time Behavior: This sub-characteristic indicates the ability to

perform a specific task at the correct time, under specified conditions;

• Resource behavior: This sub-characteristic indicates the amount

of the resources used, under specified conditions; and

• Compliance: This sub-characteristic indicates if a component is

conforming to any standard (e.g. international standard, certificated

in any organization, etc.).

Maintainability:

• Stability: This sub-characteristic indicates the stability level of the

component in preventing unexpected effect caused by modifications;

Chapter 5 – Software Component Quality Framework and Component Quality

Model

63

• Changeability: This sub-characteristic indicates whether specified

changes can be accomplished and if the component can easily be

extended with new functionalities;

• Testability: This sub-characteristic measures the effort required to

test a component in order to ensure that it complies with its intended

function; and

• Compliance: This sub-characteristic indicates if a component is

conforming to any standard (e.g. international standard, certificated

in any organization, etc.).

Portability:

• Replaceability: This sub-characteristic indicates whether the

component is “backward compatible” with its previous versions; and

• Adaptability: This sub-characteristic indicates whether the

component can be adapted to different specified environments; and

• Compliance: This sub-characteristic indicates if a component is

conforming to any standard (e.g. international standard, certificated

in any organization, etc.).

5.2.3 Summary
Table 5.2 shows another classification for the proposed component quality

model. According to the moment when a sub-characteristic is observed or

measured, it can be classified in two kinds: characteristics that are observable at

runtime (that are discernable at component execution time) and characteristics

that are observable during the product development time (that are discernable

at component development and/or component-based system development).

Table 5.2. The Proposed Component Quality Model, with the sub-characteristics
being divided into two kinds: runtime and development time.

Characteristics
Sub-Characteristics

(Runtime)
Sub-Characteristics
(Development Time)

Functionality
Accuracy
Security

Suitability
Interoperability
Compliance
Self-sufficiency

Reliability
Fault Tolerance
Recoverability

Maturity

Usability Configurability Understandability

Chapter 5 – Software Component Quality Framework and Component Quality

Model

64

Learnability
Operability

Efficiency
Time Behavior
Resource Behavior
Scalability

Maintainability Stability
Changeability
Testability

Portability Deployability
Replaceability
Adaptability
Reusability

Once the characteristics and sub-characteristics are defined, there must be

a way to determine whether a component fulfills them or not. This is achieved

through the use of attributes and metrics.

Normally, a quality model consists of four elements (ISO/IEC 25010,

2005): (i) characteristics, (ii) sub-characteristics, (iii) attributes and (iv)

metrics (Figure 5.2). A quality characteristic is a set of properties of a software

product through which its quality can be described and evaluated. A

characteristic may be refined into multiple levels of sub-characteristic.

Figure 5.2. Relations among the quality model elements.

An attribute is a measurable physical or abstract property of an entity. A

metric defines the measurement method and the measurement scale. The

measurement process consists in assigning a number or category to an attribute,

according to the type of metric that is associated to that attribute (Square

project).

Next, the quality attributes of the CQM will be presented.

5.3 Component Quality Attributes
Last section discussed the general points of the proposed component

quality model. This section describes the quality attributes for each sub-

characteristic proposed for software components (Alvaro et al., 2005c).

Characteristic

Sub-Characteristics Attribute Metric

is refined into is refined into

is measured by

Chapter 5 – Software Component Quality Framework and Component Quality

Model

65

Table 5.3 shows the component quality attributes that are observable at

runtime. After that, the component quality attributes that are observable at

development time will be presented.

Table 5.3. Component Quality Attributes for
Sub-Characteristics that are observable at Runtime.

Sub-Characteristics
(Runtime)

Attributes

Accuracy Correctness

Security Data Encryption

Controllability

Auditability

Recoverability Error Handling

Fault Tolerance Mechanism availability

Mechanism efficiency

Configurability Effort to configure

Time Behavior Response time

Latency

• Throughput (“out”)

• Processing Capacity (“in”)

Resource Behavior Memory utilization

Disk utilization

Scalability Processing capacity

Stability Modifiability

Deployability Complexity level

Next, a brief description of each quality attributes is presented:

Accuracy Sub-Characteristic

Correctness: This attribute evaluates if the component executes as

specified by the user requirements

Security Sub-Characteristic

Data Encryption: This attribute expresses the ability of a component

to deal with encryption in order to protect the data it handles;

Controllability: This attribute indicates how the component is able to

control the access to its provided interfaces;

Auditability: This attribute shows if a component implements any

auditing mechanism, with capabilities for recording users access to the

system and to its data;

Chapter 5 – Software Component Quality Framework and Component Quality

Model

66

Recoverability Sub-Characteristic

Error Handling: This attribute indicates whether the component can

handle error situations, and the mechanism implemented in that case

(e.g. exceptions in Java);

Fault Tolerance sub Characteristic

Mechanism availability: This attribute indicates the existence of

fault-tolerance mechanisms implemented in the component;

Mechanism efficiency: This attribute measures the real efficiency of

the fault-tolerance mechanisms that are available in the component;

Configurability Sub-Characteristic

Effort to configure: This attribute measures the ability of the

component to be configured;

Time Behavior Sub-Characteristic

Response time: This attribute measures the time taken since a

request is received until a response has been sent;

Latency (the time between the instantiation of a functionality and the

time left to obtain the answer)

• Throughput (“out”): This attribute measures the output that

can be successfully produced over a given period of time;

• Processing Capacity (“in”): This attribute measures the

amount of input information that can be successfully processed

by the component over a given period of time;

Resource Behavior Sub-Characteristic

Memory utilization: The amount of memory needed by a

component to operate;

Disk utilization: This attribute specifies the disk space used by a

component;

Scalability Sub-Characteristic

Processing capacity: This attribute measures the capacity of the

component to support a vast volume of data;

Chapter 5 – Software Component Quality Framework and Component Quality

Model

67

Stability Sub-Characteristic

Modifiability: This attribute indicates the component behavior

when modifications are introduced; and

Deployability Sub-Characteristic

Complexity level: This attribute indicates the effort needed to

deploy a component in a specified environment.

The quality attributes that are observable during life cycle are summarized

in Table 5.4. These attributes could be measured during the development of the

component or the component-based system, by collecting relevant information

for the model.

Table 5.4. Component Quality Attributes for
Sub- Characteristics that are observable during Life cycle.

Sub-Characteristics
(Life cycle)

Attributes

Suitability Coverage

Completeness

Pre and Post-conditioned

Proofs of Pre and Post-conditions

Interoperability Data Compatibility

Interface Compatibility

Compliance Standardization

Certification

Self-sufficiency Dependability

Maturity Volatility

Failure removal

Understandability Documentation availability

Documentation readability and quality

Code Readability

Learnability Time and effort to (use, configure, admin
and expertise) the component.

Operability Complexity level

Provided Interfaces

Required Interfaces

Effort to operate

Changeability Extensibility

Customizability

Modularity

Chapter 5 – Software Component Quality Framework and Component Quality

Model

68

Testability Test suite provided

Extensive component test cases

Component tests in a specific environment

Proofs the components tests

Adaptability Mobility

Configuration capacity

Replaceability Backward Compatibility

Reusability Domain abstraction level

Architecture compatibility

Modularity

Cohesion

Coupling

Simplicity

A brief description of each quality attribute is presented next:

Suitability Sub-Characteristic

Coverage: This attribute measures how much of the required

functionality is covered by the component implementation;

Completeness: It is possible that some implementations do not

completely cover the specified services. This attribute measures the

number of implemented operations compared to the total number of

specified operations;

Pre-conditioned and Post-conditioned: This attribute indicates if

the component has pre- and post-conditions in order to determine

more exactly what the component requires and what the component

provides;

Proofs of pre-conditions and post-conditions: This attribute

indicates if the pre and post-conditions are formally proved in order to

guarantee the correctness of the component functionalities;

Interoperability Sub-Characteristic

Data Compatibility: This attribute indicates whether the format of

the data handled by the component is compliant with any international

standard or convention (e.g. XML);

Chapter 5 – Software Component Quality Framework and Component Quality

Model

69

Interface Compatibility: This attribute indicates the

format/standard that the component provides its interface (e.g. WDSL,

etc);

Compliance Sub-Characteristic

Standardization: This attribute indicates if the component conforms

to international standards;

Qualifications: This attribute indicates if the component is certified

by any internal or external organization;

Self-sufficiency Sub-Characteristic
Dependability: This attribute indicates if the component is not self-

sufficiency, i.e. if the component depends on other components to

provide its specified services;

Maturity Sub-Characteristic

Volatility: This attribute indicates the average time between

different commercial versions/releases;

Failure removal: This attribute indicates the number of bugs fixed

in a given component version. The number of bugs fixed in a version

(in a period of time) could indicate that the new version is more stable

or that the component contains a lot of bugs that will emerge;

Understandability Sub-Characteristic

Documentation availability: This attribute deals with the

component documentation, descriptions, demos, APIs and tutorials

available, which have a direct impact on the understandability of the

component;

Documentation readability and quality: This attribute indicates

the quality of the component documentation;

Code Readability: This attribute indicates how easy it is to

understand the source code;

Learnability Sub-Characteristic

Time and effort to (use, configure, admin and expertise) the

component: This attribute measures the time and effort needed to

Chapter 5 – Software Component Quality Framework and Component Quality

Model

70

master some specific tasks (such as using, configuring,

administrating, or expertising the component);

Operability Sub-Characteristic

Complexity level: This attribute indicates the capacity of the user to

operate a component;

Provided Interfaces: This attribute counts the number of provided

interfaces by the component as an indirect measure of its complexity;

Required Interfaces: This attribute counts the number of

interfaces that the component requires from other components to

operate;

Effort to operate: This attribute shows the average number of

operations per provided interface (operations in all provided

interfaces / total of the provided interfaces);

Changeability Sub-Characteristic

Extensibility: This attribute indicates the capacity to extend a

certain functionality of the component (i.e. which is the percentage of

the functionalities that could be extended);

Customizability: This attribute measures the number of

customizable parameters that the component offers (e.g. number of

parameters to configure in each provided interface);

Modularity: This attribute indicates the modularity level of the

component in order to determine if it is easy or not to modify it, based

in its inter-related modules;

Testability Sub-Characteristic

Test suite provided: This attribute indicates whether some test

suites are provided for checking the functionality of the component

and/or for measuring some of its properties (e.g. performance);

Extensive component test cases: This attribute indicates if the

component was extensively tested before being made available to the

market;

Component tests in a specific environment: This attribute

indicates in which environments or platforms a certain component

was tested;

Chapter 5 – Software Component Quality Framework and Component Quality

Model

71

Proofs the components test: This attribute indicates if the

component tests were formally proved;

Adaptability Sub-Characteristic

Mobility: This attribute indicates in which containers this

component was deployed and to which containers this component

was transferred;

Configuration capacity: This attribute indicates the percentage of

the changes needed to transfer a component to other environments;

Replaceability Sub-Characteristic

Backward Compatibility: This attribute is used to indicate

whether the component is “backward compatible” with its previous

versions or not;

Reusability Sub-Characteristic

Domain abstraction level: This attribute measures the

component’s abstraction level, related to its business domain;

Architecture compatibility: This attribute indicates the level of

dependability of a specified architecture;

Modularity: This attribute indicates the modularity level of the

component, if it has modules, packages or if all the source files are

grouped in a single bunch;

Cohesion: This attribute measures the cohesion level between the

inter-related parts of the component. A component should have high

cohesiveness in order to increase its reusability level;

Coupling: This attribute measures the coupling level of the

components. A component should have low coupling in order to

increase its reusability level; and

Simplicity: This attribute indicates if the component modules are

well-defined, concise and well-structured.

Besides the quality characteristics presented, the model is complemented

with other kinds of characteristics. These characteristics bring relevant

information for new customers and are composed of Productivity, Satisfaction,

Security and Effectiveness. According to ISO/IEC 25010, these characteristics

Chapter 5 – Software Component Quality Framework and Component Quality

Model

72

are called Quality in Use (ISO/IEC 25000, 2005). This is the user’s view (i.e.

developers or designers) of the component, obtained when they use a certain

component in an execution environment and analyze the results according to

their expectations. These characteristics show whether the developers or

designers can trust a component or not. Thus, Quality in Use characteristics are

useful to show the component’s behavior in different environments.

These characteristics are measured through the customer’s feedback. A

five-category rating scale is used, ranging from “Very Satisfied” to “Very

Dissatisfied”. A “Don’t Know” option is also included. Using this scale, the

Satisfaction, Productivity, Security and Effectiveness of the component used by

a certain user (developer or designer) can be measured. This user’s feedback is

very important to the model in order to describe if a certain component is really

good in practice, i.e. in a real environment. Of course, this evaluation is

subjective, and therefore it must be analyzed very carefully, possibly confronting

this information with other facts, such as the nature of the environment and the

user’s characteristics.

As shown in Figure 5.1., it is needed a kind of measurement for each

quality attribute proposed. However, the measurement of those quality

attributes described during this chapter will be presented on chapter 6 and

Appendix A, which describes the paradigm adopted to define the metrics and

gives a set of examples to help the evaluation team during the metrics definition,

respectively. The idea is to provide a more flexible way to develop the metrics

during the evaluation runtime.

These attributes cover most of the important characteristics that help

determining if a component has the desired quality level. However, there are

other kinds of information that are important in the process of evaluating a

component’s quality level, but that were not included in the model because they

do not represent quality attributes for software components. Instead, they

contain relevant information for a well-defined component evaluation process.

These are presented in the next section.

Chapter 5 – Software Component Quality Framework and Component Quality

Model

73

5.4 Other relevant Component Information
In an effective software component evaluation process, some additional

information is needed in order to complement the model. Table 5.5 shows the

additional characteristics that were identified as being interesting to a software

component evaluation process. These characteristics are called Additional

Information and are composed of: Technical Information and Organization

Information.

Technical Information is important for developers to analyze the actual

state of the component (i.e. if the component has evolved, if any patterns were

used in the implementation, which kinds of technical support are available for

that product, etc.). Besides, it is interesting to the customer that he/she knows

who is the responsible for that component, i.e. who maintains that component

(e.g. a component created by a software factory CMMI level 5, probably, is more

reliable than a component created by an unknown or a new software factory).

Thus, the necessity of the Organization Information was identified.

Table 5.5. Additional Information.

Additional
Information

Technical Information

• Component Version

• Programming Language

• Patterns Usage

• Lines of Code

• Technical Support
Organization Information

• CMMi / MPS.br Level

• Organization’s Reputation

The Additional Information provides relevant component information to

the model. The main concern is that these characteristics are the basic

information to whatever kind of components available in the market.

5.5 Summary

This chapter presented an overview of the proposed software component

quality framework, showing their importance to the whole framework as well.

Besides, the proposed Component Quality Model was also presented, showed its

characteristics, sub-characteristics and the quality attributes. The relevant

characteristics, which were not included into the model because they do not

Chapter 5 – Software Component Quality Framework and Component Quality

Model

74

represent quality attributes for software components was also presented.

However, they complement CQM with relevant information, helping in the

software component evaluation process. Figure 5.3 shows the summary of the

proposed CQM.

Figure 5.3. Summary of the CQM.

A formal case study using the CQM was developed in order to provide the

first insights of its usability and viability to evaluate software components

quality. More information about it can be found at (Alvaro et al., 2006c),

(Alvaro et al., 2006d).

Finally, more detailed information about the other modules will be

presented in the next chapters.

75

Evaluation Techni-
ques Framework and
Metrics Framework

After the Component Quality Model (CQM) has been defined, it was

necessary to establish evaluation techniques to evaluate each component quality

characteristic. Perhaps not all the selected quality characteristics and sub-

characteristics proposed need to be evaluated with the same degree of

thoroughness and depth for all types of software components. Nobody would

expect the same effort to be allocated to the component evaluation of a railway

signal system, and a component from a computer game system. To ensure this

flexibility, the evaluation should be level-oriented. In this way, different

evaluation levels must be used in order to provide specialized services for each

kind of software components distributed on different domains and risk-levels,

providing confidence in the quality of a software component in these domains.

On the other hand, as with any engineering discipline, software

development requires a measurement mechanism for feedback and evaluation.

Measurement is a mechanism for creating a corporate memory and an aid in

answering a variety of questions associated with the enactment of any software

process (Basili et al., 1994). Measurement is important in any software

engineering area in order to provide data to track the efficiency and efficacy of

the process analyzed.

In this way, a Software Component Evaluation Techniques Model

(SCETM) was defined (Alvaro et al., 2007b) and will be presented next. After

that, the Metrics Framework will be presented in order to provide insights to

define the metrics to measure the evaluation techniques presented in this

chapter and also metrics to measure the whole framework.

6

Chapter 6 – Evaluation Techniques Framework and Metrics Framework

76

6.1 A Software Component Evaluation Techniques
Model (SCETM)

The model is constituted of evaluation levels where the quality of the

components can be assure. There are five levels (they constitute a hierarchy),

which identify the depth of the evaluation. Evaluation at different levels gives

different degrees of confidence in the quality of the software component and the

component could increase its level of reliability and quality as it evolves. Thus,

each company/customer decides which level is better for evaluating its

components, analyzing the cost/benefits of each level. The closer to the last

level, the higher is the probability that the component is trustable, contains a

consistent documentation and can be easily reused.

Thus, there are five levels which form an increasing set of evaluation

requirements, where SCETM 1 is the lowest level and SCETM 5 is the highest

level. The evaluation level defines the depth or thoroughness of the evaluation.

Therefore evaluation at different levels gives different degrees of confidence in

the quality of the software component.

For instance, the level SCETM 5 contains more rigorous evaluation

techniques (requiring a high amount of time and effort to execute the

evaluation) which are applied to give more confidence to the software

component. On the other hand, as you decrease the SCETM levels the

techniques used are less rigorous and, consequently, less effort is applied during

the evaluation.

There are two different ways to decide about the evaluation: (i) the

component can be evaluated executing all techniques from one specific level

(e.g. component evaluation using level SCETM 2) and; (ii) the evaluation levels

can be chosen independently for each characteristic (i.e. for functionality the

component can be evaluated using the techniques from level SCETM 1; for

reliability those techniques from level SCETM 3; for usability those techniques

from level SCETM 4 and so on). The idea is to provide more flexibility during

the selection levels too, in order to facilitate the model usage and accessibility.

Table 6.1 gives some indication as to which level a given software

component should be evaluated. Each column of Table 6.1 represents different

layers that the software component should be considered when evaluating its

Chapter 6 – Evaluation Techniques Framework and Metrics Framework

77

potential damage and related risks. The level of damage in each layer is the first

guideline used to decide which SCETM level is more interesting for the

organization; the important aspects are those related to environment, to

safety/security and to economy. However, these are mere guidelines, and should

not be considered as a rigid classification scheme. Those few guidelines were

based on (Boegh et al., 1993), (Solingen, 2000), (ISO/IEC 25000, 2005) and

extended to the component context.

Table 6.1. Guidelines for selecting evaluation level.

Level Environment Safety/Security Economic

SCETM 1 No damage
Few material
damage; No specific
risk

Negligible
economic
loss

SCETM 2
Small/Medium
damage
properly

Few people
disabled

Few
economic
loss

SCETM 3
Damage
properly

Large number of
people disabled

Significant
economic
loss

SCETM 4
Recoverable
environment
damage

Threat to human
lives

Large
economic
gross

SCETM 5
Unrecoverable
environmental
damage

Many people killed
Financial
disaster

A set of appropriate evaluation techniques were defined. Relevant works

from literature that propose evaluation techniques for software product were

analyzed (Boegh et al., 1993), (Solingen, 2000), (Tian, 2004), (ISO/IEC 25000,

2005), (TMMi, 2008) and the experience of one software quality specialist of

Federal University of Pernambuco and a set of software quality/system

engineers from a Brazilian software factory helped during this definition.

Afterwards, the feedback of relevant researchers on CBD from Mälardalen

University12 (Department of Computer and Electrical Engineering) from Sweden

and a specialist from ABB Company13 was very important to the model

evolution.

12 http://www.mdh.se/ide
13 http://www.abb.com

Chapter 6 – Evaluation Techniques Framework and Metrics Framework

78

Moreover, a set of works from the literature about each single technique

was analyzed in order to identify the real necessity of those evaluation

techniques. In this way, the following techniques were proposed in the model:

• SCETM I

o Documentation Analysis: it focus on analyze the documents

available in order to properly use a component in the way it was

intended (Kallio et al., 2001), (Kotula, 1998), (Lethbridge et al.,

2003), (Taulavuori et al., 2004);

o Suitability analysis: it focus on measures how well the

component reliability fits the specified requirements (Wohlin &

Regnell, 1998), (Hamlet et al., 2001), (McGregor et al., 2003);

o Effort to configure analysis: if focus on measures the ability of

the component to be configured (Brownsword et al., 2000), (Bertoa

et al., 2002);

o Accuracy analysis: it focus on evaluates the percentage of results

obtained with the correct precision level demanded (Bertoa et al.,

2002);

o Effort for operating: it focus on measures the complexity to use

the component, through its interfaces available, and achieve the

expected flow of execution (Brownsword et al., 2000), (Bertoa et al.,

2002), (Bertoa & Vallecillo, 2004);

o Customizability analysis: if focus on measures the kind of

parameterization available for each interfaces of the component

(Brownsword et al., 2000);

o Extensibility analysis: if focus on measure the complexity (i.e.

the effort spent) to extend the component’s functionalities

(Brownsword et al., 2000), (Bertoa et al., 2002), (Bertoa &

Vallecillo, 2004);

o Component execution in specific environments analysis: it

focus on analyze the complexity to deploy a component in a specific

environment (Brownsword et al., 2000);

o Cohesion, Coupling, Modularity and Simplicity analyses: if

focus on analyze the reusability level of the component (Caldiera &

Basili, 1991), (Gui & Scott, 2007);

Chapter 6 – Evaluation Techniques Framework and Metrics Framework

79

o Cohesion of the documentation with the source code

analysis: it focus on analyze the documentation compliance with

the source code, relating to portability characteristic (Kallio et al.,

2001), (Bay and Pauls, 2004);

o Cohesion of the documentation with the source code

analysis: it intends to analyze the compliance of the

documentation provided and the source code of the component in

order to use it properly (Kallio et al., 2001), (Kotula, 1998),

(Lethbridge et al., 2003), (Taulavuori et al., 2004).

• SCETM II

o Functional Testing (black box): it focus on the validation of

required functional features and behaviors of software component

from an external view (Beydeda and Gruhn, 2003), (Gao et al.,

2003);

o Unit Test: The primary goal of unit testing is to take the smallest

piece (functionality) of a software component, isolate it from the

remainder of the code, and determine whether it behaves exactly as

you expect. Each unit is tested separately before integrating them

into the whole component. Unit testing has proven its value in that

a large percentage of defects are identified during its use (Beydeda

and Gruhn, 2003).

o Regression Test: it aims to ensure that a modified component

still meets the specifications validated before modification (Beydeda

and Gruhn, 2003), (Gao et al., 2003);

o Programming Language Facilities (Best Practices): if focus

on analyze if the component was developed using the best

practices/standards/patterns found on literature that is related to

the programming language in question;

o Maturity analysis: if focus on evaluates the component evolution

when it is launched to the market (e.g. number of versions launched

to correct bugs, number of bugs corrected, time to make the

versions available, etc.) (Brownsword et al., 2000);

o Inspection of the provided and required interfaces: it

focuses on a systematic approach to examining the interfaces of the

Chapter 6 – Evaluation Techniques Framework and Metrics Framework

80

component. Such an examination’s goal is to assess the quality of

the required and provided interface of a component (Beugnard et

al., 1999), (Reussner, 2003), (Parnas and Lawford, 2003);

o Evaluation measurement (latency analysis): it focus on the

time between the instantiation of a functionality and the time left to

obtain the answer in order to measure each component

functionalities efficiency (Bertoa et al., 2002), (Brownsword et al.,

2000);

o Inspection of Documents: it focuses on a systematic approach

to examining a document in detail. Such an examination’s goal is to

assess the quality of the software component documents in question

(Fagan, 1976), (Parnas and Lawford, 2003);

o Deployment analysis: it validates a component to see if it can be

successfully deployed in its new context and operation environment

for a specific project (Gao et al., 2003);

• Backward compatibility: it focus to analyze if the component is

“backward compatible” with its previous versions in order to

guarantee its compatibilities between different versions (Bertoa et

al., 2002), (Brownsword et al., 2000).

• SCETM III

o Component Test: it exercises all functionalities of a component in

order to evaluate its compliance with their specification (Freedman,

1991), (Councill, 1999), (Gao et al., 2003), (Beydeda and Gruhn,

2003);

o Inspection of Documents: as described in last level, it focuses

on a systematic approach to examining a document in detail. Such

an examination’s goal is to assess the quality of the software

component documents in question (Fagan, 1976), (Parnas and

Lawford, 2003);

o Fault tolerance analysis: it focus on analyze the existent (if any)

fault tolerance mechanism existent on the component in order to

guarantee the error treatment in cause of fault (Bertoa et al., 2002),

(Brownsword et al., 2000);

Chapter 6 – Evaluation Techniques Framework and Metrics Framework

81

o Code and component’s interface inspection: it focuses on a

systematic approach to examining an interface in detail. Such an

examination’s goal is to assess the quality of the interfaces provided

and required by a software component (Beugnard et al., 1999),

(Reussner, 2003), (Parnas and Lawford, 2003);

o Performance Tests: it evaluates and measures the performance

of a component in a new context and operation environment to

make sure that it satisfies the performance requirements (Gao et al.,

2003);

o Code metrics and programming rules: it focus on collect a set

of metrics from a component in order to analyze it and verify the

programming language rules presents in source code (Brownsword

et al., 2000), (Cho et al., 2001);

o Static Analysis: it focuses on checks the component errors

without compiling/executing it through a set of tools that support it

(Brownsword et al., 2000);

o Conformity to programming rules: it focuses on analyze if the rules

related to a certain programming languages was adopted and used

during the component development.

• SCETM IV

o Structural Tests (white-box): it focus on validation of program

structures, behaviors, and logic of component from an internal view

(Beydeda and Gruhn, 2003), (Gao et al., 2003);

o Code inspection: it focuses on a systematic approach to

examining a source code in detail. Such an examination’s goal is to

assess the quality of the software component codification in

question (Fagan, 1976), (Parnas and Lawford, 2003);

o Reliability growth model: it focuses on discover reliability

deficiencies through testing, analyzing such deficiencies, and

implementation of corrective measures to lower the rate of

occurrence. Some of the important advantages of the reliability

growth model include assessments of achievement and projecting

the product reliability trends (Wohlin & Regnell, 1998), (Hamlet et

al., 2001), (McGregor et al., 2003);

Chapter 6 – Evaluation Techniques Framework and Metrics Framework

82

o Analysis of the pre and post-conditions of the component:

it focus on analyze/inspect the pre and post-condition of the

component in order to verify if the provided/required services is

compliance with the specified conditions defined on the component

(Beugnard et al., 1999), (Reussner, 2003);

o Time to use analysis: it focus on measures the time and effort

needed to master some specific tasks (such as using, configuring,

administrating, or expertising the component) (Brownsword et al.,

2000);

o Algorithmic complexity: Algorithmic complexity quantifies how

complex a component is in terms of the length of the shortest

computer program, or set of algorithms, need to completely

describe the component solution. In other words, it is how small a

model of a given component is necessary and sufficient to capture

the essential patterns of that component. Algorithmic complexity

has to do with the mixture of repetition and innovation in a complex

component. At one extreme, a highly regular component can be

described by a very short algorithm (Cho et al., 2001);

o Analysis of the component development process: it focus on

inspect the whole CBD process in order to find any gap,

inconsistence, fault, etc during the component life-cycle

development (Brownsword et al., 2000);

o Environment constraints evaluation: it focus on analyze the

whole environment that the component will be deployed in order to

collect constraints that could affect any quality attribute during its

evaluation (Choi et al., 2008) ;

o Domain abstraction analysis: it focus on analyze how abstract

is the solution implemented in a certain component from its

principals related domains. Thus, the component may be a higher

reuse level (Bay and Pauls, 2004), (Gui & Scott, 2007).

• SCETM V

o Formal Proof: Formal methods are intended to systematize and

introduce rigor into all the phases of software component

development. The idea is try to avoid overlooking critical issues,

Chapter 6 – Evaluation Techniques Framework and Metrics Framework

83

provides a standard means to record various assumptions and

decisions, and forms a basis for consistency among many related

activities. By providing precise and unambiguous description

mechanisms, formal methods facilitate the understanding required

to coalesce the various phases of software development into a

successful endeavor (Boer et al., 2002);

o User mental model: it focuses on the mental understanding of

what the component is doing for the user. Mental models are the

conceptions of a component that develop in the mind of the user.

Mental models possess representations of objects or events in a

component and the structural relationships between those objects

and events. Mental models evolve inductively as the user interacts

with the component, often resulting in analogical, incomplete, or

even fragmentary representations of how the component works

(Farooq & Dominick, 1988);

o Performance profiling analysis: it focuses on investigation of a

component's behavior using information gathered (i.e. it is a form of

dynamic program analysis, as opposed to static code analysis). The

usual goal of performance analysis is to determine which sections of

a component should be optimize – usually either to increase its

speed or decrease its memory requirement. (Bertolino & Mirandola,

2003), (Chen et al., 2005);

o Traceability evaluation: it refers to the extent of its built-in

capability that tracks functional operation, component attributes,

and behaviors (Gao et al., 2003);

o Component Test Formal Proof: Formal methods are intended

to systematize and introduce rigor into all the phases of software

component development, in this case on component test phase. The

idea is try to avoid misunderstanding during the component test

phase and guarantee that each single part of the component was

tested (Boer et al., 2002);

o Analysis of the component’s architecture: if focus on

examine the architecture defined to develop the component

solution, looking for analyzes if the actual architecture impact any

Chapter 6 – Evaluation Techniques Framework and Metrics Framework

84

quality attribute level of the component (Kazman et al., 2000),

(Choi et al., 2008).

Those selected techniques bring, each one for each specific aspects, a kind

of quality assurance to software components. The establishment of what each

level is responsible for is very valuable to the evaluation team during the

definition of the evaluation techniques for those levels. In other words, the

evaluation team knows what is more important to consider during the

component evaluation and try to correlate these necessities with the evaluation

level more appropriated. The intention was to build a model where the

techniques selected to represent each level should complement each other in

order to provide the quality degree needed for each SCETM level. The SCETM

levels and the evaluation techniques are presented in Table 6.2. Additionally, in

order to understand the meaning of each level, next some description is

presented:

• SCETM 1: the first level intends to investigate if the component does

what is described in its documentation, its reusability level, the effort

to use and maintain the component and its correct execution in

defined environments. The aim of this level is the compatibility

between the documentation and the component’s functionalities. For

that, some kind of analysis in documentation, environment and in the

component should be done in order to guarantee that it is correctly

defined, implemented and described;

• SCETM 2: the second level worries about the correct execution of the

component, applying a set of test techniques, inspecting the

documentation better, if the component uses best practices in the

chosen programming language and to evaluate the correct component

deployment. The techniques of this level analyze the correct execution

of the component. For that, a set of inspections should be done in

order to evaluate if the component can be deployed correctly in the

environment specified in its documentation and, successively, it can

be correct used/instantiated;

• SCETM 3: the main interests of this level are to evaluate how the

component can avoid faults and errors, analyzing the provided and

Chapter 6 – Evaluation Techniques Framework and Metrics Framework

85

required interfaces looking for correct design and to evaluate a set of

programming rules. The aim of this level is to analyze if the

component can avoid or tolerate faults and errors during its

execution. For that a set of analysis should be done and several rules

must be checked in order to guarantee that the component, if

happened some fault/errors, can administrate theses faults/errors

through some kind of implementation or some kind of available

techniques, among others;

• SCETM 4: in this level the source-code of the component is needed

in order to inspect it more precisely. The code is inspected and tested,

the provided and required interfaces are revisited and the algorithm

complexity is examined in order to prove its performance too. An

interesting aspect of this level is the analysis of the Component-Based

Development (CBD) process, looking for possibilities of improving the

CBD process adopted. The aim of this level is to assure the

component’s performance. For that some low techniques should be

applied in order to try finding any unnecessary complexity in the

component implementation looking for achieving the maximum

quality, performance and reliability; and

• SCETM 5: the last level is considered the formal proof of the

component functionalities and reliability. The architecture and the

traceability are also examined in this level. Here, the idea is to achieve

the highest level of trust that is possible. As a result, the techniques in

this level tend to be the most costly and time consuming. Hence, the

ROI (Return On Investment) analysis on this level is very important.

The aim of this level is to increase the trust in the component as much

as possible. For that, it is necessary to guarantee that the formalism

presented on the component is corrected and should be proved

through a set of verifications accomplished in the specification.

86

Table 6.2. Software Component Evaluation Techniques Model.

Characteristics SCETM I SCETM II SCETM III SCETM IV SCETM V

Functionality
• Documentation
Analysis

• Functional Testing
(black box), Unit Test,
Regression Test (if
possible)

• Component Test

• Inspection of
Documents

• Structural Tests
(white-box) with
coverage criteria and
code inspection

• Formal Proof

Reliability • Suitability analysis

• Programming Language
Facilities (Best
Practices)

• Maturity analysis

• Fault tolerance
analysis

• Reliability growth
model

• Formal Proof

Usability

• Documentation
analysis (Use Guide,
architectural
analysis, etc)

• Effort to Configure
analysis

• Inspection of the
provided and required
interfaces

• Code and
component’s interface
inspection
(correctness and
completeness)

• Analysis of the pre
and post-conditions
of the component

• Time to use analysis

• User mental
model

Efficiency • Accuracy analysis
• Evaluation
measurement (latency
analysis)

• Performance Tests
• Algorithmic
complexity

• Performance
profiling
analysis

Maintainability

• Effort for operating

• Customizability
analysis

• Extensibility analysis

• Inspection of
Documents

• Code metrics and
programming rules

• Static Analysis

• Analysis of the
component
development process

• Traceability
evaluation

• Component Test
Formal Proof

Portability

• Component
execution in specific
environments
analysis

• Cohesion, Coupling,
Modularity and
Simplicity analyses

• Cohesion of the
documentation with
the source code
analysis

• Deployment analysis

• Backward compatibility
• Conformity to
programming rules

• Environment
constraints evaluation

• Domain abstraction
analysis

• Analysis of the
component’s
architecture

87

One of the main concerns during SCETM definition is that the levels and

the evaluation techniques selection must be appropriated to completely evaluate

the quality attributes proposed on the CQM, presented in chapter 5. This is

achieved through a mapping of the Quality Attributes X Evaluation Technique.

For each quality attribute proposed in the CQM, it is interesting that at least one

technique is proposed in order to cover it completely, also being capable of

measuring it properly. Tables 6.3a, 6.3b and 6.3c show this matching between

the CQM quality attributes and the proposed SCETM evaluation techniques.

Theses Tables show that the main concern is not to propose a big amount

of isolated techniques, but to propose a set of techniques that are essential for

measuring each quality attribute, complementing each other and, thus,

becoming useful to compose the Evaluation Techniques Framework.

Table 6.3a Component Quality Attributes X Evaluation Techniques

Sub-
Characteristics

Quality
Attributes

Evaluation Techniques

Coverage • Documentation Analysis

Completeness • Documentation Analysis

Pre and Post-
conditions

• Code Inspection Suitability

Proofs of Pre and
Post-conditions

• Formal Proof

Accuracy Correctness

• Functional Testing (black box),
Unit Test, Regression Test (if
possible)

• Functional Tests (white-box)
with coverage criteria

Interoperability Data Compatibility
• Inspection of Documents

• Code Inspection

Data Encryption
• System Test

• Code Inspection

Controllability
• System Test

• Code Inspection
Security

Auditability
• System Test

• Code Inspection

Standardization • Inspection of Documents
Compliance

Certification • Inspection of Documents

Self-contained Dependability
• Documents Inspection

• Code Inspection

Chapter 6 – Evaluation Techniques Framework and Metrics Framework

88

Table 6.3b Component Quality Attributes X Evaluation Techniques

Sub-
Characteristics

Quality
Attributes

Evaluation Techniques

Volatility • Suitability analysis
Maturity

Failure removal • Maturity analysis

Recoverability Error Handling

• Programming Language
Facilities (Best Practices)

• Error Manipulation analysis

• Reliability growth model

• Formal Proof

Mechanism
available

• Suitability analysis

Fault Tolerance
Mechanism
efficiency

• Programming Language
Facilities (Best Practices)

• Fault tolerance analysis

• Reliability growth model

• Formal Proof

Documentation
available

• Documentation analysis (Use
Guide, architectural, etc)

Documentation
readability and
quality

• Documentation analysis (Use
Guide, architectural, etc) Understandability

Code Readability
• Code and component’s interface

inspection (correctness and
completeness)

Configurability Effort for configure • Effort to Configure analysis

Learnability

Time and effort to
(use, configure,
admin and
expertise) the
component.

• Time to use analysis

Complexity level • User mental model

Provided Interfaces • Inspection of the interfaces

Required Interfaces • Inspection of the interfaces
Operability

Effort for operating • User mental model

Response time • Accuracy analysis

Latency
a. Throughput

(“out”)

• Evaluation measurement
(latency analysis) Time Behavior

b. Processing
Capacity (“in”)

• Evaluation measurement
(latency analysis)

Memory utilization • Tests of performance
Resource Behavior

Disk utilization • Tests of performance

Chapter 6 – Evaluation Techniques Framework and Metrics Framework

89

Table 6.3c Component Quality Attributes X Evaluation Techniques

Sub-
Characteristics

Quality
Attributes

Evaluation Techniques

Scalability Processing capacity
• Tests of performance

• Algorithmic complexity

• Performance profiling analysis

Stability Modifiability

• Code metrics and programming
rules

• Inspection of Documents

• Static Analysis

Extensibility
• Effort for operating

• Extensibility analysis

Customizability
• Effort for operating

• Customizability analysis
Changeability

Modularity
• Code metrics and programming

rules

Test suit provided
• Analysis of the test-suite

provided (if exists)

Extensive
component test
cases

• Analysis of the component
development process

Component tests in
a specific
environment

• Traceability evaluation

Testability

Proofs the
components test

• Component Test Formal Proof

Deployability Complexity level

• Component execution in specific
environments analysis

• Deployment analyses

• Environment constraints
evaluation

Replaceability
Backward
Compatibility

• Backward compatibility analysis

Domain abstraction
level

• Cohesion of the documentation
with the source code analysis

• Domain abstraction analysis

Architecture
compatibility

• Conformity to programming
rules

• Analysis of the component’s
architecture

Modularity • Modularity analyses

Cohesion • Cohesion analyses

Coupling • Coupling analyses

Reusability

Simplicity • Simplicity analyses

Chapter 6 – Evaluation Techniques Framework and Metrics Framework

90

Those evaluation techniques are the starting point where the software

component evaluator sets up her/his work. The idea is to incrementally increase

the appropriate techniques used during the previous component evaluation and

through the evaluation feedback too. Thus, the SCETM will be composed of a set

of techniques available to use and the software evaluator will decide which

technique is better for each component evaluation, depending on the

programming language, component domain, deployment environment, domain-

risk level, among other factors. It is very interesting that the evaluation team

gives its feedback about the SCETM techniques in order to increase the amount

and quality of those techniques proposed in each level. The same idea is

applicable to the Guidelines for selecting evaluation level (Table 6.1), where the

guidelines should be improved through evaluations feedback.

Also, some initial guidance for estimating the cost of an evaluation can be

given. The actual cost of evaluating will depend on the level of the evaluation,

the size of the component, the amount and quality of the available

documentation, special requirements demanded by the customer, laws and

regulations, and possibly other factors. No empirical data to prove these factors

is available yet, however these factors should be considered as a starting point

before initiating a software component evaluation.

Based on the guidelines for selecting the evaluation level (Table 6.1) and

the costs/benefits (some brief guidance cited above), the costumer can choose

the level that the component will be evaluated.

Each technique can be executed using a different kind of process, methods

and tools, which depends, basically, on the programming language and

deployment environment. The evaluator is responsible for that decision and is

very valuable if he/she stores the processes, methods and tools used to execute

the techniques selected (this could be stored in a simple table describing each

evaluation techniques selected X process/methods/tools defined X its

usefulness). Thus, in the future, the evaluation team will have a new table

describing which processes, methods or tools were used for each evaluation

technique during previous evaluation and, probably, help him/her in that new

selection.

Chapter 6 – Evaluation Techniques Framework and Metrics Framework

91

6.2 Metrics Framework

According to Basili et al. (Basili et al., 1994), the measurement must be

defined in a top-down fashion. It must be focused, based on goals and models. A

bottom-up approach will not work because there are many observable

characteristics in software (e.g., time, number of defects, complexity, lines of

code, severity of failures, effort, productivity, defect density), but which metrics

one uses and how one interprets them is not clear without the appropriate

models and goals to define the context.

There are a variety of mechanisms for defining measurable goals that have

appeared in the literature: the Software Quality Metrics approach (Boehm et al.,

1976), (McCall et al., 1977), the Quality Function Deployment approach (Kogure

& Akao, 1983), the Goal Question Metric approach (Basili et al., 1994), (Basili,

1992), (Basili & Rombach, 1988), (Basili & Selby, 1984), (Basili & Weiss, 1984),

the Practical Software Measurement (PSM) (McGarry et al., 2002) and the

ISO/IEC 15939 (ISO/IEC 15939, 2007). However, in this work the Goal-

Question-Metric (GQM) approach was adopted, which was the same technique

proposed to be used in ISO/IEC 25000 looking for track the software product

properties.

The Goal Question Metric (GQM) approach is based upon the assumption

that for an organization to measure in a purposeful way it must first specify the

goals for itself and its projects, then it must trace those goals to the data that are

intended to define those goals operationally, and finally provide a framework for

interpreting the data with respect to the stated goals. Thus it is important to

make clear, at least in general terms, what informational needs the organization

has, so that these needs for information can be quantified whenever possible,

and the quantified information can be analyzed in order to achieve the target

goals of a measurement.

 The GQM is a measurement model divided into three levels:

1. GOAL: A goal is defined for an object, for a variety of reasons, with

respect to various models of quality, from various points of view,

relative to a particular environment;

Chapter 6 – Evaluation Techniques Framework and Metrics Framework

92

2. QUESTION: A set of questions is used to characterize the way the

assessment/achievement of a specific goal is going to be performed

based on some characterizing model. Questions try to characterize

the object of measurement (product, process, resource) with

respect to a selected quality issue and to determine its quality from

the selected viewpoint; and

3. METRIC: A set of data is associated with every question in order

to answer it in a quantitative way.

The intention is the evaluation consider, during the metrics definition, a

set of factors in which could improve the collected results, such as: Meaning of

the Metric, Costs and Complexity to measure, Repeatability, Reproductively,

Validity, Objectivity and Impartially. Those factors are essential during the

elaboration of the metrics using the GQM technique.

In this way, the GQM will support the evaluation team during the

definition of the metrics in order to track the properties of the quality attributes

described on CQM, the evaluation techniques presented on SCETM as well as

the whole component evaluation process (that will be presented on chapter 7).

An important aspect should be considered: the complexity to obtain the data of

each metric proposed and if the selected metric can represent completely the

information required by the evaluator.

Based on the modules of the Software Component Quality Framework,

some examples of usage will be described in order to provide insights to the

team evaluation during the Define GQM step (vide chapter 7 and the first

activity of the component evaluation process). The examples will be divided in

three steps: (i) the metrics to track the properties of the CQM; (ii) the metrics

to track the properties of the evaluation techniques presented on SCETM; and

(ii) the metrics to track the properties of the component evaluation process.

However, only few examples of how using the GQM to measure those properties

will be presented in this chapter. The Appendix A will present more usage

examples (at least, one for each quality attribute, some of them for evaluation

techniques and some of them to track the evaluation process).

Thus, the main goal of this section is to provide some metrics definition to

guide the team evaluation once there is a complete absence of metrics that could

Chapter 6 – Evaluation Techniques Framework and Metrics Framework

93

help evaluate software component quality attributes objectively available on

literature (Bertoa et al., 2006). However, an important aspect when defining

metrics is to be more objective as possible, even so many times it is very difficult

to do so because so many quality attributes are, by definition, subjective.

Objective measures are those that depend only on the object of study and

possibly some physical apparatus. In contrast, subjective measures are the

product of some mental activity. While this distinction is clear, an illustration

can help explain some less than obvious subsidiary points.

Consider, for example, measuring the understandability of a computer

program. A candidate objective measure of this quality is “cyclomatic

complexity,” which is defined as a numerical measure derived from the

structure of a computer program (in particular, control flow). A candidate

subjective measure might be a statement posed to a human subject, such as

“this code is understandable,” with a numerical measure derived from responses

to this statement ranging from “strongly agree” to “strongly disagree.”

The virtue of objectivity is that the measure is repeatable. But repeatability

does not suggest anything about other important qualities of the measure such

as reliability. It is not clear whether cyclomatic complexity is more reliable than

the proposed subjective measure, and, in fact, there is reason to think just the

opposite (Wallnau, 2004).

In this way, the following metrics are defined, as much as possible, in an

objective way. However, there are a set of metrics that depends of the evaluation

context, evaluation team and the data that could be collected during the

evaluation, becoming subjective metrics (one example is the Effort to Configure

quality attribute; if you don’t have empirical data to classify how much effort is

considered low, medium or high to configure certain components, it is needed

the feeling/experience/knowledge of the evaluation team within the

component’s and environment’s context).

6.2.1 Metrics to track the CQM Properties

Chapter 5 presented the Component Quality Model (CQM) with its related

characteristics, sub-characteristics and quality attributes. Now, the metrics to

measure those quality items defined on chapter 5 is presented.

Chapter 6 – Evaluation Techniques Framework and Metrics Framework

94

A few examples of metrics usage will be presented (in order to show how

to define the metrics using GQM) and on Appendix A, at least, one example of

metrics for each quality attribute will be described. However, it is important to

highlight that those metrics must be defined in a component evaluation context.

These one presented here and on Appendix A are only to guide the team

evaluation during the definitions of the metrics in the first’s component

evaluation process.

For example, for Accuracy Sub-Characteristic the following metric

could be applied:

Functionality
Sub-Characteristic Accuracy
Quality Attribute Correctness
Goal Evaluate the percentage of the results that

were obtained with precision
Question Based on the amount of tests executed,

how many test results return with
precision?

Metric Precision on results / Amount of tests
Interpretation 0 <= x <= 1; which closer to 1 is better

An interesting aspect here is that the evaluation team defines the

Interpretation of the metrics definition. Thus, the collection and analysis of that

metrics become more feasible, repeatable, reproducible and easier to

understand in a way that the whole team knows how the attribute was collected.

A subjective metrics, for example, the Understandability Sub-

Characteristic could be measure using the following metric:

Usability
Sub-Characteristic Understandability
Quality Attribute Document available
Goal Analyze the documentation availability.
Question How many documents are available to

understand the component
functionalities?

Metric Number of documents
Interpretation As higher and with quality it is better but

it depends of the component complexity,
domain, etc.

As shown, it is very complex to measure how understandable is a

document. In this way, the metric provided is subjective and it is very

dependable of the evaluation team (skills, knowledge, etc.).

Chapter 6 – Evaluation Techniques Framework and Metrics Framework

95

6.2.2 Metrics to track the Evaluation Techniques
Properties

With the same objective of the last section, now a few metrics to track the

properties of the evaluation techniques of the SCETM, described in this chapter,

will be provided. Different from last section, each technique proposed here can

be measured in different ways and complexity, using different tools, techniques,

methods and processes. Thus, the evaluation team should define with a degree

of thoroughness which option is more interesting to measure each evaluation

technique proposed. Here, some recognized tools or methods from literature

will be used as basis, considering that the software components to be evaluated

were developed using Java as programming language.

Functionality
Quality Attribute Response Time
SCETM level I

Technique Accuracy Analyzes using TPTP tool14
Goal Evaluate the percentage of the time taken

between a set of invocations
Question Is the tool efficient to measure the response

time of this kind of component?
Metric Analysis of the results and coverage of the

tool
Interpretation Defines the applicability of the tool to

measure this quality attributes. If this tool
can measure efficient the response time of a
set of invocations, it is good. On the other
hand, if it is not enough to evaluate some
functions other tool should be use to
complement or to substitute this one.
If this tool is good to evaluate the
component, it intend to analyze how much
results are generated with the expected
accuracy and the formula could be:

Number of results with accuracy /
Number of results generated

0 <= x <= 1; which closer to 1 is better

As shown previously, one possible way to measure the quality attribute

Response Time using the Accuracy Analysis technique could be through the

Test & Performance Tools Platform Project (TPTP) tool. However, the team

14 Eclipse Test & Performance Tools Platform Project (TPTP) – http://www.eclipse.org/tptp

Chapter 6 – Evaluation Techniques Framework and Metrics Framework

96

evaluation must know the tool usage in order to achieve its best utilization and

efficiency in measuring the component quality.

6.2.3 Metrics to track the Evaluation Process
Properties

A consistent and good evaluation results can only be achieved by following

a high quality and consistent evaluation process (Beus-Dukic et al., 2003).

However, to assure the efficiency and efficacy of the process, it is important to

define some metrics. The idea is to obtain feedback from those metrics in order

to improve the activities and steps proposed to evaluate the component quality

(that will be presented on chapter 7). Next, two metrics that could be used for

this purpose is presented.

Component Evaluation Process
Goal Adequately evaluate the software

component
Question Can the evaluation team evaluated

everything they planned to execute using
the documents developed during the
process activities?

Metric Total documented functionalities / Total
component functionalities (or Total
measurement accomplished)

Interpretation 0 <= x <= 1; which closer to 1 is better.

Component Evaluation Process
Goal To analyze the usability of the templates

provided
Question Have the template helped during the

evaluation development?
Metric Evaluation team feedback
Interpretation If the template helped during the

evaluation development, it is good; if not,
it should be adapted to improve the time
of the component evaluation process.

The metrics presented above are specific to measure certain properties of

the evaluation process. However, the team evaluation should define metrics as

much as they think interesting, in order to measure the process capability to

evaluate the software component quality.

Chapter 6 – Evaluation Techniques Framework and Metrics Framework

97

6.3 Summary

This chapter presented the Evaluation Techniques Framework and the

Metrics Framework proposal. The idea is that the components used in

applications with different risks-level must also be evaluated differently. For

example, a mobile phone component has a lower application risk than a security

system component of a nuclear power plant. Thus, five levels are distinguished

by increasing risks: I to V.

A case study using the SCETM was developed in order to provide the first

insights of its usability and viability to evaluate software components quality

using those techniques presented. Level 1 and Level 2 from SCETM were used

during the study. More information about it can be found at (Alvaro et al.,

2007b).

Besides, the proposed paradigm used to track the properties of the whole

component quality framework was presented. Some few examples of usage were

provided in order to show the GQM applicability and usage. With the idea of

helping the evaluation team during its first software component evaluation, a

set of valuable metrics examples are presented in Appendix A.

98

Component Evalua-
tion Process

The definition of the Component Quality Model (CQM), the Evaluation

Techniques Framework (through the Software Component Techniques Model

(SCETM)) and the Metrics Framework presented, in previous chapters, were

important to introduce the quality attributes that must be considered to

software component, to evaluate those quality attributes using some pre-defined

and well-established techniques, and, to measure those attributes through the

GQM paradigm. However, it is essential to define a set of activities that should

be followed in order to guide the evaluation team during the component

evaluation. In this way, the component evaluation could be repeatable and

reproducible once each activity contains a well-detailed description, its inputs

and outputs, mechanisms to execute and to control.

A consistent and good evaluation results can only be achieved by following

a high quality and consistent evaluation process (Comella-Dorda et al., 2003).

This does not mean that each evaluation activity requires a highly complex,

exquisitely documented process (although sometimes they do), but if you do not

follow some kind of consistent process, it is likely that the quality of your results

will vary.

In this sense, a Component Evaluation Process was proposed (Alvaro et

al., 2007c), (Alvaro et al., 2007d) in order to define more precisely the activities

necessary to evaluate the component quality.

7.1 The Component Evaluation Process

As presented in chapter 3, the Component Evaluation Process is based on

the SQuaRE project, which provides guidance and requirements for the software

product evaluation. The idea is to follow as much as possible this standard to

7

Chapter 7 – Component Certification Process

99

develop a new one for software component quality evaluation. Moreover, a set of

works from literature which includes processes for software product evaluation

and processes for software component assessment aided during the definition of

this process (McCall et al., 1977) , (Boegh et al., 1993), (Beus-Dukic et al., 2003),

(Comella-Dorda et al., 2002).

In this context, a set of activities to guide the evaluation team during the

evaluation was proposed (Figure 7.1), which is presented using SADT notation

(Ross, 1997).

Figure 7.1. Component Evaluation Process.

Figure 7.1 has shown the macro-view of the whole component evaluation

process and Appendix B presents a template to guide the evaluation team

during the whole component evaluation process. Now, each activity of the

process will be described in more details.

7.1.1. Establish Evaluation Requirements activity

This activity includes specifying the goals and scope of the evaluation, and

specifying evaluation requirements. The evaluation requirements specification

should identify the quality characteristics (using the Component Quality Model

(CQM)), but also other aspects such as stakeholders to compose the evaluation

team, the component’s constraints and the component relationships with the

software system or with the target environment. Moreover, when defining the

evaluation team, the stakeholders should be carefully selected in order to assure

a high-quality component evaluation.

Chapter 7 – Component Certification Process

100

The inputs for this activity are the Component Requirements Document,

the Component’s Documentation available and the Component Quality Model

(CQM). Based on these inputs, the evaluation team together with the evaluation

customer will Establish the Evaluation Requirements and generate the

Evaluation Requirements Specification as output, as shown in Figure 7.2.

Figure 7.2. Establish Evaluation Requirements steps.

Figure 7.2 has shown the steps that should be followed execute the

Establish Evaluation Requirements activity which will be presented next.

• Form an Evaluation Team: The importance of an effective

evaluation team should not be underestimated, since without an

effective team, an evaluation cannot succeed. People with different

skills are essential to the evaluation team, such as: technical experts,

domain experts, business analysts, contract personnel, end users,

among others. A good balance of power is also important for a good

team. The other skills necessary will depend on the evaluation scope

and objectives, and can include security professionals, maintenance

staff, etc.

According to (Comella-Dorda et al., 2003), to be successful the

evaluators need to: (i) understand the impact of the software

component on the system development process and on the target

environment, (ii) determine evaluation requirements for software

component; (iii) define software component quality attributes; (iv)

select software component evaluation techniques; and (v) employ a

software component evaluation process that address the inherent

tradeoffs.

Chapter 7 – Component Certification Process

101

While there are no rules for identifying evaluation stakeholders,

errors of inclusion (i.e. including additional individuals or groups) are

less risky than errors of exclusion (i.e. omitting legitimate

stakeholders). Thus, if there is any doubt about including or not one

stakeholder, it is more interesting to add him/her to the evaluation

process. However, the number of stakeholders that will compose the

evaluation team will depend of several aspects, such as: the size of the

component, the complexity of the problem to be solved, the target

domain, the algorithm complexity, among other factors. The essential

stakeholders in any kind of evaluation are the customer and the

evaluator responsible for it (which has large knowledge, at least, in

the target domain and in the component technology). More

stakeholders could be added to the evaluation team, however,

according to (Comella-Dorda et al., 2003), more than 7 stakeholders

are not so interesting to the evaluation;

• Define the Goals and Scope: Some important questions should be

answered before the evaluation tasks begin, such as:

o What is the evaluation expected to achieve?

o What are the responsibilities of each member of the team?

o When should the evaluation finish?

o What constraints must the evaluation team adhere to?

o What is the related risk of the component to its target

domain?

Often, this basic information is not documented. Moreover, the

people tend to be more productive when they have a clear picture of

the ultimate goals of the project, in this case, the component

evaluation process. Thus, the evaluation team should answer these

questions, focusing on:

o Goals of the evaluation;

o Scope of the evaluation;

o Names of team members and their roles;

o Component and domain risk-level;

o Statement of commitment from both stakeholder(s) and

customer(s); and

Chapter 7 – Component Certification Process

102

o Summary of decisions that have already been made.

So, the evaluation team defines the goals, the scope and the related

risk-levels of the component domain together with the evaluation

customer.

Moreover, it is important to describe, in a general way, the

component functionalities and the domain of the component in

order to understand them more precisely;

• Analyze the System and Environment: The evaluation team

should analyze the software system in order to define the impact of

the software component in these system(s), which requirements and

functionalities have impact, the architecture constraints,

programming language constraints, environment constraints, etc. On

the other hand, if the component will be evaluated independent of a

software system, the evaluation team should define, as precise and

detailed as possible, the environment that the component will be

evaluate (i.e. target deployment environment, target domains of this

component, version of the related tools, supplier of those tools,

environment constraints, etc.). This step is important to define how

big will be the complexity of the component’s evaluation using that

environments or that system specified, answering a set of questions:

o How much effort will be spent to provide the whole infra-

structure to evaluate the component? How are the

complexity and constraints of this(ese) environment(s)?

o What is the size of those selected system? What is(are) the

target domain(s) of those systems?

o What is the impact of the software component into selected

system?

o What are the component dependencies?

Related to these last questions, the evaluation team should analyze if

the component has dependencies with other components, modules,

systems, etc. So, all dependencies should be described in this step in

order to comprehend the behavior of the software components

(dependencies, cohesion, coupling, etc.);

Chapter 7 – Component Certification Process

103

• Define the Quality Characteristics: This step will define a set of

quality characteristics that should be considered during the

component’s evaluation. Based on the Component Quality Model

(CQM), the evaluation team must define the quality characteristics

and the sub-characteristics that will be used to evaluate the software

component. It is interesting that the importance related to each

quality characteristic should be defined. Thus, this identification will

aid the next activity where the team evaluator should define the depth

of the evaluation. Next, the evaluation team should discuss the

selected quality characteristics and their related importance with the

customer in order to achieve an agreement between both sides.

The importance levels of the component could be: 1-Not Important;

2-Indiferent; 3-Reasonable; 4-Important; 5-Very Important. A

simple table can help their in this identification, as show in Table 7.1.

• Specify the Required Documentation: Based on the quality

characteristics selected and their importance level, the evaluation

team should define which documentation, assets and information are

necessary to execute the evaluation. This information should be

shared with the customer in order to him/her provide the information

required. After obtaining those documents and attached them into the

evaluation process, the next step could be performed;

• Define External Quality Characteristics: Besides the quality

characteristics presented in the CQM, it is possible that exists quality

characteristics that are not covered by that model. In this case, the

evaluation team should define the “new” characteristic and reference

it based on considerable works in the literature in order to clarify the

definition and the importance of the quality characteristic. Still on,

the evaluation team should define the sub-characteristics and quality

attributes of this “new” characteristic defined and attach all

 Table 7.1. Example of Importance’s definition.

Characteristics
Sub-

Characteristics
Importance

Functionality Accuracy 4
Functionality Security 3
… … …

Chapter 7 – Component Certification Process

104

information in the Table 7.1 presented later, and, at the end of the

component evaluation process the team should analyze if it is

interesting to put those external quality characteristics in the CQM;

• Develop the Evaluation Requirements Specification: The last

step of this activity is to elaborate a document with all information

collected during the Establish Evaluation Requirements activity and

generate the Evaluation Requirements Specification, which is the

main input of the next activity.

7.1.2 Specify the Evaluation activity

This activity includes defining the evaluation level, through the Guidelines

for Selecting Evaluation Level; the definition of the evaluation techniques to be

used to evaluate each level defined previously, through the Evaluation

Techniques framework; and selecting the metrics that will be used to collect

information about all steps of the evaluation process, through the Metrics

Framework. The goal here is to detail as much as possible the specification level

in order to assure the reproducibility and repeatability of the evaluation. The

idea is to assure that other groups of people, which does not participate in the

evaluation, can understand and execute the same evaluation again.

The evaluation team should define metrics to track the properties of the

quality characteristics and the techniques to be adopted as well as the whole

evaluation process. An important aspect here is to consider the complexity of

obtaining the data of each metric required and if the selected metric can

represent completely the information required by the evaluation team.

The inputs of this activity is the Evaluation Requirements Specification.

The Quality Characteristics Importance, defined in the last activity, acts as

control in this activity. Thus, using those assets, the evaluation team will

develop the Evaluation Requirements Specification and generate the

Specification of the Evaluation as output, as shown in Figure 7.3.

Chapter 7 – Component Certification Process

105

Figure 7.3. Specify the Evaluation steps.

Figure 7.3 has shown the steps that should be followed to execute the

Specify the Evaluation activity which will be presented next.

• Specify the Quality Attributes: Based on the characteristics and

sub-characteristics defined in the previous activity (Define the

Quality Characteristics step and Define External Quality

Characteristics step), the evaluation team needs to define the quality

attributes of each sub-characteristics. For those CQM’s quality

characteristics, the evaluation team can use the CQM in order to help

them in the definition of the quality attributes. And, for those that are

external characteristics, the evaluation team should define the quality

attributes for composing and complementing the quality

characteristic (if it was not performed yet).

Thus, the evaluation team assures the complete definitions of the

quality characteristics necessary to evaluate the software components,

as shown in Table 7.2. After this step, no more characteristics will be

added to the evaluation process and, thus, the evaluation team must

guarantee the complete definition of those quality characteristics, as

much as possible.

 Table 7.2. Example of Quality Attributes Definition.

Characteristics
Sub-

Characteristics
Quality

Attributes
Importance

Functionality Accuracy Correctness 4

Functionality Security
Data

Encryption
3

… … ... …

Chapter 7 – Component Certification Process

106

• Define the Software Component Techniques Model

(SCETM) level: After specifing all quality characteristics and

attributes, the evaluation team must define which evaluation

technique should be used to evaluate those attributes. The evaluation

team should consider the importance of each quality characteristic

(developed in the Define the Quality Characteristic step), described

in the last activity. Thus, they will define the SCETM level that the

software component should attend, using a set of guidelines for

selecting evaluation level as basis for this decision (presented in

chapter 6 in Table 6.1). Moreover, the evaluation team has two

directions to follow: (i) they can define a unique level to evaluate all

quality attributes of the software component using the techniques of

this level (e.g. SCETM II level) or, (ii) if necessary, they can select a

mix of levels, where each quality characteristic will be evaluated in a

certain SCETM level (e.g. functionality will be evaluate on SCETM I

level, reliability will be evaluated on SCETM III level and so on). This

decision will affect the final report and should be discussed with the

customer. In other words, if the evaluation team decides the first

direction, at the end, the component will be certified or not for a

certain level (e.g. certified in SCETM II level or not). And, if they

choose a mix of levels, at the end, the report will contain the level

achieved by each characteristic (e.g. Functionality – SCETM II,

Reliability – SCETM I, Usability – SCETM III, etc). For this reason,

the decision of the directions to be followed during the evaluation

should be communicated to the customer before going to the next

step. Table 7.3 shows an example of the decision of the evaluation

techniques for each quality attributes.

 Table 7.3. Example of Define SCETM.

Characteristics
Sub-

Characteristics
Quality

Attributes
Impor-
tance

SCETM
Level /
Evaluation
Technique

Functionality Accuracy Correctness 4
II. Black-Box
Testing

Functionality Security
Data
Encryption

3
III. Code
Inspection

… … ... … …

Chapter 7 – Component Certification Process

107

Still on, if any external quality characteristic was proposed in last

activity (developed in Define External Quality Characteristics step),

the evaluation team should define how this “new” quality

characteristic is to be evaluated through techniques available on the

literature or through one of the techniques represented in the

Techniques Evaluation framework (presented in chapter 6);

• Analysis of the Evaluation Techniques: The evaluation team,

using their expertise, knowledge and know-how in the evaluation

techniques, must analyze these and decides if those techniques are

useful to evaluate the target software component or if it is necessary

to define other techniques for executing / complementing the

evaluation. The idea is to define the best technique for each kind of

evaluation. It is important to consider here that all of those

techniques presented in SCETM are recommended techniques to

guide the evaluation team during the selection process. However, it is

not avoided the proposal of new techniques that are better to evaluate

the target software component. Moreover, the evaluation team should

justify the adoption of a new technique and if it is reasonable, it can

be incorporated to the SCETM;

• Define Goal-Question-Metric (GQM): The evaluation team will

define metrics to track the properties of the quality characteristics

selected, the techniques adopted, as well as the whole evaluation

process. Through the Metrics Framework (described in chapter 6) the

evaluation team will define:

o the metrics to evaluate those quality attributes selected from

CQM or from external sources;

o the metrics necessary for each SCETM technique used(which

is necessary at least one metric for each evaluation technique

that will be used); and

o the metrics to measure the efficiency of the component

evaluation process;

The information collected using these metrics will support the quality

assurance of the component evaluation and also provides insights for

Chapter 7 – Component Certification Process

108

the next evaluations once they will be available on the Component

Evaluation’s Repository;

• Establish Score Level for Metrics: After defining all the metrics,

the evaluation team should consider a score level to facilitate its

analysis. For example, in a certain component evaluation if the metric

defined for measuring the Suitability quality attribute achieved less

than 40%, it is not accepted; between 41% and 80% could be

considered reasonable; and higher than 81% it is considered

acceptable and could receive the evaluation agreement. This score

level will be dependent on the importance of each quality

characteristic (Define the Quality Characteristic step) and the

evaluation level (Define SCETM level step) defined during this

activity. However, there is a kind of scale that should be considered as

basis in order to start the establishment of the score level. The scale is

defined on ISO/IEC 15504-2 (ISO/IEC 15504-2, 2000) (the ISO/IEC

25000 does not contain any kind of scale for quality achievement

level and, in this way, another standard guiding this thesis in the

definition of the range of those scales), as follows:

• N (Not Achieved): 0% to 15% - There is no or little evidence

about the presence of the quality attribute on the component;

• P (Partially achieved): 16% to 50% - There is evidence

about the presence of the quality attribute on the component.

However, the quality attribute aspects is partially achieved;

• L (Largely achieved): 51% to 85% - There is evidence about

the presence of the quality attribute on the component. The

component provide the quality attribute aspects implemented

but it is not completely achieved; and

• F (Fully achieved): 86% to 100% - The component provide

all necessary fulfillments for the quality attribute under

evaluation.

The evaluation team should analyze if the scale proposed on ISO

15504-2 makes sense to the component in evaluation. This is

dependent on the reliability level expected by the component, i.e. the

SCETM level defined to evaluate the component. If needed, the

Chapter 7 – Component Certification Process

109

evaluation team must do some improvements in the scale proposed in

order to become more accurate to the component under evaluation.

Moreover, the evaluation team should retrieve the previous

evaluation in the Component Evaluation’s Repository in order to

analyze the score level for the metrics defined in previously

evaluations;

• Develop the Specification of the Evaluation: The last step of

this activity is elaborating a document with all information collected

during the Specify the Evaluation activity and generate the

Specification of the Evaluation, which is the main input for the next

activity.

7.1.3 Design the Evaluation activity

This activity needs to consider access to component documentation,

development tools and personnel, evaluation costs and expertise required, the

evaluation schedule and costs, the description of the evaluation environment as

detailed as possible, and, reporting methods and evaluation tools.

The input for this activity is the Specification of the Evaluation. The GQM,

defined in the last activity, acts as control in this activity. Based on these inputs,

the evaluation team, using a set of tools as support, will develop the Evaluation

Plan, which contain detailed and complete information about the evaluation

process that should be follow, as show in Figure 7.4.

Figure 7.4. Design the Evaluation steps.

Figure 7.4 has shown the steps that should be followed to execute the

Design the Evaluation activity which will be presented next.

Chapter 7 – Component Certification Process

110

• Document the Evaluation Technique/Method: The objective of

this step is to document all those evaluation techniques or methods

proposed to evaluate the component in the last activity (Define the

Software Component Techniques Model (SCETM) level step). The

idea is to describe them in order to all stakeholders involved in the

evaluation process understand the technique/method and can execute

the tasks to evaluate the software component.

All those techniques proposed on SCETM should have its description

stored in the Component Evaluation’s Repository and should be

reused in order to increase the productivity in this step. However, if a

new technique was adopted in the last activity (Define SCETM level

step), it is necessary develop this documentation from scratch and, at

least, should contain: the name of the technique/method, the

reference in literature for this technique, the description and, if

necessary, the use guide. The depth of this description will depend on

the knowledge in that technique/method that the stakeholders

involved in the evaluation team have;

• Select (or Develop) Tools: Based on a set of tools available in

literature, on the programming language and on the environment that

the component should be deployed (or system in which it should be

evaluated), the evaluation team needs to select the tools. Thus, the

evaluation team will select the tools that support the execution of the

techniques selected previously (Define the Software Component

Techniques Model (SCETM) level step). If necessary, it is possible to

develop a specific tool that evaluates a certain (or a set of)

technique(s) in the case that the cost/benefit to develop one tool is

justified. Still on, the evaluation team defines if it is necessary any tool

to collect the metrics defined in later activity (Define GQM step).

Table 7.4 shows an example of a Table that could be used to store the

selected tools for each quality attribute.

The description, at least, should consist of: the name of the tool, the

version of the tool, the origin of the toll (i.e. its supplier) and the

description of the technique (as detailed as the evaluation team

consider necessary);

Chapter 7 – Component Certification Process

111

• Define the Environment: Now, it is time to describe the

environment that the component will be evaluated in order to

establish the context of the evaluation. The main input for this step is

the Analyze the System and Environment step developed during the

first activity. Thus, the evaluation team will specify the whole

environment as detailed as possible (i.e. software and tools necessary,

the versions of the used software/tools, environment installed those

software/tools, software/tools and environment constraints, etc.).

Based on the environment defined, the evaluation team will analyze

the component quality. It is important to remind that the final report

will describe the environment(s) under with the component was

evaluated;

• Develop the Evaluation Schedule: After all technological steps

were developed, now it is time to analyze all available resources, such

as tools, stakeholders, techniques, methods, etc. So, the evaluation

team should develop the evaluation schedule with activities and tasks

for each stakeholder and the time to execute each task. It is

interesting to achieve an agreement with all stakeholders involved in

the evaluation process in order to minimize the risks during the

component evaluation;

• Develop the Evaluation Cost: The establishment of costs of a

software project or an evaluation project has been a hard task.

15 http://www.junit.org/
16 http://findbugs.sourceforge.net/
17 http://pmd.sourceforge.net/

 Table 7.4. Example of Tools Selection.

Characteristics
Sub-

Characteristics
Quality

Attributes

SCETM
Level /
Evaluation
Technique

Tool used

Functionality Accuracy Correctness
II. Black-
Box Testing

Junit15,
FindBugs16

Functionality Security
Data
Encryption

III. Code
Inspection

PMD17

… … ... … …

Chapter 7 – Component Certification Process

112

However, in order to define the evaluation costs a few and simple

guidelines can be proposed, as following:

o Number of stakeholders involved in the evaluation;

o Skills and experience of those stakeholders;

o Definition of the tasks for each stakeholder;

o Time defined to each stakeholder to execute his/her tasks;

Based on these guidelines, the evaluator responsible can determine

the cost of each stakeholder involved in an evaluation process through

the stakeholder skills X task to execute X time define to execute each

task, and, thus, calculate the total costs of the evaluation process.

The idea is to define the costs of the evaluation in order to the

customer knows the investment in the component evaluation and

approves it. This is not the best approach to define the costs; however,

this is the first step towards to the costs definition. Thus, the intention

is to acquire expertise during a set of initial evaluations, store these in

the Component Evaluation’s Repository and, provide these data to

the next component evaluation in order to have some data to be

compared and to refine the costs of the whole process;

• Develop the Evaluation Plan: The last step of this activity is to

elaborate a document with all information collected during the

Design Evaluation activity. The output of this activity is the

Evaluation Plan, which is the main input for the next activity.

7.1.4 Execute the Evaluation activity

This activity includes the execution of the evaluation and analysis of the

evaluation results. The conclusions should state whether the software

component is appropriate for use in the intended environment (and maybe in

system(s)) described in later activities.

The input of this activity is the Evaluation Plan. The GQM, defined in the

second activity, acts as control in this activity. Based on these input, the

evaluation team, using a set of support tools, will develop the Evaluation Report

to delivery to the customer and to be stored in the Component Evaluation’s

Repository too, as shown in Figure 7.5.

Chapter 7 – Component Certification Process

113

Figure 7.5. Execute the Evaluation steps.

Figure 7.5 has shown the steps that should be followed to execute the

Execute the Evaluation activity which will be presented next.

• Configure the environment: Based on Environment, defined in

last activity, the stakeholder(s) responsible for this activity will

configure the environment in order to start the evaluation of the

component;

• Execute the Evaluation: Based on the Evaluation Plan, the

stakeholder(s) responsible for this activity will apply the

techniques/methods, using the defined tools and the metrics adopted

to collect information about the component evaluation;

• Collect Data: Collecting data provides a basis for analysis. Good

data collection is simple, repeatable, measures what is intended to

measure, and captures information in a form suitable for analysis.

Accurate data collection is one of the keys to successful software

component evaluation, yet the act of collecting data is full of surprises

– a few good ones and more than a few bad ones (Comella-Dorda et

al., 2003).

It is important to remember that the quality of the evaluation is only

as good as the data collected. Confidence in the final results can be

improved by ensuring that the data collection is as accurate as

possible.

Thus, the collection process should be carefully executed in order to

provide good data to the next step. All data obtained from the tools

used must be stored in a table like Table 7.5, based on the metrics and

Chapter 7 – Component Certification Process

114

interpretation defined in GQM Define step for each quality attribute.

So, the data analysis will be executed based on this table provided by

this step;

• Analyze the Results: After finishing the execution, the evaluation

team will pick up all data stored in the previous table to analyze and

develop a report about the evaluation. Those data should be carefully

analyzed and correlated each other in order to analyze the component

quality in a complete view of its functionalities. It means that one data

result can affect/interfere in other data result and vice-versa,

becoming important to correlate the results.

If possible, it is interesting compare this evaluation with other similar

ones stored in Component Evaluation’s Repository in order to

provide insights to the evaluation team during the data analysis. After

that, this report will be stored in a Component Evaluation’s

Repository for sharing the knowledge acquired during this evaluation

to the next component evaluations;

• Develop the Evaluation Report: The final result is an Evaluation

Report that describes all quality attributes chosen, all techniques

defined, the methods, processes and tools used, the metrics defined

for evaluation, the data collected in the last step and the evaluation

results.

If possible, the evaluation team can describe a set of suggestions in

order to improve the quality of the component. The goal of the

 Table 7.5. Example of Data Collection.

Characte-
ristics

Sub-
Characte-

ristics

Quality
Attributes

SCETM
Level /

Evaluation
Technique

Tool
used

Results Metric

Functionality Accuracy Correctness
II. Black-
Box Testing

Junit,
FindBugs

0.7

Precision
on
results /
Amount
of tests

Functionality Security
Data
Encryption

III. Code
Inspection

PMD 0.8

Nº
interface
encrypted
/ number

of
services

… … ... … … … …

Chapter 7 – Component Certification Process

115

recommendation is to provide some information so that the customer

can improve the component quality. The evaluators learn many

lessons about the use of the component during its evaluation (i.e.

component architecture, deployment constraints, tailoring, wrapping,

and testing and maintenance activities) and can contribute with

important recommendations to the customer. This information is

important in the case that the component is approved and, much

more interesting if the component is rejected.

7.1.5 Process Summary

Some individuals believe that following any documented process is a

waste, particularly when the end goal is to save time and money. According to

(Comella-Dorda et al., 2003), the highly informal COTS evaluation processes

share the blame for the failure due to their lack of activities to follow. The

process described here is a means of performing component evaluations and not

an end in itself. Expect to tailor this process for specific purpose, and do not let

it get in the way of getting good data and making an informed recommendation.

Finally, it is important to consider that the evaluation team is the main

responsible for execute this process and should be carefully defined in order to

assure that the evaluation will be efficiently developed.

7.2 Summary

This chapter presented the Component Evaluation Process, which is

composed of a set of activities to guide the evaluation team during the

component evaluation task. Each activity contains a set of steps that should be

followed and its details were carefully described. A template was defined in

order to guide the team evaluation during the whole process and is presented in

Appendix B.

Time, effort and human resources needed for applying this process

together with the whole framework always depend on the importance, size and

the component risk-level. Moreover, the complexity of the techniques selected

to evaluate the component is a factor that could increase considerably the time

spent on the component evaluation. Thus, the component evaluation in general

may range from one evaluator assure quality for 1 day, to a pool of evaluators for

a month.

116

Experimental Study

The task of choosing the best software engineering techniques, methods,

processes and tools to achieve a set of quality goals under a given scenario is not

a simple endeavor. Experimental studies are fundamental for executing cost-

benefit analysis of software engineering approaches. Based on empirical

evidences, one can construct experience bases that provide qualitative and

quantitative data about the advantages and disadvantages of using these

software engineering techniques, methods, processes and tools, in different sets

and domains. According to Basili et al. (Basili et al., 1996b) experimentation in

software engineering is necessary because hypotheses without proofs are

neither safe nor reliable as a knowledge source. Moreover, replication is an

important aspect in this scenario.

According to Fusario et al. (Fusario et al., 1997), replicate means to

reproduce as faithfully as possible a previous experiment, usually run by other

researchers, in a different environment and conditions. When the results

generated by a replication are coincident with the ones of the original

experiment, they contribute to strengthen the hypotheses being studied.

Otherwise, other parameters and variables should be investigated.

In this way, new software engineering techniques, methods, processes and

tools must be experimented in order to consider how and when they really work;

to identify their limits; and to understand how to improve them. Thus, in order

to determine whether the Software Component Quality Framework meets its

proposed goals, an empirical study should be planned. This chapter describes

the definition, planning, operation, analysis and interpretation of the

experimental study.

8

Chapter 8 – Experimental Study

117

8.1 Software Component Quality Framework: An
Experimental Study

According to Wohlin et al. (Wohlin et al., 2000), the experimental process

can be divided into the following main activities: the definition is the first step,

where the experiment is defined in terms of problem, objective and goals. The

planning comes next, where the design of the experiment is determined, the

instrumentation is considered and the threats to the experiment are evaluated.

The operation of the experiment follows from the design. In the operational

phase, measures are collected, analyzed and evaluated in the analysis and

interpretation, providing some conclusions to the experiment. Finally, the

results are presented and packaged.

The plan of the experimental study to be discussed follows the model

proposed in (Wohlin et al., 2000) and the organization adopted in (Barros et al.,

2002), as presented next. The definition and planning activities will be

described in future tense, showing the logic sequence between the planning and

operation.

8.2 Definition of the Experimental Study

According to the Goal Question Metric Paradigm (GQM) (Basili et al.,

1986), the main objective of this study is to:

Analyze the software components quality framework

for the purpose of evaluating

with respect to the feasibility and its usage

from the point of view of the researchers and quality engineers

in the context of a domain engineering project.

8.3 Planning of the Experimental Study

Context. The objective of the study is to evaluate the feasibility of the

Software Component Quality Framework proposed. It is based on a set of

software components developed during a domain engineering project

accomplished in a university lab. The requirements of the project were defined

by the experimental staff based on real-world projects. During the domain

engineering project the subjects start to apply and collect useful data to evaluate

the software components quality at the end of the project. The study will be

Chapter 8 – Experimental Study

118

conducted as single object of study which is characterized as being a study

which examines an object on a single team and a single project (Basili et al.,

1986).

Training. The training of the subjects using the process will be conducted

in a classroom at the university. The training will be divided in two steps: in the

first one, concepts related to software reuse, component-based development,

variability, domain engineering, software product lines, asset repository,

software reuse metrics, software reuse processes, software component quality,

software component evaluation, testing and inspection will be explained during

eleven lectures with two hours each. Next, the domain engineering process and

software component quality framework will be discussed during four lectures

(two for each). During the training, the subjects can interrupt to ask issues

related to lectures. Moreover, the training will be composed of a set of slides and

recommended readings.

Pilot Project. Before performing the study, a pilot project will be

conducted with the same structure defined in this planning. The pilot project

will be performed by a single subject, which is the author of the proposed

framework. For the project, the subjects will use the same material described in

this planning (which is developed by the author of the framework during the

pilot project), and will be observed by the responsible researcher. In this way,

the pilot project will be a study based on observation, aiming to detect problems

and improve the planned material before its use.

Selection of Subjects. All the students that registered in the Software

Engineering pos-graduate course at Federal University of Pernambuco, Brazil,

were selected (twelve students). In this way, the subjects were selected by

convenience sampling (Wohlin et al., 2000) representing a non-random subset

from the universe of students from Software Engineering. In convenience

sampling, the nearest and most convenient people are selected as subjects.

Subjects. From twelve students, three of them with more experience in

software quality were selected to act in this experiment. Thus, the subjects of the

study (three subjects), according to their skills and technical knowledge, will act

as evaluation leader, architecture/environment specialist and programming

language specialist.

Chapter 8 – Experimental Study

119

Instrumentation. All the subjects will receive a questionnaire

(Appendix C) about his/her education and experience, besides the subjects

received the chapters 5, 6 and 7 of this Thesis which contain the software

component quality framework. At the end of the experimentation, the intention

is to provide a questionnaire for the evaluation of the subjects’ satisfaction using

the framework.

Criteria. The quality focus of the study demanded criteria that evaluate

the real feasibility of the framework in measuring software components quality

and the difficulty of the framework usage. This criteria will be evaluated

quantitatively ((i) coverage of the CQM; (ii) coverage of the SCETM; and (iii)

subjects’ difficulty to use the framework).

Hypotheses. An important aspect of an experimental study is to know

and to formally state what is going to be evaluated in the experimental study.

Hence, a set of hypotheses was selected, as described next.

- Null hypotheses, H0: these are the hypotheses that the experimenter

wants to reject strongly. The following hypotheses can be defined, using GQM:

Goal. To determine the feasibility of the framework to measure the

software component quality and to evaluate the difficulties to use the

framework.

Question.

1. Does the quality attributes proposed on CQM is used during the

component evaluation?

2. Does the evaluation techniques proposed on SCTEM is used during

the component evaluation?

3. Do the subjects have difficulties to apply the framework?

Metric.

Ho’: coverage of the component quality attributes proposed in the CQM X the quality attributes used
during the component evaluation < 85%

Ho’’: coverage of the evaluation techniques proposed on the SCETM for the quality attributes defined

during the component evaluation < 85%

Ho’’’: %Subjects that had difficulty to understand, follow and use the Software Component Quality

Framework > 20%

The CQM proposed must contain the major quality attributes necessary to

any kind of software component evaluation. In this sense, the null hypothesis

Chapter 8 – Experimental Study

120

H0’ states that the coverage of the component quality attributes proposed in the

CQM X the quality attributes used during the component evaluation is less than

85%. It may exists some components in specific kind of domains that need new

quality attribute(s) in order to measure specific characteristic of the component.

After that, following the component evaluation process, the evaluation

team should define the techniques that will be used to evaluate each quality

attribute proposed previously. In this way, the null hypothesis H0’’ states that

the coverage of the evaluation techniques proposed on the SCETM for the

quality attributes defined on the component evaluation is less than 85%.

At least, the component evaluation framework is consisted of four

modules and there is a set of steps to follow in order to accomplish the

component evaluation. In this way, the null hypothesis H0’’’ states that the

subjects that will have difficult to understand, follow, and use the whole

software component quality framework is more than 20%.

The values of these hypotheses (85%, 85% and 20%, receptivity) were

achieved through the feedback of some researchers of RiSE group and, software

and quality engineers of a Brazilian software company CMMi level 3. Thus,

these values constitute the first step towards well-defined indices which the

framework must achieve in order to indicate its viability.

- Alternative hypotheses: these are the hypotheses in favor of that

which the null hypotheses reject. The experimental study aims to prove the

alternative hypotheses by contradicting the null hypotheses. According to the

selected criteria, the following hypotheses can be defined:

Goal. To determine the feasibility of the framework to measure the

software component quality and to evaluate the difficulties to use the

framework.

Question.

1. Does the quality attributes proposed on CQM is used during the

component evaluation?

2. Does the evaluation techniques proposed on SCTEM is used during

the component evaluation?

3. Do the subjects have difficulties to apply the framework?

Chapter 8 – Experimental Study

121

Metric.

H1: coverage of the component quality attributes proposed in the CQM X the quality attributes used
during the component evaluation >= 85%

H2: coverage of the evaluation techniques proposed on the SCETM for the quality attributes defined on

the component evaluation >= 85%

H3: %Subjects that had difficulty to understand, follow and use the Software Component Quality

Framework <= 20%

Independent Variables. The independent variables are the education

and the experience of the subjects, which will be collected through the

questionnaire and the proposed framework. This information can be used in the

analysis for the formation of blocks.

Dependent Variable. The dependent variables are the quality of the

CQM and SCETM developed and the usability of the framework proposed to

assure the component quality. The quality of the CQM and SCETM will be

measured through its feasibility. And the quality of the framework will be

measured through the capacity of the “users” understand, use and execute in a

correctly way all the steps of the framework.

Qualitative Analysis. The qualitative analysis aims to evaluate the

difficulty of the application of the proposed framework and the quality of the

material used in the study. This analysis will be performed through a

questionnaire (Appendix C). This questionnaire is very important because it will

allow evaluating the difficulties that the subjects have with the proposed models

and, consecutively, with the whole framework, evaluating the provided material

and the training material, and improving these documents in order to replicate

the experiment in a near future. Moreover, this evaluation is important because

it can verify if the material is influencing the results of the study.

Randomization. This technique can be used in the selection of the

subjects. Ideally, the subjects must be selected randomly from a set of

candidates. However, as cited in the Selection of Subjects section, the subjects

were selected by convenience sampling.

Blocking. Sometimes, there is a factor that probably has an effect on the

response, but the experimenter is not interested in that effect. If the effect on

the factor is known and controllable, is possible to use a design technique called

blocking. Blocking is used to systematically eliminate the undesired effect in the

Chapter 8 – Experimental Study

122

comparison among the treatments. In this study, it was not identified the

necessity of dividing the subjects into blocks, since the study will evaluate just

three factors, which are the completeness of CQM and SCETM, and the

framework usage.

Balancing. In some experiments, balancing is desirable because it both

simplifies and strengthens the statistical analysis of the data. However, in this

study it is not necessary to divide the subjects, since there is only one group.

Internal Validity. The internal validity of the study is defined as the

capacity of a new study to repeat the behavior of the current study, with the

same subjects’ expertise and objects with which it was executed (Wohlin et al.,

2000). The internal validity of the study is dependent of the number of subjects.

This study is supposed to have at least between two to five subjects to guarantee

a good internal validity.

External Validity. The external validity of the study measures its

capability to be affected by the generalization, i.e., the capability to repeat the

same study in other research groups (Wohlin et al., 2000). In this study, a

possible problem related to the external validity is: (i) the subjects’ motivation,

since some subjects can perform the study without responsibility or without a

real interest in performing the project with a good quality as it could happen in

an industrial project; and (ii) the subjects’ experience, once the background and

experience in software area (including software development, tests and quality

area) could be lower than the expected in this experiment. The external validity

of the study is considered sufficient, since it aims to evaluate the viability of the

application of the software component quality framework. Since the viability is

shown, new studies can be planned in order to refine and improve the process.

Construct Validity. The validation of the construction of the study

refers to the relation between the theory that is to be proved and the

instruments and subjects of the study (Wohlin et al., 2000). In this study, a

relative know project will be used (i.e. the subjects have about one and a half

years of experience in this kind of project). Thus, this choice avoids previous

experience of making a wrong interpretation of the impact of the proposed

framework.

Chapter 8 – Experimental Study

123

Validity of the Conclusion of the Study. The validation of the

conclusion of the study measures the relation between the treatment and the

result, and determines the capability of the study to generate conclusions

(Wohlin et al., 2000). This conclusion will be drawn by the use of descriptive

statistic.

8.4 The project used in the Experimental Study

The project used in the experimental study was to perform the domain

engineering of a set of tools developed by RiSE group during the last four years.

The idea is to use the RiSE Domain Engineering process (RiDE) (Almeida,

2007) to execute the domain analysis, domain design and domain

implementation in order to analyze the commonalities and variability between

the tools that RiSE is developing, and guiding also the development of further

tools. Moreover, during the usage of the RIDE process, the subjects will define

the stakeholders responsible to execute the component evaluation quality and

will evaluate the software components produced by RIDE process using the

Software Component Quality Framework proposed in this thesis.

At the end of the project, the subjects will perform the domain engineering

of those tools and evaluate the quality of the software components produced,

which is the focus of this experiment.

8.5 The Instrumentation

Instrumentation. Before the experiment can be executed, all

experiment instruments must be ready. These include the experiment objects,

guidelines, forms and tools. In this study, the questionnaire presented on

Appendix B and Appendix C, in conjunction with the papers about the process

were used. The questionnaires presented the subjects’ names in order to check

additional information or misunderstanding. However, the subjects were

notified for the information confidentially.

8.6 The Operation

Experimental Environment. The experimental study was conducted

during part of a M.Sc. and Ph.D. Course in Software Reuse, during November

2007 – June 2008, at Federal University of Pernambuco. The experiment was

Chapter 8 – Experimental Study

124

composed of three subjects and all the evaluation process was developed in 135

hours and 48 minutes (Figure 8.1 shows the time spent in each activity of the

evaluation process). The evaluation process activity was conducted using five

components (described next) generated from the usage of the RiDE process with

the idea of developing a simple asset search/retrieval tool.

• Persistence Manager: Any information system needs for an

infrastructure mechanism that manages data with common services to

store, update, remove, retrieve and list general data objects.

The Persistence Manager component works persisting data objects,

including the assets content and its meta-information. It abstracts for

the consumer of its interfaces where and how the data are stored. It

shall allow different kinds of persistence, such as database or file

system persistence, as well as dealing with external resources, making

the localization of each asset transparent.

• Artifact Manager: In the reference architecture, a reusable software

unit is represented by a generic element called asset, wide model

includes two parts: the asset contents (set of reusable artifacts) and the

asset meta-data (asset description). Since the asset insertion operation

includes storage of asset contents (artifacts), it is necessary to

implement a component that manages such artifacts.

The Artifact Manager represents a repository of asset contents (set of

reusable software artifacts).

• Asset Catalog: Asset producers need to make their assets available

for consumption and then reuse tools should allow asset insertion

operation. The insertion operation means storing the asset contents

(artifacts) and the asset meta-data which include information about

the asset’s classification that is useful to organize an asset catalogue.

The AssetCatalog component is responsible for the insertion of assets.

• Indexer: Since large sets of assets are unsuitable for direct

manipulation in a reasonable time, specialized data structures should

be created for representing such assets’ data, thus allowing a faster

access to their information. In this sense it is necessary to implement a

Chapter 8 – Experimental Study

125

mechanism in order to generate such structured data. The most

common data structure used for this purpose is known as index.

The Indexer component is responsible for analyzing the available

assets (its content and meta-information) and generating an index to

be used by the Searcher component.

• Asset Searcher: Any reuse tool that works with a large number of

assets must provide search mechanisms that allow users to find assets

that meet their needs. The search implemented by these mechanisms

can be a combination of different search types, such as, Free-text,

semantic search, Keyword, and Facet-based classification.

The Asset Searcher component is responsible for searching assets

stored in the tool. The search service uses indexes provided by the

Indexer component – also located in searcher module. It is possible to

configure what search strategy the tool should support. This flexibility

is useful, because the tool can be adapted according to the users’

necessities.

Training. The subjects who used the proposed process were trained

before the study began. The training took 8 hours, divided into 4 lectures with

two hours each, during the course. After that, the students spent more 35 hours

and 13 minutes studying the component evaluation process and related papers

(Figure 8.1).

Figure 8.1. Subject's Time Spent in the Experimental Study.

Chapter 8 – Experimental Study

126

Subjects. The subjects were 3 MS.c. students from Federal University of

Pernambuco. All the subjects had industrial experience in software development

(more than three years) and quality (one has more than four years and other

two subjects have at least one year). Both subjects had participated in industrial

projects involving some kind of software quality activity. One subject had

training in some issues related to software quality and metrics, such as CMMI,

MPS.br, ISO 9001:2000, GQM and Balanced Score Card; and two subjects are

specialist of Java programming language and in the Eclipse IDE (i.e. the same

language and environment selected to develop the components). Table 8.1

shows a summary of the subjects’ profile.

Table 8.1. Subject's Profile in the Experimental Study.

ID Industrial Projects
Quality
Knowledge

Reuse Training

1
- More than 7 large complexity
- 1-2 medium complexity
- 1-2 small complexity

CMMI, MPS.br and
ISO 9001:2000.

Courses: CMMI,
MPS.br, and ISO
9001:2000.

2 - 3-7 small complexity CMMI -

3
- 3-7 medium complexity
- 1-2 small complexity

CMMI and MPS.br 1-2 Conferences

Costs. Since the subjects of the experimental study were students from

the Federal University of Pernambuco, and the environment for execution was

the university’s labs and subject’s houses (distributed development), the cost for

the study was basically for planning and operation.

8.7 The Analysis and Interpretation

Quantitative Analysis. The quantitative analysis was divided in two

analyses: coverage of the component quality attributes and coverage of the

evaluation techniques proposed. The analyses were performed using descriptive

statistics.

• Coverage of the component quality attributes. All components

were evaluated based on the following levels: Persistence Manager in

SCETM I, Asset Searcher in SCETM II, Asset Catalog in SCETM II,

Indexer in SCETM II and Artifact Manager in SCETM I. Those levels

were defined through the guidelines for selecting evaluation level

presented on chapter 6. The components evaluated at SCETM I used

Chapter 8 – Experimental Study

127

the characteristics, sub-characteristics and quality attributes presented

on Table 8.2.

Table 8.2. Quality Attributes selected for SCETM I.

Characteristics
Sub-

Characteristics
Quality Attribute

Functionality Suitability Coverage

Reliability Maturity
Volatility and
Failure Removal

Usability Understandability
Document
readability and
quality

Usability Operability Effort for Operating
Efficiency Time Behavior Response Time
Maintainability Changeability Customizability
Portability Deployability Complexity level

Portability Reusability
Cohesion and
Coupling

The sub-characteristics presented above contain 11 possible quality

attributes to be evaluated in a component at SCETM level I (more

details about it could be seen at chapter 6 on SCETM). From all of

them, the evaluation team selected 10 quality attributes to evaluate the

components quality using the SCETM I. Thus, 90.90% of the quality

attributes was selected from all of the possible and, in this way, the Ho’

was rejected.

On the other hand, the components evaluated at SCETM II used the

characteristics, sub-characteristics and quality attributes presented on

Table 8.3.

Table 8.3. Quality Attributes selected for SCETM II.

Characteristics
Sub-

Characteristics
Quality Attribute

Functionality Accuracy Correctness
Reliability Recoverability Error Handling
Usability Operability Provided Interfaces
Usability Operability Required Interfaces

Efficiency Time Behavior
Latency
Throughput (“out”)

Efficiency Time Behavior
Processing Capacity
(“in”)

Maintainability Stability Modifiability
Portability Deployability Complexity level

Chapter 8 – Experimental Study

128

The sub-characteristics presented above contain 10 possible quality

attributes to be evaluated in a component in SCETM level II (more

details about it could be seen at chapter 6 on SCETM). From all of

them, the evaluation team selected 8 quality attributes to evaluate the

components quality using the SCETM II. Thus, 80% of the quality

attributes was selected from all of the possible and, in this way, the Ho’

was not rejected.

This may be because the other two quality attributes (i.e. the quality

attributes presented on SCETM level II) not selected (Failure Removal

and Backward Compatibility) were not present in these components,

i.e. the components didn’t implement any kind of mechanism to

remove failures occurring during its execution, and the components do

not contain more than one version. For this reason, the evaluation

team decided not to consider these quality attributes to evaluate these

components quality using SCETM II.

• Coverage of the evaluation techniques. After defining the quality

attributes, the evaluation team must define which evaluation

techniques will be used to measure each quality attribute proposed

earlier. Table 8.4 shows the evaluation techniques defined for

evaluating components in SCETM I.

Table 8.4. Evaluation Techniques selected to the components evaluated in

SCETM I.

Characteristics
Sub-

Characteristics
Quality Attribute

Evaluation
Techniques

Functionality Suitability Coverage
Documentation
Analysis

Reliability Maturity
Volatility and
Failure Removal

Suitability and
Maturity
Analysis

Usability Understandability
Document
readability and
quality

Documentation
Analysis

Usability Operability Effort for Operating
User Mental
Model

Efficiency Time Behavior Response Time
Evaluation
Measurement

Maintainability Changeability Customizability
Effort for
Operating

Chapter 8 – Experimental Study

129

Portability Deployability Complexity level

Component
execution in
specific
environments
analysis

Portability Reusability
Cohesion and
Coupling

Cohesion and
Coupling
Analysis

The quality attributes presented above contain 11 possible evaluation

techniques that should be used to measure the component quality on

SCETM level I (more details about it could be seen at chapter 6 on

SCETM). From all of them, the evaluation team selected 10 evaluation

techniques to evaluate the components quality using SCETM I. Thus,

90.90% of the evaluation techniques was selected and, in this way, the

Ho’’ was rejected.

As happen with the Ho’ for SCETM I, the Ho’’ is also rejected once the

evaluation techniques selected are the basic techniques for evaluating

the quality attribute selected previously (see Table 8.2).

After selecting the quality attributes and the evaluation techniques for

SCETM I, the evaluation team should define the GQM, the

punctuation level and the tools to be used for each quality attributed in

order to execute the evaluation. All data generated during the process

are collected in order to be analyzed by the evaluation team.

In this way, the evaluation team measured the Persistence Manager

and Artifact Manager quality using the definitions of the SCETM I,

and the quality achieved of those components are presented on Figure

8.2. The results presented could be interpreted as: 0% <= x <= 100%;

closer to 100% being better.

The results shown in Figure 8.2 may be because the Data Persistence

component is a basic component implemented for some systems that

requires database access.

Chapter 8 – Experimental Study

130

Figure 8.2. Component Quality Measured: Persistence Manager and Artifact

Manager.

On the other hand, Table 8.5 shows the evaluation techniques defined

the components evaluated using SCETM II.

Table 8.5. Evaluation Techniques selected to the components evaluated in

SCMT II.

Characteristics
Sub-

Characteristics
Quality
Attribute

Evaluation
Techniques

Functionality Accuracy Correctness
Functional Testing
(black box), Unit
Test.

Reliability Recoverability Error Handling
Programming
Language Facilities
(Best Practices)

Usability Operability Provided Interfaces Inspection of the
interfaces

Usability Operability Required Interfaces Inspection of the
interfaces

Efficiency Time Behavior Throughput
(“out”)

Evaluation
measurement

Efficiency Time Behavior Processing
Capacity (“in”)

Evaluation
measurement

Maintainability Stability Modifiability
Inspection of
Documents

Portability Deployability Complexity level Deployment analyses

The quality attributes presented above contain 16 possible evaluation

techniques that should be used to measure the component quality on

SCETM level II (more details about it could be seen at chapter 6 on

Chapter 8 – Experimental Study

131

SCETM). From all of them, the evaluation team selected 9 evaluation

techniques to evaluate the components quality using SCETM II. Thus,

56.25% of the evaluation techniques were selected and, in this way, the

Ho’’ was not rejected.

This may be because the quality attributes presented contains a set of

evaluation techniques which should be used in different SCETM levels

instead of the SCETM II, i.e. some of them are not recommended to

use in the SCETM II, for example, Fault tolerance analysis, Reliability

growth model, Formal Proof, among others are recommended to use

in SCETM III, IV and V levels.

Once selected the quality attributes and the evaluation techniques for

SCETM II, the evaluation team defined the GQM, the punctuation

level and the tools for each quality attributed in order to execute the

evaluation. All data generated during the process are collected in order

to be analyzed by the team.

In this way, the evaluation team measured the Asset Searcher, Asset

Catalog and Indexer quality using the definitions of the SCETM II,

and the quality achieved of those components are presented on Figure

8.3. The results presented could be interpreted as: 0% <= x <= 100%;

closer to 100% being better.

Chapter 8 – Experimental Study

132

Figure 8.3. Component Quality Measured: Asset Searcher, Asset Catalog and

Indexer.

As presented on Table 8.3, both components achieved a similar quality

level. This may be due because all subjects that participating of the study

(besides the three that participate only from this study presented here) watching

all training about the software component quality framework before start the

RiDE process usage, i.e. before start the software development. Thus, they may

gain knowledge of what is required by the framework in the first levels and

looking for implementing the code based on the insights about quality provided

by the framework. However, this fact could be considered as best-practice to

develop components in order to the developers know what is required for

achieving a quality level and implement according to these definitions.

Besides measuring some aspects of the component evaluation process, it is

intended to evaluate the difficulties found during the process usage, as

presented next.

• Difficulties in the Component Evaluation Process: At the end

of the study, the subjects answer a questionnaire presented on

Appendix C which relates the main difficulties found during the

process usage, as show next.

o Difficulties to Establish Evaluation Requirement activity.

Analyzing subjects’ answers for the difficulties in establish

Chapter 8 – Experimental Study

133

evaluation requirement activity, all subjects related that have some

difficulties in the step “Define the goals/scope of the evaluation”. In

general, the definition of goals and scope of some kinds of software

development as Software Product Line (Bayer et al., 1999),

(Czarnecki & Eisenecker, 2000), among others, is a challenge for

itself.

In this way, in order to decrease this difficulty during the

component evaluation process usage it is interesting to store in a

knowledge base the past decisions about the goals/scope of the

evaluation already executed. Thus, the evaluation team may analyze

the past experience to help them during these activities and looking

for improving its definitions according to the similarity or relevance

of previous goals/scope definition.

o Difficulties in Specifying the Evaluation activity. Analyzing

the subjects’ answers to the difficulties in specifying the evaluation

activity, two subjects related that they had some difficulties in

which characteristics, sub-characteristics and quality attributes

should be selected. This may reflect the software quality education

degree of the subjects, which can impact the ability to use the

evaluation component process. In other words, the subject that have

more experience in software quality does not relate any difficulty to

understand the characteristics, sub-characteristics and quality

attributes in order to select them during the process.

o Difficulties in Designing the Evaluation activity. Analyzing

the subjects’ answers to the difficulties in designing the evaluation

activity, all subjects related that they had some difficulties in

defining which evaluation technique should be used to measure the

quality attributes defined previously. This may reflects the

impossibility to reject the Ho’’ for SCETM II. On the other words, the

high is the SCETM level considered, more is the knowledge of the

evaluation team in specific techniques presented on the market in

order to evaluate the quality attribute defined.

Chapter 8 – Experimental Study

134

o Difficulties in Executing the Evaluation activity. According

to the subjects, they did not have any difficulty during this activity

because the whole process was very well documented and it became

easy to execute the activities planned.

Among 24 steps from the component evaluation process, the subjects

related difficult in only 4 steps, which means 16.6% of difficult during the

whole process, and, in this way, the Ho’’’ was rejected.

Conclusion. Even with the analysis not being conclusive, the

experimental study indicates that the framework is feasible and has a lower

complexity level to measure component quality. On the other hand, the aspects

related to understanding (i.e. difficulties in activities of the process) need to be

reviewed and improved. However, with the results identified in the experiment,

the values can be calibrated in a more accurate way. Nevertheless, most of the

problems identified by the subjects in terms of difficulties are more related to

the provided training than with the process itself. This is further discussed next,

in the qualitative analysis.

Qualitative Analysis. After concluding the quantitative analysis for the

experiment, the qualitative analysis was performed. This analysis was based on

the answers defined for the questionnaire presented in Appendix C.

• Usefulness of the Process. All the subjects reported that the

process was useful to perform the component quality evaluation.

However, all subjects indicated some improvements in both activities

of the process which should be carefully considered and reviewed in

order to improve the process proposed.

• Quality of the Material. Only one subject considered the training

insufficient for applying the process. However, all subjects consider

very important the background obtained from the lectures related to

software component quality, software component evaluation, testing

and inspection. All subjects also complained about the lack of

examples to clarify the different activities of the process, such as the

selection of the quality attributes, the use of the punctuation level and

evaluation techniques/tools selection. Some of these aspects were only

Chapter 8 – Experimental Study

135

related to the background to use the process, but some issues have

influenced the difficulty of use, as demonstrated in the quantitative

analysis.

8.8 Lessons Learned

After concluding the experimental study, some aspects should be

considered in order to repeat the experiment, since they were seen as limitations

of the first execution.

Training. Besides the improvements related to the lectures, the subjects

highlighted that the training should include a complete and detailed example,

covering the whole component evaluation process.

Questionnaires. The questionnaires should be reviewed in order to

collect more precise data related to feedback and to the process. Moreover, a

possible improvement can be to collect it after the activities during the process

usage, avoiding losing useful information by the subjects.

Subjects Skill. The process does not define the skills necessary from

each role in the process. Moreover, in this experiment, the roles were defined in

an informal way, often allocating the subjects for the roles defined in their jobs.

However, this issue should be reviewed in order to be more systematic and to

reduce risks.

Subjects knowledge. The subjects that developed the study did not

have a considerable experience in software development and quality area. In

this way, the results achieved should be better and, consecutively, the

framework will be accurately analyzed if the subjects have more

experience/knowledge in this area.

8.9 Summary

This chapter presented the definition, planning, operation, analysis and

interpretation of the experimental study that evaluate the viability of the

component evaluation process. The study analyzed the possibility of subjects

using the process to use the CQM (Component Quality Model) and the SCETM

(Software Component Technique Model) proposed in this work. The study also

Chapter 8 – Experimental Study

136

analyzed the difficulties found during the process usage. Besides the results not

being conclusive, the experimental study showed that the component quality

framework can be used to measure component quality.

The next chapter will present the conclusions of this work, its main

contributions, and directions for future works.

137

Conclusions

The growing use of commercial products in large systems makes

evaluation and selection of appropriate products an increasingly essential

activity. However, many organizations struggle in their attempts to select an

appropriate product for use in Component-Based Software Development

(CBSD), which is being used in a wide variety of application areas and the

correct operations of the components are often critical for business success and,

in some cases, human safety. In this way, assessment and evaluation of software

components has become a compulsory and crucial part of any CBSD lifecycle.

The risk of selecting a product with unknown quality properties is no longer

acceptable and, when it happens, it may cause catastrophic results (Jezequel et

al., 1997). Thus, software components quality evaluation has become an

essential activity in order to bring reliability in (re)using software components.

In this sense, in order to properly enable the evaluation of software

components, supplying the real necessities of the software component markets,

a Software Component Quality Framework is necessary. Thus, this thesis

presented the whole framework and its related-modules: the Component

Quality Model (CQM), the Evaluation Techniques Framework represented by

the Software Component Techniques Model (SCETM), the Metrics Framework

and the Component Evaluation Process. An experimental study was also

defined, planned, operated, analyzed and interpreted in order to evaluate the

viability of the component evaluation process.

The main goal of this research is to demonstrate that component

evaluation is not only possible and practically viable, but also directly applicable

in the software industry. In this way, some evaluations have been envisioned in

9

Chapter 9 – Conclusions

138

conjunction to the industry for acquiring trust and maturation to the proposed

software component quality framework.

9.1 Research Contributions
The main contributions of this work could be split in three main aspects:

(i) the realization of a survey related to the state-of-the-art in software

component certification research (done during the Master degree and upgraded

during the PhD degree); (ii) the proposition of a Software Component Quality

Framework to evaluate the software component quality; and (iii) the

accomplishment of an experimental study, in order to evaluate the viability of

the proposed framework.

• A Survey on Software Component Certification. The main

research contributions found in the literature, from the 90’s until today,

were analyzed in order to understand how the software component

certification area has evolved during this timeline. Through this study, it

became possible to elaborate a well-defined software component quality

framework, consisted of four modules;

• The Software Component Quality Framework. The survey showed

that software component quality is important to the component market

evolution. In order to supply this necessity, a Software Component

Quality Framework was defined, which contain a set of modules that

complement each other, trying to supply all information required for

evaluating the quality of a software component. Each module was defined

and discussed with quality experts around the world in order to improve

them as much as possible. Moreover, the modules still continue to evolve

through its usage in the industry (i.e. RiSE projects); and

• An Experimental Study. In order to determine whether the

framework meets its proposed goals, an experimental study was

performed. This study analyzed the feasibility of the proposed

framework, identifying its main drawbacks. The idea is to evaluate how

complete are the framework modules provided in order for the evaluation

team to execute the whole process and how much effort is needed to use

the framework.

Chapter 9 – Conclusions

139

9.2 Related Work

Some related works could be found in the literature during this research,

according to chapter 4. In this section, a briefly comparison will be presented in

relation to those works.

The works presented on chapter 4 were not evaluated neither in academic

nor in industrial scenarios, becoming unknown the real efficiency to evaluate

software components. The works considering only specific aspects of software

component quality (i.e. some researchers works with component quality model,

other works with specific kind of software component metrics, other works with

component evaluation process, and so on) and don’t provide detailed steps that

should be carefully followed to accomplish the component evaluation. The

works presented a high-level proposal and, in this way, it is very difficult to

apply some of them because they don’t provide a detailed description about that

in order to facilitate its applicability.

Compared to the works described on chapter 4, the software component

quality framework proposed in this thesis was developed in the context of a

Brazilian software company and was applied, evaluated and tested in a

university laboratory in order to evaluate its viability to measure software

component quality. Thus, the framework can become more efficient to solve the

necessities of the component market (Heineman et al., 2001). Moreover, the

framework is composed of four modules that complement each other in the

effort to evaluate the component quality level. The steps that should be followed

are carefully described in order to facilitate the execution of the process by the

evaluation team. The CQM was based on the SQuaRE project (an evolution of

the ISO/IEC 9126) and the SCETM is the one of the first proposal model, in

literature about evaluation techniques for software components.

9.3 Future Work

Through the results that were obtained (the survey of the state-of-the-art

on software component certification area, the proposed software component

quality framework and the experimental study), some directions stand up:

• Cost (Benefits) Model. An interesting aspect to the customer is the

cost/benefit that the component quality assurance could bring to its

Chapter 9 – Conclusions

140

business in order to analyze if the costs relative to the component quality

assurance are acceptable or not (Keil & Tiwana, 2005). In this way, a Cost

(Benefits) Model is very interesting to complement the software

component quality framework and should be carefully design to provide

as much as possible the real costs and possible benefits to the component

customer;

• Tool Support. In any engineering discipline it is needed a tool support

in order to aid the usage of the proposed processes, methods, techniques,

etc. In that way, it is really important the development of tools that

support the whole software component quality framework activities once

there are a lot of information produced during the evaluation process

that could be missed without a tool support;

• Improve the Framework / Replicate the Experimental Study:

Based on the results of the experimental study, it will be intended to

improve the whole framework in order to replicate the experimental

study and collect more accurate results of their; and

• Component Evaluation Center. The long term plan could be to

achieve a degree of maturity that could be used as a component

evaluation standard for Software Factories, making it possible to create a

Component Evaluation Center (or, perhaps, a standard for component

quality). Through the Brazilian projects that the RiSE group is involved,

such “dream” may become reality through the maturation of the process

and the reliability of the software factories on that process.

9.4 Academic Contributions

The knowledge developed during the work resulted in the following

publication:

• Journals

• (Lucrédio et al., 2007) Lucrédio, D.; Brito, K.S.; Alvaro, A.; Garcia,

V.C.; Almeida, E.S.; Fortes, R.P.M.; Meira, S.R.L. Software Reuse:

The Brazilian Industry Scenario, In Journal of Systems and

Software (JSS), Elsevier, Vol. 01, No. 06, June, pp. 996-1013, 2008.

Chapter 9 – Conclusions

141

• Books

• (Almeida et al., 2007b) Almeida, E.S.; Alvaro, A.; Garcia, V.C.;

Mascena, J.C.C.P.; Burégio, V.A.; Nascimento, L.M.; Lucrédio, D.;

Meira, S.R.L. C.R.U.I.S.E: Component Reuse in Software

Engineering. C.E.S.A.R e-book, Brazil, 2007.

• Technical Report

• (Alvaro et al., 2007e) Alvaro, A.; Land, R.; Crnkovic, I. Software

Component Evaluation: A Theoretical Study on Component

Selection and Certification, In MRTC report ISSN 1404-3041

ISRN MDH-MRTC-217/2007-1-SE, Mälardalen Real-Time Research

Centre, Mälardalen University, 2007.

• Conferences

• (Land et al., 2008) Land, R.; Alvaro, A.; Crnkovic, I. Towards
Efficient Software Component Evaluation: An Examination

of Component Selection and Certification, In the 34st IEEE

EUROMICRO Conference on Software Engineering and Advanced

Applications (SEAA), Software Process and Product Improvement

(SPPI) Track, Parma, Italy, 2008.

• (Alvaro et al., 2007a) Alvaro, A.; Almeida, E.S.; Meira, S. R. L.

Towards a Software Component Certification Framework,

In the 7th IEEE International Conference on Quality Software (QSIC),

Portland, Oregon, USA, 2007.

• (Alvaro et al., 2007b) Alvaro, A.; Almeida, E.S.; Meira, S. L. A

Software Component Maturity Model (SCMM), In the 33st

IEEE EUROMICRO Conference on Software Engineering and

Advanced Applications (SEAA), Component-Based Software

Engineering (CBSE) Track, Lübeck, Germany, 2007.

• (Alvaro et al., 2007c) Alvaro, A.; Almeida, E. S.; Meira, S.R.L.

Component Quality Assurance: Towards a Software

Component Certification Process. In the IEEE International

Chapter 9 – Conclusions

142

Conference on Information Reuse and Integration (IRI), Las Vegas,

USA. IEEE Press. 2007.

• (Alvaro et al., 2007d) Alvaro, A.; Almeida, E. S.; Meira, S.R.L. A

Component Quality Assurance Process, In the Fourth

International Workshop on Software Quality Assurance (SOQUA), in

conjunction with European Software Engineering Conference and the

ACM SIGSOFT Symposium on the Foundations of Software

Engineering (ESEC/FSE), Dubrovnik, Croatia, 2007.

• (Dias et al., 2007) Dias, J.J.; Cunha, J.A.O.G.; Alvaro, A.; Barros,

R.S.M.; Meira, S.R.L. Web Services Quality Assurance: A XML-

based Quality Model, In the Brazilian Symposium on Software

Quality (SBQS), Porto de Galinhas, Brazil, 2007.

• (Oliveira et al., 2007) Oliveira, R.Y.S.; Ferreira, P.G.; Alvaro, A.;

Almeida, E.S.; Meira, S. L. Code Inspetion: A Review, In the 9th

International Conference on Enterprise Information Systems (ICEIS),

Poster Session, Madeira, Portugal. Lecture Notes in Computer Science

(LNCS), Springer-Verlag. 2007.

• (Alvaro et al., 2006a) Alvaro, A.; Almeida, E.S.; Meira, S. R. L. A

Software Component Quality Model: A Preliminary

Evaluation, In the 32st IEEE EUROMICRO Conference on Software

Engineering and Advanced Applications (SEAA), Component-Based

Software Engineering (CBSE) Track, Cavtat/Dubrovnik, Croatia,

2006.

• (Alvaro et al., 2006b) Alvaro, A.; Almeida, E.S.; Meira, S. L.

Component Quality Model: A Formal Case Study, In 5th ACM-

IEEE International Symposium on Empirical Software Engineering

(ISESE), Poster Session, Rio de Janeiro, Brazil, 2006.

The next publications were contributions achieved during the MSc degree

in Computer Science, which contributed with the development of this thesis.

Chapter 9 – Conclusions

143

• Dissertation

• (Alvaro, 2005) Alvaro, A. Software Component Certification: A

Component Quality Model. MSc. Dissertation, Federal University

of Pernambuco, 2005.

• Conferences

• (Alvaro et al., 2005a) Alvaro, A.; Almeida, E. S.; Meira, S. R. L.

Software Component Certification: A Survey. In: The 31st

IEEE EUROMICRO Conference on Software Engineering and

Advanced Applications (SEAA), Component-Based Software

Engineering (CBSE) Track, Porto, Portugal. IEEE Press. 2005.

• (Alvaro et al., 2005b) Alvaro, A.; Almeida, E. S.; Meira, S. R. L.

Towards a Software Component Quality Model. In: The 31st

IEEE EUROMICRO Conference on Software Engineering and

Advanced Applications (SEAA), Work in Progress Session, Porto,

Portugal, 2005.

• (Alvaro et al., 2005c) Alvaro, A.; Almeida, E. S.; Meira, S. R. L.

Quality Attributes for a Component Quality Model. In: The

10th International Workshop on Component-Oriented Programming

(WCOP) in Conjunction with the 19th European Conference on Object

Oriented Programming (ECOOP), Glasgow, Scotland. 2005.

• (Alvaro et al., 2005d) Alvaro, A.; Almeida, E. S.; Meira, S. R. L.

Component Certification: A Component Quality Model. In:

The III Workshop de Teses e Dissertações em Qualidade de Software

(WTDQS) in Conjunction with the 4th Simpósio Brasileiro de

Qualidade de Software (SBQS), Porto Alegre, Brazil. 2005.

• (Almeida et al., 2005) Almeida, E. S.; Alvaro, A.; Garcia, V.C.;

Lucrédio, D.; Meira, S. R. L. A Survey on Software Reuse

Processes. In: The IEEE International Conference on Information

Reuse and Integration (IRI), Las Vegas, Nevada, USA. IEEE Press.

2005.

Chapter 9 – Conclusions

144

• (Almeida et al., 2004a) Almeida, E. S.; Alvaro, A.; Garcia, V.C.;

Lucrédio, D.; Meira, S. R. L. RiSE Project: Towards a Robust

Framework for Software Reuse. In: The IEEE International

Conference on Information Reuse and Integration (IRI), Las Vegas,

Nevada, USA. IEEE Press. 2004.

9.5 Other Publications
Besides the results listed above, there were other publications during the

period of this work, not directly related to the subject of this dissertation but an

important experience during the research.

• Journals

• (Almeida et al., 2007c) Almeida, E.S.; Alvaro, A.; Garcia, V. C.;

Nascimento, L. M.; Lucrédio, D.; Meira, S. R. L. A Systematic

Approach to Design Domain-Specific Software

Architectures, Journal of Software, Academy Publisher, August,

Vol.02, No.02, 2007.

• Books

• (Ramos et al., 2007a) Ramos, R.A.; Silva, J.; Alvaro, A.; Afonso, R.A.

PHP para Profissionais (in portuguese), Editora Digerati, ISBN:

978-85-60480-64-7, 2007.

• (Ramos et al., 2007b) Ramos, R.A.; Silva, J.; Alvaro, A.; Curso

Essencial de VBA (in portuguese), Editora Digerati, ISBN: 978-85-

60480-67-8, 2007.

• Conferences

• (Almeida et al., 2008a) Almeida, E.S.; Alvaro, A.; Garcia, V.C.;
Lucrédio, D.; Fortes, R.P.M.; Meira, S.R.L. A Systematic Process

for Domain Engineering, The 20th International Conference on

Software Engineering and Knowledge Engineering (SEKE), USA,

2008.

• (Almeida et al., 2008b) Almeida, E.S.; Santos, E.C.R.; Alvaro, A.;

Garcia, V. C.; Lucrédio, D.; Fortes, R.P.M.; Meira, S. R. L. Domain

Implementation in Software Product Lines Using OSGi, In

Chapter 9 – Conclusions

145

the 7th IEEE International Conference on COTS-Based Software

Systems (ICCBSS), 2008.

• (Almeida et al., 2007d) Almeida, E.S.; Alvaro, A.; Garcia, V.C.;

Lucredio, D.;Fortes, R.P.M.; Meira, S. L. An Experimental Study

in Domain Engineering, In the 33st IEEE EUROMICRO

Conference on Software Engineering and Advanced Applications

(SEAA), Component-Based Software Engineering (CBSE) Track,

Lübeck, Germany, 2007.

• (Almeida et al., 2007e) Almeida, E.S.; Alvaro, A.; Lucrédio, D.; Garcia,

V.C.; Nascimento, L.M.; Meira, S. L. Designing Domain-Specific

Software Architecture (DSSA): Towards a New Approach, In

6th Working IEEE/IFIP Conference on Software Architecture,

Mumbai, India, 2007.

• (Brito et al., 2006) Brito, K.S.; Alvaro, A.; Lucrédio, D.; Almeida, E.S.;

Meira, S. L. Software Reuse: A Brief Overview of the Brazilian

Industry’s Case, In 5th ACM-IEEE International Symposium on

Empirical Software Engineering (ISESE), Short Paper, Rio de Janeiro,

Brazil, 2006.

• (Cavalcanti et al., 2006) Cavalcanti, A.P.C.; Alvaro, A.; Almeida, E.S.;

Meira, S.R.L. Reuse Process Adaptation Strategies. In the 32st

IEEE EUROMICRO Conference on Software Engineering and

Advanced Applications (SEAA), Component-Based Software

Engineering (CBSE) Track, Cavtat/Dubrovnik, Croatia, 2006.

9.6 Summary

The advent of software components has dramatically changed the way that

the software industry develops its software systems, increasing the productivity

and the quality of the software produced. Among these powerful improvements,

software component technology has become an economic necessity because it

shortens the implementation timeline and lessens the unpredictability

associated with developing custom application. However, the functionality and

quality of the selected components are, actually, the main concerns related to

Chapter 9 – Conclusions

146

the software engineers and managers of some software industries around the

world (Keil et al., 2005).

Motivated by these reasons, this thesis proposes a software component

quality framework in order to establish the relevant information important to

evaluate the component quality, and presents an experimental study, which

evaluate the viability of the application of the software component quality

framework

The target is, in conjunction with the industry, to investigate the

component quality evaluation area in order to evolve the following modules

proposed on the framework: (i) a Component Quality Model, (ii) a Evaluation

Techniques Framework, (iii) a Metrics Framework, and (iv) a Component

Evaluation Process. As previously cited, this project is part of RiSE project,

whose main concerns are: developing a robust framework for software reuse

(Almeida et al., 2004a), in order to establish a standard to the component

development; and defining and developing a repository system and a

component evaluation process.

Based on this software component quality framework, the long term plan

is to create a Component Evaluation Center in order to provide a place for

assuring the quality of the software components provided by the markets and

the software industry.

147

eferences

(Almeida et al., 2008a) Almeida, E.S.; Alvaro, A.; Garcia, V.C.; Lucrédio, D.;

Fortes, R.P.M.; Meira, S.R.L. A Systematic Process for Domain

Engineering, The 20th International Conference on Software

Engineering and Knowledge Engineering (SEKE), USA, 2008.

(Almeida et al., 2008b) Almeida, E.S.; Santos, E.C.R.; Alvaro, A.; Garcia, V. C.;

Lucrédio, D.; Fortes, R.P.M.; Meira, S. R. L. Domain

Implementation in Software Product Lines Using OSGi, In:

The 7th IEEE International Conference on COTS-Based Software

Systems (ICCBSS), 2008.

(Almeida, 2007) Almeida, E.S. The RiSE Process for Domain Engineering

(RIDE), PhD. Thesis, Federal University of Pernambuco, 2007.

(Almeida et al., 2007a) Almeida, E. S.; Alvaro, A.; Meira, S. R. L. Key

Developments in the Field of Software Reuse, In: Submitted to

the ACM Computing Surveys, 2007.

(Almeida et al., 2007b) Almeida, E.S.; Alvaro, A.; Garcia, V.C.; Mascena,

J.C.C.P.; Burégio, V.A.; Nascimento, L.M.; Lucrédio, D.; Meira, S.R.L.

C.R.U.I.S.E: Component Reuse in Software Engineering.

C.E.S.A.R e-book, Brazil, 2007.

(Almeida et al., 2007c) Almeida, E.S.; Alvaro, A.; Garcia, V. C.; Nascimento, L.

M.; Lucrédio, D.; Meira, S. R. L. A Systematic Approach to Design

Domain-Specific Software Architectures, In: Journal of

Software, Academy Publisher, August, Vol.02, No.02, 2007.

R

References

148

(Almeida et al., 2007d) Almeida, E.S.; Alvaro, A.; Garcia, V.C.; Lucredio,

D.;Fortes, R.P.M.; Meira, S. L. An Experimental Study in Domain

Engineering, In: The 33st IEEE EUROMICRO Conference on

Software Engineering and Advanced Applications (SEAA),

Component-Based Software Engineering (CBSE) Track, Lübeck,

Germany, 2007.

(Almeida et al., 2007e) Almeida, E.S.; Alvaro, A.; Lucrédio, D.; Garcia, V.C.;

Nascimento, L.M.; Meira, S. L. Designing Domain-Specific

Software Architecture (DSSA): Towards a New Approach, In:

The 6th Working IEEE/IFIP Conference on Software Architecture,

Mumbai, India, 2007.

(Almeida et al., 2005) Almeida, E. S.; Alvaro, A.; Garcia, V.C.; Lucrédio, D.;

Meira, S. R. L. A Survey on Software Reuse Processes. In: The

IEEE International Conference on Information Reuse and Integration

(IRI), Las Vegas, Nevada, USA. IEEE Press. 2005.

(Almeida et al., 2004) Almeida, E. S.; Alvaro, A.; Lucrédio, D.; Garcia, V. C.;

Meira, S. R. L. RiSE Project: Towards a Robust Framework for

Software Reuse, In: The IEEE International Conference on

Information Reuse and Integration (IRI), Las Vegas, USA, pp. 48-53,

2004.

(Alvaro et al., 2007a) Alvaro, A.; Almeida, E.S.; Meira, S. R. L. Towards a

Software Component Certification Framework, In: The 7th

IEEE International Conference on Quality Software (QSIC), Portland,

Oregon, USA, 2007.

(Alvaro et al., 2007b) Alvaro, A.; Almeida, E.S.; Meira, S. R. L. A Software

Component Maturity Model (SCMM), In: The 33st IEEE

EUROMICRO Conference on Software Engineering and Advanced

Applications (SEAA), Component-Based Software Engineering (CBSE)

Track, Lübeck, Germany, 2007.

(Alvaro et al., 2007c) Alvaro, A.; Almeida, E. S.; Meira, S. R. L. Component

Quality Assurance: Towards a Software Component

Certification Process. In: The IEEE International Conference on

References

149

Information Reuse and Integration (IRI), Las Vegas, USA. IEEE Press.

2007.

(Alvaro et al., 2007d) Alvaro, A.; Almeida, E. S.; Meira, S.R.L. A Component

Quality Assurance Process. In: The Fourth International

Workshop on Software Quality Assurance (SOQUA), in conjunction

with European Software Engineering Conference and the ACM

SIGSOFT Symposium on the Foundations of Software Engineering

(ESEC/FSE), Dubrovnik, Croatia, 2007.

(Alvaro et al., 2007e) Alvaro, A.; Land, R.; Crnkovic, I. Software Component

Evaluation: A Theoretical Study on Component Selection and

Certification, In: MRTC report, ISSN 1404-3041 ISRN MDH-MRTC-

217/2007-1-SE, Mälardalen Real-Time Research Centre, Mälardalen

University, 2007.

(Alvaro et al., 2006a) Alvaro, A.; Almeida, E.S.; Meira, S. R. L. A Software

Component Quality Model: A Preliminary Evaluation, In: The

32st IEEE EUROMICRO Conference on Software Engineering and

Advanced Applications (SEAA), Component-Based Software

Engineering (CBSE) Track, Cavtat/Dubrovnik, Croatia, 2006.

(Alvaro et al., 2006b) Alvaro, A.; Almeida, E.S.; Meira, S. L. Component

Quality Model: A Formal Case Study, In: 5th ACM-IEEE

International Symposium on Empirical Software Engineering

(ISESE), Poster Session, Rio de Janeiro, Brazil, 2006.

(Alvaro, 2005) Alvaro, A. Software Component Certification: A

Component Quality Model, MSc. Dissertation, Federal University

of Pernambuco, 2005.

(Alvaro et al., 2005a) Alvaro, A.; Almeida, E. S.; Meira, S. R. L. A Software

Component Certification: A Survey, In: The 31st IEEE

EUROMICRO Conference on Software Engineering and Advanced

Applications (SEAA), Component-Based Software Engineering (CBSE)

Track, Porto, Portugal, 2005.

(Alvaro et al., 2005b) Alvaro, A.; Almeida, E. S.; Meira, S. R. L. Towards a

Component Quality Model, In: The 31st IEEE EUROMICRO

References

150

Conference on Software Engineering and Advanced Applications

(SEAA), Work in Progress Session, Porto, Portugal, 2005.

(Alvaro et al., 2005c) Alvaro, A.; Almeida, E. S.; Meira, S. R. L. Quality

Attributes for a Component Quality Model, In: The 10th

International Workshop on Component Oriented Programming

(WCOP) in conjunction with the 19th ACM European Conference on

Object Oriented Programming (ECCOP), Glasgow, Scotland, 2005.

(Alvaro et al., 2005d) Alvaro, A.; Meira, S. R. L. Component Certification: A

Component Quality Model. In: The III Workshop de Teses e

Dissertações em Qualidade de Software, Porto Alegre, Brazil, 2005.

(Andreou & Tziakouris, 2007) Andreou, A. S.; Tziakouris, M. A quality

framework for developing and evaluating original software

components. In: Information & Software Technology. Vol. 49, No.

02, pp. 122-141, 2007.

(Arango, 1994) Arango, G. A Brief Introduction to Domain Analysis, In:

ACM symposium on Applied Computing, USA, pp. 42-46, 1994.

(Barachisio eal., 2008) Barachisio, L.; Nascimento, L.; Almeida, E.S.; Meira,

S.R.L. A Case Study in Software Product Lines: An Educational

Experience, In: 21st IEEE-CS Conference on Software Engineering

Education and Training, EUA, 2008.

(Barros et al., 2002) Barros, M. O.; Werner, C. M. L.; Travassos, G. H. An

Experimental Study about Modeling Use and Simulation in

support to the Software Project Management (in portuguese),

In: The 16th Brazilian Symposium in Software Engineering, Rio de

Janeiro, Brazil, 2002.

 (Basili et al., 1996) Basili, V. R.; Briand, L. C.; Melo, W. L. How reuse

influences productivity in object-oriented systems. In:

Communications of the ACM, Vol. 39, No. 10, pp. 104-116, 1996.

(Basili et al., 1996b) V. Basili, S. Green, O. Laitenberger, F. Lanubile, F. Shull, S.

Sorumgaard, and M. Zelkowitz, Packaging Researcher Experience

to Assist Replication of Experiments, Sydney, Australia ISERN

Meeting, 1996.

References

151

 (Basili et al., 1994) Basili, V.R.; Caldiera, G.; Rombach, H.D. The Goal

Question Metric Approach, In: Encyclopedia of Software

Engineering, Vol. II, September, pp. 528-532, 1994.

(Basili, 1992) Basili, V.R. Software Modeling and Measurement: The

Goal Question Metric Paradigm, In: Computer Science Technical

Report Series, CS-TR-2956 (UMIACS-TR-92-96), University of

Maryland, College Park, MD, September 1992.

(Basili et al., 1991) Basili, V. R.; Rombach, H. D. Support for

comprehensive reuse, In: IEEE Software Engineering Journal, Vol.

06, No. 05, pp. 303-316, 1991.

(Basili et al., 1986) Basili, V. R.; Selby, R.; Hutchens, D. Experimentation in

Software Engineering, In: IEEE Transactions on Software

Engineering, Vol. 12, No. 07, pp. 733-743, 1986.

(Basili & Rombach, 1988) Basili, V.R.; Rombach, H.D. The TAME Project:

Towards Improvement-Oriented Software Environments, In:

IEEE Transactions on Software Engineering, Vol. 14, No.6, pp.758-

773, 1988.

(Basili & Selby, 1984) Basili, V.R.; Selby, R.W. Data Collection and Analysis

in Software Research and Management, In: Proceedings of the

American Statistical Association and Biomeasure Society, Joint

Statistical Meetings, Philadelphia, 1984.

(Basili & Weiss, 1984) Basili, V.R.; Weiss, D.M. A Methodology for

Collecting Valid Software Engineering Data, In: IEEE

Transactions on Software Engineering, Vol. 10, No. 06, pp. 728-738,

1984.

(Bass et al., 2000) Bass, L.; Buhman, C.; Dorda, S.; Long, F.; Robert, J.;

Seacord, R.; Wallnau, K. C. Market Assessment of Component-

Based Software Engineering, In: Software Engineering Institute

(SEI), Technical Report, Vol. I, May, 2000.

(Bay and Pauls, 2004) Bay, T.G.; Pauls, K. Reuse Frequency as Metric for

Component Assessment. In: Technical Report 464, ETH Zürich,

Chair of Software Engineering, 2004.

References

152

(Bayer et al., 1999) J. Bayer, O. Flege, P. Knauber, R. Laqua, D. Muthig, K.

Schmid, T. Widen, J. DeBaud, PuLSE: A Methodology to Develop

Software Product Lines, In: Symposium on Software Reusability

(SSR), Los Angeles, USA, May, 1999, pp. 122-131.

 (Bertoa & Vallecillo, 2004) Bertoa, M. F.; Vallecillo, A. Usability Metrics for

Software Components, In: Proceedings of the 8th ECOOP

Workshop on Quantitative Approaches in Object-Oriented Software

Engineering (QAOOSE), Oslo, Norway, June 2004.

(Bertoa et al., 2006) Bertoa, M.F.; Troya, J.M.; Vallecillo, A. Measuring the

Usability of Software Components. In: Journal of Systems and

Software, Vol. 79, No. 03, pp. 427-439, 2006.

(Bertoa et al., 2003) Bertoa, M. F.; Troya, J. M.; Vallecillo, A. A Survey on the

Quality Information Provided by Software Component

Vendors, In: The Proceedings of the 7th ECOOP Workshop on

Quantitative Approaches in Object-Oriented Software Engineering

(QAOOSE), Germany, July, 2003.

(Bertoa et al., 2002) Bertoa, M.; Vallecillo, A. Quality Attributes for COTS

Components, In: The 6th IEEE International ECOOP Workshop on

Quantitative Approaches in Object-Oriented Software Engineering

(QAOOSE), Spain, Vol. 01, No. 02, pp. 128-144, 2002.

(Bertolino & Mirandola, 2003) Bertolino, A.; Mirandola, R. Towards

Component-Based Software Performance Engineering, In:

Proceedings of 6th ICSE Workshop on Component-Based Software

Engineering, USA, 2003.

(Beugnard et al., 1999) Beugnard, A.; Jezequel, J.; Plouzeau, N.; Watkins, D.

Making component contract aware, In: IEEE Computer, Vol. 32,

No. 07, pp. 38-45, 1999.

(Beus-Dukic et al., 2003) Beus-Dukic, L.; Boegh, J. COTS Software Quality

Evaluation, In: The 2nd International Conference on COTS-Based

Software System (ICCBSS), Lecture Notes in Computer Science

(LNCS), Springer-Verlag, Canada, 2003.

References

153

(Beydeda & Gruhn, 2003) Beydeda, S.; Gruhn, V. State of the art in testing

components, In: The 3th IEEE International Conference on Quality

Software (ICQS), USA, 2003.

(Boegh et al., 1993) Boegh, J.; Hausen, H-L.; Welzel, D. A Practioners Guide

to Evaluation of Software, In: The IEEE Software Engineering

Standards Symposium, pp. 282-288, 1993.

(Boehm et al., 1978) Boehm, B.; Brown, J.R.; Lipow, H.; MacLeod, G. J.; Merrit,

M. J. Characteristics of Software Quality, Elsevier North

Holland, 1978.

(Boehm et al., 1976) Boehm, W.; Brown, J.R.; Lipow, M. Quantitative

Evaluation of Software Quality, In: The Proceedings of the Second

International Conference on Software Engineering, pp.592-605, 1976.

(Boer et al., 2002) Boer, F.S. de; Bonsangue, M.; Graf, S.; de Roever, W.P.

Formal Methods for Components and Objects, In the First

International Symposium FMCO, Lecture Notes in Computer Science,

Leiden, The Netherlands, Vol. 2852, pp. 509, 2002.

(Brereton et al., 2000) Brereton, P.; Budgen, D. Component-Based

Systems: A Classification of Issues, In: IEEE Computer, Vol. 33,

No. 11, pp. 54-62, 2000.

(Brownsword et al., 2000) Brownsword, L.; Oberndorf, T.; Sledge, C. A.:

Developing New Processes for COTS-Based Systems. In: IEEE

Software, July/August, pp. 48-55, 2000.

(Caldiera & Basili, 1991) Caldiera, G.; Basili, V. Identifying and Qualifying

Reusable Software Components, In: IEEE Computer, Vol. 24, No.

02, pp. 61–71, 1991.

(Cavalcanti et al., 2006) Cavalcanti, A.P.C.; Alvaro, A.; Almeida, E.S.; Meira,

S.R.L. Reuse Process Adaptation Strategies. In: The 32st IEEE

EUROMICRO Conference on Software Engineering and Advanced

Applications (SEAA), Component-Based Software Engineering (CBSE)

Track, Cavtat/Dubrovnik, Croatia, 2006.

References

154

(Cechich et al., 2003) Cechich, A.; Vallecillo, A.; Piattini, M. Assessing

component based systems, In: Component Based Software

Quality, Lecture Notes in Computer Science (LNCS), pp. 1–20, 2003.

(Chen et al., 2005) Chen, S.; Liu, Y.; Gorton, I.; Liu, A. Performance

Predication of Component-based Applications. In: Journal of

Systems and Software, Vol. 01, No. 07, pp. 35-46, 2005.

(Cho et al., 2001) Cho, E. S.; Kim, M. S.; Kim, S. D. Component Metrics to

Measure Component Quality, In: The 8th IEEE Asia-Pacific

Software Engineering Conference (APSEC), pp. 419-426, 2001.

(Choi et al., 2008) Choi, Y.; Lee, S.; Song, H.; Park, J.; Kim, S. Practical S/W

Component Quality Evaluation Model, In: The 10th IEEE

International Conference on Advanced Communication Technology

(ICACT), Korea, 2008.

(Clements et al., 2001) Clements, P.; Northrop, L. Software Product Line:

Practices and Patterns, In: SEI Series in Software Engineering,

Addison Wesley, USA, 2001.

(CMMI, 2006) CMMI for Development. CMMI for Development, Version

1.2, In: Technical Report CMU/SEI-2006-TR-008, Carnegie Mellon

University/Software Engineering Institute (CMU/SEI), 2006.

(Comella-Dorda et al., 2002) Comella-Dorda, S.; Dean, J.; Morris, E.;

Oberndorf, P. A Process for COTS Software Product Evaluation,

In: The 1st International Conference on COTS-Based Software System

(ICCBSS), Lecture Notes in Computer Science (LNCS), Springer-Verlag,

USA, 2002.

(Comella-Dorda et al., 2003) Comella-Dorda, S.; Dean, J.; Lewis, G.; Morris, E.;

Oberndorf, P.; Harper, E. A Process for COTS Software Product

Evaluation, In: Technical Report, CMU/SEI-2003-TR-017, 2003.

(Councill, 1999) Councill, W. T. Third-Party Testing and the Quality of

Software Components, In: IEEE Computer, Vol. 16, No. 04, pp. 55-

57, 1999.

References

155

(Councill et al., 2000) Councill, W.T.; Flynt, J. S.; Mehta, A.; Speed, J. R.; Shaw,

M. Component-Based Software Engineering and the Issue of

Trust, In: The 22th IEEE International Conference on Software

Engineering (ICSE), Ireland, pp. 661-664, 2000.

(Councill, 2001) Councill, B. Third-Party Certification and Its Required

Elements, In: The 4th Workshop on Component-Based Software

Engineering (CBSE), Lecture Notes in Computer Science (LNCS),

Springer-Verlag, Canada, May, 2001.

(Crnkovic et al., 2002) Crnkovic, I.; Schmidt H.; Stafford J.; Wallnau K. C.

Proc. of the 5th Workshop on Component-Based Software

Engineering(CBSE): Benchmarks for Predictable Assembly,

In: The Software Engineering Notes, Vol. 27, No. 05, 2002.

(Crnkovic et al., 2001) Crnkovic, I.; Schmidt H.; Stafford J.; Wallnau K. C.

Proc. of the 4th Workshop on Component-Based Software

Engineering(CBSE): Component Certification and System

Prediction, In: The Software Engineering Notes, Vol 26, No. 06,

2001.

(Crnkovic, 2001) Crnkovic, I. Component-based software engineering -

new challenges in software development, In: Software Focus,

Vol. 02, No. 04, pp. 27-33, 2001.

(Czarnecki & Eisenecker, 2000) K. Czarnecki, U. W. Eisenecker, Generative

Programming: Methods, Tools, and Applications, Addison-

Wesley, 2000, pp. 832.

(DeMichiel, 2002) DeMichiel, L. G. Enterprise JavaBeans (EJB)

Specification, Version 2.1, Sun Microsystems, 2002.

(Drouin, 1995) Drouin, J-N. The SPICE Project: An Overview. In: The

Software Process Newsletter, IEEE TCSE, No. 02, pp. 08-09, 1995.

(D’Souza et al., 1999) D’Souza, D. F.; Wills, A. C. Objects, Components, and

Frameworks with UML, The Catalysis Approach. Addison-

Wesley, USA, 1999.

References

156

(Endres, 1993) Endres, A. Lessons Learned in an Industrial Software

Lab , In: IEEE Software, Vol. 10, No. 05, pp. 58-61, 1993.

(Fagan, 1976) Fagan, M. Design and Code Inspections to Reduce Errors

in Program Development. In: IBM Systems Journal, Vol. 15, No.

03, pp. 182-211, 1976.

(Farroq & Dominick, 1988) Farooq, M.U.; & Dominick, W.D. A survey of

formal tools and models for developing user interfaces, In the

International Journal of Man-Machine Studies, Vol. 29, No. 05, pp.

479-496, 1988.

(Frakes & Terry, 1996) Frakes, W.; Terry, C. Software Reuse: Metrics and

Models, In: ACM Computing Survey, Vol. 28, No. 02, pp. 415-435,

1996.

(Frakes & Fox, 1995) Frakes, W. B.; Fox, S. Sixteen Questions about

Software Reuse, In: Communications of the ACM, Vol. 38, No. 06,

pp. 75-87, 1995.

(Frakes & Isoda, 1994) Frakes, W. B.; Isoda, S. Success Factors of

Systematic Reuse, In: IEEE Software, Vol. 11, No. 05, pp. 15-19,

1994.

(Freedman, 1991) Freedman, R.S. Testability of Software Components, In:

IEEE Transactions on Software Engineering, Vol. 17, No. 06, June

1991.

(Fusario et al., 1997) Fusario, P., Lanubile, F., and Visaggio, G. A Replicated

Experiment to Asses Requirements Inspection Techniques,

In: Empirical Software Engineering: An International Journal, Vol.

02, No. 01, pp. 39-57, 1997.

(Gamma et al., 1995) Gamma, E.; Helm, R.; Johnson, R.; Vlissides, J. Design

Patterns: Elements of Reusable Object-Oriented Software.

Addison-Wesley, 1995.

(Gao et al., 2003) Gao, J.Z.; Jacob, H.S.J.; Wu, Y. Testing and Quality

Assurance for Component Based Software, Artech House, 2003.

References

157

(Georgiadou, 2003) Georgiadou, E. GEQUAMO-A Generic, Multilayered,

Customisable, Software Quality Model. In: Software Quality

Journal, Vol. 11, No. 04, pp. 313-323, 2003.

(Goulao et al., 2002a) Goulao, M.; Brito e Abreu, F. The Quest for Software

Components Quality, In: The 26th IEEE Annual International

Computer Software and Applications Conference (COMPSAC),

England, pp. 313-318, 2002.

(Goulão et al., 2002b) Goulão, M.; Abreu, F. B. Towards a Component

Quality Model, In: The 28th IEEE EUROMICRO Conference, Work

in Progress Session, Dortmund, Germany, 2002.

(Griss et al., 1995) Griss, M. L.; Wosser, M.; Pfleeger, S. L. Making Software

Reuse Work at Hewlett-Packard, In: IEEE Software, Vol. 12, No.

01, pp. 105-107, 1995.

(Griss, 1994) Griss, M. L. Software reuse experience at Hewlett-Packard,

In: The 16th IEEE International Conference on Software Engineering

(ICSE), Italy, pp. 270, 1994.

(Gui & Scott, 2007) Gui, G.; Scott, P.D. Ranking reusability of software

components using coupling metrics. In: Journal of Systems and

Software, Vol. 80, No. 09, pp. 1450-1459, 2007.

(Hall, 1990) Hall, A., Seven Myths of Formal Methods, In: IEEE Software,

pp. 11-20, 1990.

(Hamlet et al., 2001) Hamlet, D.; Mason, D.; Woit. D. Theory of Software

Component Reliability, In: 23rd International Conference on

Software Engineering (ICSE), 2001.

(Hatton, 2007) Hatton, L. The Chimera of Software Quality, In IEEE

Computer, August 2007.

(Heineman et al., 2001) Heineman, G. T.; Councill, W. T. Component-Based

Software Engineering: Putting the Pieces Together, Addison-

Wesley, USA, 2001.

References

158

(Hissam et al., 2003) Hissam, S. A.; Moreno, G. A.; Stafford, J.; Wallnau, K. C.

Enabling Predictable Assembly, In: Journal of Systems and

Software, Vol. 65, No. 03, pp. 185-198, 2003.

(Hyatt et al., 1996) Hyatt, L.; Rosenberg, L.; A Software Quality Model and

Metrics for Risk Assessment, In: NASA Software Technology

Assurance Center (SATC), 1996.

(ISO/IEC 25000, 2005) ISO/IEC 25000, Software product quality

requirements and evaluation (SQuaRE), Guide to SQuaRE,

International Standard Organization, July, 2005.

(ISO/IEC 25010) ISO/IEC 25020, Software product Quality

Requirements and Evaluation (SQuaRE) — Quality model (in

elaboration).

(ISO/IEC 15939, 2007) ISO/IEC 15939, Software Engineering - Software

Measurement Process, 2007.

(ISO/IEC 25020, 2007) ISO/IEC 25020, Software product Quality

Requirements and Evaluation (SQuaRE) — Quality

measurement — Measurement reference model and guide,

2007.

(ISO/IEC 25030, 2007) ISO/IEC 25030, Software engineering — Software

product Quality Requirements and Evaluation (SQuaRE) —

Quality requirements, 2007.

(ISO/IEC 25040) ISO/IEC 25040, Software engineering — Software

product Quality Requirements and Evaluation (SQuaRE) —

Evaluation reference model and guide (in elaboration).

(ISO/IEC 25051, 2006) ISO 25051, Requirements for quality of

Commercial Off-The-Shelf (COTS) software product and

instructions for testing – Product Quality Requirements and

Evaluation (SQuaRE), International Standard ISO/IEC 25051,

International Standard Organization (ISO), 2006.

References

159

(ISO/IEC 9126, 2001) ISO 9126, Information Technology – Product

Quality – Part1: Quality Model, International Standard ISO/IEC

9126, International Standard Organization (ISO), 2001.

(ISO/IEC 9126-2, 2003) ISO 9126-2, Information Technology – Software

product evaluation -- Part 2: External Metrics, International

Standard ISO/IEC 9126-2, International Standard Organization (ISO),

2003.

(ISO/IEC 9126-3, 2003) ISO 9126-3, Information Technology – Software

product evaluation -- Part 3: Internal Metrics, International

Standard ISO/IEC 9126-3, International Standard Organization (ISO),

2003.

(ISO/IEC 9126-4, 2003) ISO 9126-4, Information Technology – Software

product evaluation -- Part 4: Quality in Use Metrics,

International Standard ISO/IEC 9126-4, International Standard

Organization (ISO), 2003.

(ISO/IEC 14598, 1998) ISO 14598, Information Technology – Software

product evaluation -- Part 1: General Guide, International

Standard ISO/IEC 14598, International Standard Organization (ISO),

1998.

(ISO/IEC 9000, 2005) ISO/IEC 9000, Quality Management Systems –

Fundamentals and vocabulary, International Standard ISO/IEC

9000, International Standard Organization (ISO), 2005.

(ISO/IEC 15504-7, 2003) ISO/IEC 15504-7, Information technology –

Process ssessment – Part 7 : Assessment of organizational

maturity, International Standard ISO/IEC 15504-7, International

Standard Organization (ISO), 2008.

(Jacobson et al., 1997) Jacobson, I.; Griss, M.; Jonsson, P. Software Reuse:

Architecture, Process and Organization for Business

Success, Addison-Wesley, Longman, 1997.

(Jezequel et al., 1997) Jezequel, J. M.; Meyer, B. Design by Contract: The

Lessons of Ariane, In: IEEE Computer, Vol. 30, No. 02, pp. 129-130,

1997.

References

160

(Joos, 1994) Joos, R. Software Reuse at Motorola, In: IEEE Software, Vol.

11, No. 05, pp. 42-47, 1994.

(Kallio et al., 2001) Kallio, P.; Niemelä, E. Documented quality of COTS

and OCM components, In: The 4th Workshop on Component-Based

Software Engineering (CBSE), Lecture Notes in Computer Science

(LNCS) Springer-Verlag, USA, 2001.

(Kazman et al., 2000) Kazman, R.; Klein, M.; Clements, P. ATAM: Method

for Architecture Evaluation, In: The Technical Report CMU/SEI-

2000-TR-004, 2000.

(Keil & Tiwana, 2005) Keil, M; Tiwana, A. Beyond Cost: The Drivers of

COTS Application Value. In: IEEE Software, Vol. 22, No. 03, pp.

64-69, 2005.

(Kogure and Akao, 1983) Kogure, M.; Akao, Y. Quality Function

Deployment and CWQC in Japan, In: Quality Progress, pp.25-29,

1983.

(Kotula, 1998) Kotula, J. Using Patterns To Create Component

Documentation, In: IEEE Software, Vol. 15, No. 02, March/April,

pp. 84-92, 1998.

(Krueger, 1992) Krueger, C. W. Software Reuse, In: ACM Computing

Surveys, Vol. 24, No. 02, pp. 131-183, 1992.

(Land et al., 2008) Land, R.; Alvaro, A.; Crnkovic, I. Towards Efficient

Software Component Evaluation: An Examination of

Component Selection and Certification, In: The 34st IEEE

EUROMICRO Conference on Software Engineering and Advanced

Applications (SEAA), Software Process and Product Improvement

(SPPI) Track, Parma, Italy, 2008.

(Lethbridge et al., 2003) Lethbridge, T.; Singer, J.; Forward, A. How Software

Engineers use Documentation: The State of the Practice, In:

IEEE Software, Vol. 20, No. 06, pp. 35-39, 2003.

(Lim, 1994) Lim, W. C. Effects of Reuse on Quality, Productivity, and

Economics, In: IEEE Software, Vol. 11, No. 05, pp. 23-30, 1994.

References

161

(Lucrédio et al., 2007) Lucrédio, D.; Brito, K.S.; Alvaro, A.; Garcia, V.C.;

Almeida, E.S.; Fortes, R.P.M.; Meira, S.R.L. Software Reuse: The

Brazilian Industry Scenario, In: Journal of Systems and Software,

Elsevier, 2007.

(McCall et al., 1977) McCall, J.A; Richards, P.K.; Walters, G.F. Factors in

Software Quality, Griffiths Air Base, Nova York, Rome Air

Development Center (RADC) System Command, TR-77-369, Vol. I, II

and III, 1977.

(McGarry et al., 2002) McGarry, J.; Card, D.; Jones, C.; Layman, B.; Clark, E.;

Dean, J.; Hall, F., Practical Software Measurement: Objective

Information for Decision Makers, ISBN 0-201-71516-3, Addison-

Wesley, 2002.

(McGregor et al., 2003) McGregor, J. D.; Stafford, J. A.; Cho, I. H. Measuring

Component Reliability, In: The 6th Workshop on Component-

Based Software Engineering (CBSE), Lecture Notes in Computer

Science (LNCS) Springer-Verlag, USA, pp. 13-24, 2003.

(McIlroy, 1968) Mcllroy, M. D. Mass Produced Software Components, In:

NATO Software Engineering Conference Report, Garmisch, Germany,

pp. 79-85, 1968.

(Merrit, 1994) Merrit, S. Reuse Library, In: Encyclopedia of Software

Engineering, J.J. Marciniak (editor), John Willey & Sons, pp. 1069-

1071, 1994.

(Meyer, 2003) Meyer, B. The Grand Challenge of Trusted Components,

In: The 25th IEEE International Conference on Software Engineering

(ICSE), USA, pp. 660–667, 2003.

(Meyer, 1999) Meyer, B.; Mingins, C. Component-Based Development:

From Buzz to Spark , In: IEEE Computer, Vol. 32, No. 07, pp. 35-37,

1999.

(Meyer, 1997) Meyer, B. Object-Oriented Software Construction,

Prentice Hall, 2th Edition, London, 1997.

References

162

(Microsoft COM, 2007) Microsoft COM Technologies, At

http://www.microsoft.com/com. Consulted in August 2007.

(Mili et al., 1998) Mili, A.; Mili, R.; Mittermeir, R. T. A Survey of Software

Reuse Libraries, In: Annals Software Engineering, Vol. 05, No. 01,

pp. 349–414, 1998.

(Mingins et al., 1998) Mingins, C., Schmidt, H., Providing Trusted

Components to the Industry. In: IEEE Computer, Vol. 31, No. 05,

pp. 104-105, 1998.

(Mahmooda et al, 2005) Mahmooda, S.; Laia, R.; Kimb, Y.S.; Kimb, J.H.; Parkb,

S.C.; Ohb, H.S. A survey of component based system quality

assurance and assessment, In: Jounal of Information and

Software Technology, Vol. 47, No. 10, pp. 693-707, 2005.

(Mohagheghi and Conradi, 2007) Mohagheghi, P.; Conradi, R. Quality,

productivity and economic benefits of software reuse: a

review of industrial studies, Empirical Software Engineering, Vol.

12, No. 05, pp. 471-516, 2007.

(Morisio et al., 2002) Morisio, M.; Ezran, M.; Tully, C. Success and Failure

Factors in Software Reuse, In: IEEE Transactions on Software

Engineering, Vol. 28, No. 04, pp. 340-357, 2002.

(Morris et al., 2001) Morris, J.; Lee, G.; Parker, K.; Bundell, G. A.; Lam, C. P.;

Software Component Certification. In: IEEE Computer, Vol. 34,

No. 09, pp. 30-36, 2001.

(Oliveira et al., 2007) Oliveira, R.Y.S.; Ferreira, P.G.; Alvaro, A.; Almeida, E.S.;

Meira, S. L. Code Inspetion: A Review, In: The 9th International

Conference on Enterprise Information Systems (ICEIS), Poster

Session, Madeira, Portugal. Lecture Notes in Computer Science

(LNCS), Springer-Verlag. 2007.

(OMG, 2007) Object Management Group (OMG), At http://www.omg.org.

Consulted in August 2007.

References

163

(OMG CCM, 2002) Object Management Group (OMG), CORBA

Components, Version 3, Document num. formal/02-06-65, June

2002.

(Parnas and Lawford, 2003) Parnas, D.; Lawford, M. The Role of Inspection

in Software Quality Assurance. In: IEEE Transactions on

Software Engineering, Vol. 29, No. 08, pp. 674-676, 2003.

(Poore et al., 1993) Poore, J.; Mills, H.; Mutchler, D. Planning and Certifying

Software System Reliability, In: IEEE Computer, Vol. 10, No. 01,

pp. 88-99, 1993.

(Pressman, 2005) Pressman, R. Software Engineering: A Practitioner’s

Approach. McGraw-Hill. 6th Edition. 2005.

(Prieto-Díaz, 1990) Prieto-Díaz, R. Domain analysis: an introduction, In:

ACM SIGSOFT Software Engineering Notes, Vol. 15, No. 02, pp. 47-54,

1990.

(Rada et al., 1997) Rada, R.; Moore, J. W. Standardizing Reuse, In:

Communications of the ACM, Vol. 40, No. 03, pp. 19-23, 1997.

(Ramos et al., 2007a) Ramos, R.A.; Silva, J.; Alvaro, A.; Afonso, R.A. PHP for

Professionals (in portugues), Editora Digerati, ISBN: 978-85-60480-

64-7, 2007.

(Ramos et al., 2007b) Ramos, R.A.; Silva, J.; Alvaro, A.; Essencial de VBA

Editora, Digerati, ISBN: 978-85-60480-67-8, 2007.

(Reussner, 2003) Reussner, R. H. Contracts and quality attributes of

software components, In: The 8th International Workshop on

Component-Oriented Programming (WCOP) in conjunction with the

17th ACM European Conference on Object Oriented Programming

(ECCOP), 2003.

(Rohde et al., 1996) Rohde, S. L.; Dyson, K. A.; Geriner, P. T.; Cerino, D. A.

Certification of Reusable Software Components: Summary of

Work in Progress, In: The 2nd IEEE International Conference on

Engineering of Complex Computer Systems (ICECCS), Canada, pp.

120-123, 1996.

References

164

(Roos, 1997) Ross, D.T. Structured Analysis (SA): A Language for

Communicating Ideas, In: IEEE Transaction on Software

Engineering, Vol. 03, No. 01, pp. 16-34, 1997.

(Sametinger, 1997) Sametinger, J. Software Engineering with Reusable

Components. Springer Verlag, USA, 1997.

(Schmidt, 2003) Schmidt, H. Trustworthy components: compositionality

and prediction. In: Journal of Systems and Software, Vol. 65, No.

03, pp. 215-225, 2003.

(Schneider & Han, 2004) Schneider, J-G.; Han, J. Components — the Past,

the Present, and the Future, In: Proceedings of Ninth

International Workshop on Component-Oriented Programming

(WCOP), Oslo, Norway, June 2004.

(Shukla et al., 2004) Shukla, R.Y.; Strooper, P.A.; Carrington, D.A. A

Framework for Reliability Assessment of Software

Components, In: Proceedings of the 7th International Symposium on

Component-based Software Engineering (CBSE), Edinburgh, UK, pp.

272-279, 2004.

(Simão et al., 2003) Simão, R. P. S.; Belchior, A. Quality Characteristics for

Software Components: Hierarchy and Quality Guides,

Component-Based Software Quality: Methods and

Techniques, In: Lecture Notes in Computer Science (LNCS)

Springer-Verlag, Vol. 2693, pp. 188-211, 2003.

(Slaughter et al., 1998) Slaughter, S.; Harter, D.; Krishnan, M. Evaluating the

Cost of Software Quality, In: Communications of the ACM, Vol. 31,

No.08, pp 67-73, 1998.

(Softex, 2007) Softex, Development Perspectives and Components

Usage in the Brazilian Software Industry (in portuguese)

Campinas: SOFTEX, 2007. Available at:

http://golden.softex.br/portal/softexweb/uploadDocuments/Compone

ntes(2).pdf

References

165

(Solingen, 2000) Solingen, R.v. Product focused software process

improvement: SPI in the embedded software domain, PhD

Thesis, Technische Universiteit Eindhoven, 2000.

(Stafford et al., 2001) Stafford, J.; Wallnau, K. C. Is Third Party

Certification Necessary?, In: The 4th Workshop on Component-

Based Software Engineering (CBSE), Lecture Notes in Computer

Science (LNCS) Springer-Verlag, Canada, 2001.

(Szyperski, 2002) Szyperski, C. Component Software: Beyond Object-

Oriented Programming. Addison-Wesley, USA, 2002.

(Taulavuori et al., 2004) Taulavuori, A.; Niemela, E.; Kallio, P. Component

documentation — a key issue in software product lines, In:

Journal Information and Software Technology, Vol. 46, No. 08, June,

pp. 535–546, 2004.

(Tian, 2004) Tian, J. Quality-Evaluation Models and Measurements, In:

IEEE Software, Vol. 21, No.03, pp.84-91, May/June, 2004.

(TMMi, 2008) TMMi Foundation, Test Maturity Model Foundation

(TMMi), Version 1.0, February, 2008.

(Trass et al., 2000) Trass, V.; Hillegersberg, J. The software component

market on the Internet, current status and conditions for

growth, In: ACM Sigsoft Software Engineering Notes, Vol. 25, No. 01,

pp. 114-117, 2000.

(Vitharana, 2003) Vitharana, P. Risks and Challenges of Component-

Based Software Development, In: Communications of the ACM,

Vol. 46, No. 08, pp.67-72, 2003.

(Voas et al., 2000) Voas, J. M.; Payne, J. Dependability Certification of

Software Components, In: Journal of Systems and Software, Vol.

52, No. 2-3 , pp. 165-172, 2000.

(Voas, 1998) Voas, J. M. Certifying Off-the-Shelf Software Components,

In: IEEE Computer, Vol. 31, No. 06, pp. 53-59, 1998.

(Wallin, 2002) Wallin, C. Verification and Validation of Software

Components and Component Based Software Systems, In:

References

166

Building Reliable Component-Based Systems, I. Crnkovic, M. Larsson

(editors), Artech House Publishers, July, pp. 29-37, 2002.

(Wallnau, 2004) Wallnau, K., Software Component Certification: 10

Useful Distinctions, In: Technical Note CMU/SEI-2004-TN-031,

2004. Available at: http://www.sei.cmu.edu/publications/documents/

04.reports/04tn031.html.

(Wallnau, 2003) Wallnau, K. C. Volume III: A Technology for Predictable

Assembly from Certifiable Components. In: Software

Engineering Institute (SEI), Technical Report, Vol. III, April, 2003.

(Washizaki et al., 2003) Washizaki, H.; Yamamoto, H.; Fukazawa, Y. A metrics

suite for measuring reusability of software components, In:

Proceedings of the 9th IEEE International Symposium on Software

Metrics, pp.211–223, 2003.

(Weber et al., 2002) Weber, K. C.; Nascimento, C. J.; Brazilian Software

Quality 2002. In: The 24th IEEE International Conference on

Software Engineering (ICSE), EUA, pp. 634-638, 2002.

(Wohlin et al., 2000) Wohlin, C.; Runeson, P.; Host, M.; Ohlsson, C.; Regnell,

B.; Wesslén, A. Experimentation in Software Engineering: an

Introduction, Kluver Academic Publishers, Norwell, 2000.

(Wohlin et al., 1994) Wohlin, C.; Runeson, P. Certification of Software

Components, In: IEEE Transactions on Software Engineering, Vol.

20, No. 06, pp 494-499, 1994.

(Wohlin and Regnell, 1998) Wohlin, C.; Regnell, B. Reliability Certification

of Software Components, In: The 5th IEEE International

Conference on Software Reuse (ICSR), Canada, pp. 56-65, 1998.

(Woodman et al., 2001) Woodman, M.; Benebiktsson, O.; Lefever, B.; Stallinger,

F. Issues of CBD Product Quality and Process Quality, In: The

4th Workshop on Component-Based Software Engineering (CBSE),

Lecture Notes in Computer Science (LNCS), Springer-Verlag, Canada,

2001.

167

Appendix A. Metrics
Example

Chapter 8 presented some brief examples of metrics definition using the

GQM approach. In order to help the evaluation team during the metrics

definition, now some other related metrics that could be considered in a

component evaluation will be described. However, the more complex the sub-

characteristics and its related quality attribute are, the more difficult it is to

provide metrics examples without a well-defined context.

• Example of Metrics to track Functionality
Characteristics

For Functionality characteristics there are five sub-characteristics that

could be evaluated: Accuracy, Security, Suitability, Interoperability, Compliance

and Self-Contained. These have a set of quality attributes, for which will be

presented at least one metric as example of usage, as follows.

For the Accuracy Sub-Characteristic the following metrics could be

applied:

Functionality
Sub-Characteristic Accuracy
Quality Attribute Correctness
Goal Evaluates the percentage of the results

that were obtained with precision
Question Based on the amount of tests executed,

how much test results return with
precision?

Metric Precision on results / Amount of tests
Interpretation 0 <= x <= 1; closer to 1 being better

Appendix A – Metrics Framework

168

For the Security Sub-Characteristic, the following metrics could be

applied:

Functionality
Sub-Characteristic Security
Quality Attribute Data Encryption
Goal Evaluate the encryption of the input and

output data of the component.
Question How complete is the data encryption

implementation?
Metric Number of services that must have data

encryption / Number of services that have
encryption

Interpretation 0 <= x <= 1; closer to 1 being better

Functionality
Sub-Characteristic Security
Quality Attribute Controllability
Goal Evaluate if the component provide any

control mechanism.
Question How controllable is the component

access?
Metric Number of provided interfaces that

control the access / Number of provided
interfaces

Interpretation 0 <= x <= 1; closer to 1 being better

Functionality
Sub-Characteristic Security
Quality Attribute Auditability
Goal Evaluate if the component provide any

audit mechanism.
Question How controllable is the component audit

mechanism?
Metric Number of provided interfaces that log-in

the access (or any kind of data) / Number
of provided interfaces

Interpretation 0 <= x <= 1; closer to 1 being better

For the Suitability Sub-Characteristic the following metrics could be

applied:

Functionality
Sub-Characteristic Suitability
Quality Attribute Coverage
Goal Evaluates the implementation coverage.
Question How much of the required functions is

Appendix A – Metrics Framework

169

covered by the component implementation?
Metric % of functions implemented / Specified

functions
Interpretation 0 <= x <= 1; closer to 1 being better

Functionality
Sub-Characteristic Suitability
Quality Attribute Completeness
Goal Evaluates the completeness of each

implemented function
Question How much of the implemented functions

are totally implemented?
Metric Total of specified functions /

Implemented functions (complete)
Interpretation 0 <= x <= 1; closer to 1 being better

Functionality
Sub-Characteristic Suitability
Quality Attribute Pre and Post-Conditioned
Goal Evaluates the ability of the component to

provide the pre and post conditions
Question How many of the provided and required

interfaces contain pre and post
conditions?

Metric Total provided and required interfaces /
number of interfaces with pre and post-
conditions

Interpretation 0 <= x <= 1; closer to 1 being better

Functionality
Sub-Characteristic Suitability
Quality Attribute Proofs of Pre and Post-Conditions
Goal Evaluates the ability of the component to

prove the pre and post conditions
Question How much of pre and post-conditions are

formally proved?
Metric Number of interfaces with pre and post-

conditions / Number of formally proved
interfaces

Interpretation 0 <= x <= 1; closer to 1 being better

For the Interoperability Sub-Characteristic the following metrics

could be applied:

Functionality
Sub-Characteristic Interoperability
Quality Attribute Data Compatibility

Appendix A – Metrics Framework

170

Goal Evaluates the compatibility of the
component’s data to any international
standard

Question How correctly were implemented the data
standard?

Metric Number of provided interfaces using any
data standard in a correct way / Number
of provided interfaces

Interpretation 0 <= x <= 1; closer to 1 being better

For the Compliance Sub-Characteristic the following metrics could be

applied:

Functionality
Sub-Characteristic Compliance
Quality Attribute Standardization
Goal Evaluates the component standards, if

there is any.
Question How many standards are used/provided

in the component?
Metric Number of functions using some standard

/ Number of functions
Interpretation 0 <= x <= 1; closer to 1 being better

Functionality
Sub-Characteristic Compliance
Quality Attribute Certification
Goal Evaluates the ability to provide any

certified functions
Question How many functions were certified by any

recognized organization?
Metric Number of functions certified / Total

number of functions
Interpretation 0 <= x <= 1; closer to 1 being better

For the Self-Contained Sub-Characteristic the following metrics

could be applied:

Functionality
Sub-Characteristic Self-Contained
Quality Attribute Dependability
Goal Evaluates the ability of the component to

provide itself all functions expected
Question How many functions does the component

provide by itself?
Metric Number of functions provided by itself /

Number of specified functions

Appendix A – Metrics Framework

171

Interpretation 0 <= x <= 1; closer to 1 being better

• Example of Metrics to track Reliability Characteristics

For Reliability characteristic there are three sub-characteristics that could

be evaluated: Fault Tolerance, Recoverability and Maturity. These have a set of

quality attributes, for which will be presented at least one metric as example of

usage, as follows.

Besides those that are presented here, some reliability metrics for software

components found on literature can be considered (McGregor et al., 2003),

(Shukla et al., 2004).

For the Fault Tolerance Sub-Characteristic, the following metrics

could be applied;

Reliability
Sub-Characteristic Fault Tolerance
Quality Attribute Mechnism available
Goal Evaluates the functions that contain fault

tolerance mechanism
Question How many functions provide the fault

tolerance mechanism?
Metric Number of functions that contain any

kind of fault tolerance mechanism /
Number of functions

Interpretation 0 <= x <= 1; closer to 1 being better

Reliability
Sub-Characteristic Fault Tolerance
Quality Attribute Mechanism Efficiency
Goal Evaluates the efficiency of the fault

tolerance mechanism
Question - How is the efficiency of the functions

that provide any kind of fault tolerance
mechanism?

- What it is the range of the data lost?
Metric - Number of functions that contain any

kind of fault tolerance mechanism /
Number of mechanisms that are
considered efficient

- Total number of interfaces that
exchanged data to outside / Number of
interface that lost data

Interpretation 0 <= x <= 1; closer to 1 being better

Appendix A – Metrics Framework

172

For the Recoverability Sub-Characteristic the following metrics

could be applied:

Reliability
Sub-Characteristic Recoverability
Quality Attribute Error Handling
Goal Evaluates the ability of the component to

avoid error situations.
Question How many functions provide any

mechanism that can avoid error
situations?

Metric Number of error handlings provided /
Number of functions

Interpretation 0 <= x <= 1; closer to 1 being better

For the Maturity Sub-Characteristic the following metrics could be

applied:

Reliability
Sub-Characteristic Maturity
Quality Attribute Volatility
Goal Analyzes the average time between

commercial versions.
Question What is the average time between the

component versions?
Metric Number of versions / Time spent to

release a new version (in days)
Interpretation 0 <= x <= 1; closer to 1 being better

* If the result is more than 1 it means
that the vendor constantly improve
the component functions and should
be considered as the maximum degree
of maturity.

Reliability
Sub-Characteristic Maturity
Quality Attribute Failure Removal
Goal Analyzes the amount of failure removal

per component version
Question How many bugs were corrected during the

component versions?
Metric Number of versions / Number of bugs

corrected per version
Interpretation 0 <= x <= 1; which closer to 0 being better

Appendix A – Metrics Framework

173

• Example of Metrics to track Usability Characteristics

For the Usability characteristic, there are four sub-characteristics that

could be evaluated: Configurability, Understandability, Learnability and

Operability. These have a set of quality attributes, for which will be presented at

least one metric as example of usage, as follows.

Besides the ones presented here, some usability metrics for software

components found on literature can be considered (Bertoa & Vallecillo, 2004),

(Bertoa et al., 2006).

For the Configurability Sub-Characteristic the following metrics

could be applied:

Usability
Sub-Characteristic Configurability
Quality Attribute Effort to Configure
Goal Evaluates the time necessary to configure

the component.
Question How much time is needed to configure the

component in order to work correctly in a
system?

Metric Time spent to configure correctly
Interpretation The faster it is to configure the component

the better, but it depends of the
component and environment complexity.

For the Understandability Sub-Characteristic the following metrics

could be applied:

Usability
Sub-Characteristic Understandability
Quality Attribute Document available
Goal Analyses the documentation availability.
Question How many documents are available to

understand the component functions?
Metric Number of documents
Interpretation The higher number of documents

available is better, but it depends of the
component complexity, domain, etc.

Usability
Sub-Characteristic Understandability
Quality Attribute Document readability and quality
Goal Analyses the efficiency and efficacy of the

provided documents.

Appendix A – Metrics Framework

174

Question How is the quality of the provided
documents?

Metric Amount of documents with quality /
Amount of documents provided

Interpretation 0 <= x <= 1; closer to 1 being better

Usability
Sub-Characteristic Understandability
Quality Attribute Code Readability
Goal Analyzes the source code
Question How easy it is to understand the source

code?
Metric Time spent to understand the source code
Interpretation Based on the Number of Lines of Code

(LOC); analysis of the modularity,
coupling, cohesion and simplicity.

For the Learnability Sub-Characteristic the following metrics could

be applied:

Usability
Sub-Characteristic Learnability
Quality Attribute Time and effort to (use, configure, admin

and expertise) the component
Goal Evaluates the effort necessary to use,

configure, admin and expertise in the
component.

Question How much effort is needed to (use,
configure, admin and expertise) the
component?

Metric Time spend to learn the component
abilities

Interpretation The faster to learn the better, but depends
on the component complexity

For the Operability Sub-Characteristic the following metrics could be

applied:

Usability
Sub-Characteristic Operability
Quality Attribute Complexity level
Goal Analyzes the ability to operate all

provided functions
Question How much time it is needed to operate the

component?
Metric All functions usage / time to operate

Appendix A – Metrics Framework

175

Interpretation The lower the better (∑ usage time of each
function)

Usability
Sub-Characteristic Operability
Quality Attribute Provided Interfaces
Goal Analyses the complexity of the provided

interfaces
Question How many functions and parameters are

necessary to execute the component
functions?

Metric Number of provided functions and
parameters (NPFP) * N / Number of
provided interfaces
Where N can assume the following value:

- NPFP < 4, N=1
- 4 <= NPFP <= 6, N=2
- NPFP >=7, N=3

Interpretation 0 <= x <= 1; closer to 1 being better

Usability
Sub-Characteristic Operability
Quality Attribute Required Interfaces
Goal Analyses the complexity of the required

interfaces
Question How many functions and parameters are

necessary to execute the component
functions?

Metric Number of required functions and
parameters * N / Number of required
interfaces
Where N can assume the following value:

- <4, N=1
- >=4<=6, N=2
- >=7, N=3

Interpretation 0 <= x <= 1; closer to 1 being better

Usability
Sub-Characteristic Operability
Quality Attribute Effort for Operating
Goal Analyses the complexity to operate the

functions provided by the component
Question How many operations are provided by

each interface?
Metric Number of operations in all provided

interfaces / Number of provided
interfaces

Interpretation 0 <= x <= 1; closer to 1 being better

Appendix A – Metrics Framework

176

• Example of Metrics to track Efficiency Characteristics

For the Efficiency characteristic there are three sub-characteristics that

could be evaluated: Time Behavior, Resource Behavior and Scalability. These

have a set of quality attributes, for which will be presented at least one metric as

example of usage, as follows.

For the Time Behavior Sub-Characteristic the following metrics

could be applied:

Efficiency
Sub-Characteristic Time Behavior
Quality Attribute Response Time
Goal Evaluates the time taken since a request is

received until a response has been sent
Question How is the average time between the

response times?
Metric (∑ Time taken between a set of

invocations per each provided interface) /
Number of invocations

Interpretation 0 <= x <= 100; which closer to 100 being
better

Efficiency
Sub-Characteristic Time Behavior
Quality Attribute Latency – Throughput
Goal Analyses the amount of output that can be

successfully produced over a given period
of time.

Question How much output can be produced with
success over a period of time?

Metric (Amount of output with success over a
period of time * 100) / Number of
invocations

Interpretation 0 <= x <= 100; which closer to 100 being
better

Efficiency
Sub-Characteristic Time Behavior
Quality Attribute Latency – Processing Capacity
Goal Analyses the amount of input information

that can be successfully processed by the
component over a given period of time

Question How much input can be processed with
success over a period of time?

Appendix A – Metrics Framework

177

Metric (Amount of input processed with success
over a period of time * 100) / Number of
invocations

Interpretation 0 <= x <= 100; which closer to 100 being
better

For the Resource Behavior Sub-Characteristic the following metrics

could be applied:

Efficiency
Sub-Characteristic Resource Behavior
Quality Attribute Memory Utilization
Goal Analyzes the amount of memory required

to its correct work.
Question How much memory is enough for the

component to work correctly?
Metric Amount of memory necessary for the

component to work correctly/amount of
memory available on the execution
environment.

Interpretation 0 <= x <= 1; which closer to 0 being better

Efficiency
Sub-Characteristic Resource Behavior
Quality Attribute Disk Utilization
Goal Analyzes the amount of disk space

required to its correct work.
Question How much disk space is enough for the

component to work correctly?
Metric Amount of disk necessary for the

component to work correctly/amount of
disk available on the execution
environment.

Interpretation 0 <= x <= 1; which closer to 0 being better

For the Scalability Sub-Characteristic the following metrics could be

applied:

Efficiency
Sub-Characteristic Scalability
Quality Attribute Processing Capacity
Goal Evaluates the capacity of the component

to support a huge volume of data.
Question How does the component responds with

increase of data being processed?
Metric (∑ response time of each call) / Number

of calls
* This can be executed in a defined time

Appendix A – Metrics Framework

178

and the number of calls could vary.
Thus the average ratio between the calls
can be calculated.

Interpretation It depends on the time defined to be
executed. It should be analyzed based on
the average calls and, before, define the
period of time to execute this
measurement.

• Example of Metrics to track Maintainability
Characteristics

For the Maintainability characteristic there are three sub-characteristics

that could be evaluated: Stability, Changeability and Testability. These have a

set of quality attributes, for which will be presented at least one metric as

example of usage, as follows.

For the Stability Sub-Characteristic the following metrics could be

applied:

Maintainability
Sub-Characteristic Stability
Quality Attribute Modifiability
Goal Evaluates the flexibility to change the

component source code in order to
improve its functions

Question How modifiable is the component?
Metric Execute a set of modifications and analyze

the component behavior
Interpretation Analyze the amount of modifications done

and the amount of modifications that
works well

For the Changeability Sub-Characteristic the following metrics could

be applied:

Maintainability
Sub-Characteristic Changeability
Quality Attribute Extensibility
Goal Evaluates the flexibility to extend the

component functions
Question How extensible is the component?
Metric Execute a set of extensions and analyze

the new component behavior
Interpretation Analyze the amount of extensions done

and the amount of extensions that work
well

Appendix A – Metrics Framework

179

Maintainability
Sub-Characteristic Changeability
Quality Attribute Costumizability
Goal Analyzes the customizable parameters

that the component offers
Question How much parameters are provided to

customize each function of the
component?

Metric Number of provided interfaces / Number
of parameters to configure the provided
interface

Interpretation 0 <= x <= 1; which closer to 1 is better

Maintainability
Sub-Characteristic Changeability
Quality Attribute Modularity
Goal Analyzes the internal organization of the

component
Question How logically separated are the

component concerns?
Metric Packaging analysis
Interpretation If the component contains some packages

that isolate each logical concern it
probably has good modularity. On the
other hand, if the component doesn’t
contain a well defined internal structure
the modularity level is slower.

For the Testability Sub-Characteristic the following metrics could be

applied:

Maintainability
Sub-Characteristic Testability
Quality Attribute Test Suite Provided
Goal Analyzes the ability of the component to

provide some test suite for checking its
functions

Question - Is there any test suite?
- How is the coverage of this test suite

based on the whole component
functions?

Metric - Analysis of the test suites provided
- Number of test suites provided /

Number of functions
Interpretation 0 <= x <= 1; closer to 1 being better

Appendix A – Metrics Framework

180

Maintainability
Sub-Characteristic Testability
Quality Attribute Extensive Component Test Case
Goal Analyzes if the component was extensively

tested before being made available to the
market

Question - How many tests cases are executed?
- What is the coverage of these test

cases?
Metric Number of functions / Number of test

cases
* Still on it is interesting to analyze the
number of bugs that were corrected
during the test case

Interpretation The test cases coverage is very important
to be analyzed and the number of bugs
discovered during the execution of the
tests.

Maintainability
Sub-Characteristic Testability
Quality Attribute Component Test in a Specific

Environment
Goal Analyzes the environments where the

component can work well
Question In which environment this component

can be executed without errors?
Metric Number of environments that work well /

Number of environments defined on
specification

Interpretation 0 <= x <= 1; closer to 1 being better

Maintainability
Sub-Characteristic Testability
Quality Attribute Proofs the Components
Goal Analyzes if the tests are formally prooved
Question How is the coverage of the proof in the

test cases?
Metric Proofs Analysis
Interpretation It is interesting to note if the amount of

formal proof covers the whole test cases
provided by the component. As higher it is
better.

• Example of Metrics to track Portability Characteristics

For the Portability there are five sub-characteristics that could be

evaluated: Deployability, Replaceability, Adaptability and Reusability. These

Appendix A – Metrics Framework

181

have a set of quality attributes, for which will be presented at least one metric as

example of usage, as follows.

For the Deployability Sub-Characteristic the following metrics could

be applied:

Portability
Sub-Characteristic Deployability
Quality Attribute Complexity Level
Goal Analyzes how complex it is to deploy a

component in its specific environment(s)
Question How much time does it take to deploy a

component in its environment?
Metric Time taken for deploying a component in

its environment
Interpretation Estimate the time first and then compare

with the actual time taken to deploy the
component

For the Replaceability Sub-Characteristic the following metrics could

be applied:

Portability
Sub-Characteristic Replaceability
Quality Attribute Backward Compatibility
Goal Analyzes the compatibility with previous

versions
Question What is the compatibility with previous

versions?
Metric Correct results / Set of same invocations

in different component versions
Interpretation 0 <= x <= 1; closer to 1 being better

For the Adaptability Sub-Characteristic the following metrics could

be applied:

Portability
Sub-Characteristic Adaptability
Quality Attribute Mobility
Goal Analyzes the ability of the component to

be transferred from one environment to
another

Question Can the component be transferred to
other environment without any changes?

Metric - Analyze the component constraints and
environment constraints

- Analyze the component specification

Appendix A – Metrics Framework

182

- Deploy the component in environment
specified on documentation

* Possible metric: Number of
environments where the component
works correctly / Number of
environments described in its
specification

Interpretation 0 <= x <= 1; closer to 1 being better

Portability
Sub-Characteristic Adaptability
Quality Attribute Configuration Capacity
Goal Analyzes the ability of the component to

be transferred from one environment to
another, considering the related changes

Question How much effort is needed to adapt the
component to a new one environment?

Metric - Analyze the component constraints and
environment constraints

- Analyze the component specification
- Deploy the component in environment

specified on documentation
- Time taken to adapt the component in

its specified environments
Interpretation Analyze the time taken to deploy the

component in each environment defined

For the Reusability Sub-Characteristic the following metrics could be

applied. It could also be considered other reusability metrics for software

components found on literature (Washizaki et al., 2003), (Bay and Pauls, 2004).

Portability
Sub-Characteristic Reusability
Quality Attribute Domain Abstraction Level
Goal Analyzes the correct separation of

concerns in the component
Question - Can the component be reused in other

domain applications?
- Does the component have inter-related

business code?
Metric Analyzes the source code and tries to

reuse the component in other domains
Interpretation If the component does not contain

business code related to specific domain
and can be reused around a set of
domains, it is good candidate to be

Appendix A – Metrics Framework

183

reused. On the other hand, if it does have
code related to a specific domain and it
becomes difficult to reuse it around some
domain, the component is not good
candidate to be reusable and should be
revised.

Portability
Sub-Characteristic Reusability
Quality Attribute Architecture Compatibility
Goal Analyzes the level of dependability of a

specified architecture
Question Was the component correctly designed

based on the architecture constraints
defined?

Metric Analysis of the component design based
on some documentation and source code

Interpretation Understand the architecture constraints
and analyze if the component follows that
one specification during its development
and implementation. Based on this, the
component can be considered good to be
reused or not.

Portability
Sub-Characteristic Reusability
Quality Attribute Modularity
Goal Analyzes the internal organization of the

component
Question How logically separated are the

component concerns?
Metric Packaging analysis
Interpretation If the component contains some packages

that isolate each logical concern, it should
have good modularity and become more
reusable and extensible. On the other
hand, if the component doesn’t contain a
well define internal structure, the
modularity level is slower and,
consecutively, the reusability level
decreases.

Portability
Sub-Characteristic Reusability
Quality Attribute Cohesion
Goal Analyzes the cohesion between the

internal modules/packages/functiona-
lities of the component

Appendix A – Metrics Framework

184

Question How is the cohesion level of the
component?

Metric Analysis of the inter-related parts
Interpretation A component should have high

cohesiveness in order to increase its
reusability level;

Portability
Sub-Characteristic Reusability
Quality Attribute Coupling
Goal Analyzes the coupling between the

internal modules/packages/functiona-
lities of the component

Question How is the coupling level of the
component?

Metric Analysis of the inter-related parts (Call-
Called modules, methods, etc)

Interpretation A component should have low coupling in
order to increase its reusability level

Portability
Sub-Characteristic Reusability
Quality Attribute Simplicity
Goal Analyzes the way the component is

organized
Question How simple is the component’s

organization?
Metric Number of modules, average module size

and cyclomatic complexity
Interpretation The component’s organization should be

easily understandable and (re)usable. The
simpler the better.

• Metrics to track the Evaluation Techniques Properties

With the same objective of the metrics cited above, now some metrics to

track the properties of the evaluation techniques proposed in Chapter 6 will be

described. Differently from the last sections, where one metric was presented

for each quality attribute, now, some just examples of metrics to track the

properties of the evaluation techniques defined on Software Component

Techniques Model (SCTM) will be presented because each technique can be

measured in different ways and complexity, using different tools, techniques,

methods and processes. Thus, the evaluation team should define which degree

of thoroughness it is more interesting to measure each evaluation technique

Appendix A – Metrics Framework

185

proposed. Some recognized tools or methods from the literature will be used as

basis (considering that the evaluated components were developed using Java

programming language), as follows:

Functionality
Quality Attribute Response Time
SCTM level I
Technique Accuracy Analysis using TPTP tool17
Goal Evaluates the percentage of the time taken

between a set of invocations
Question Is the tool efficient to measure the response

time of this kind of component? If so, how
accurate are the output results from the
component?

Metric Analysis of the results and coverage of the
tool

Interpretation Definition of the applicability of the tool to
measure these quality attributes. If this tool
can efficiently measure the response time of
a set of invocations, it is good. On the other
hand, if it is not enough to evaluate some
functions, other tools should be used to
complement or to substitute this one.
If this tool is good to evaluate the
component, an analysis of how many
results are generated with the expected
accuracy could include the following
formula:

Number of results with accuracy /
Number of results generated

0 <= x <= 1; closer to 1 being better

Efficiency
Quality Attribute Processing Capacity, Memory and Disk

utilization
SCTM level III
Technique Test of Performance using JMeter tool18
Goal Evaluates the processing capacity of the

component together with its memory and
disk usage

Question Can JMeter evaluate in an efficient way the
performance of this component?

Metric Based on the component knowledge,
analyze if the tool can support/evaluate all
functionality performance

17 Eclipse Test & Performance Tools Platform Project (TPTP) – http://www.eclipse.org/tptp
18 Apache JMeter – http://jakarta.apache.org/jmeter

Appendix A – Metrics Framework

186

Interpretation If the tool can evaluate in an efficient way
the performance of each functions through
its resources, it is a good tool to use during
evaluation. On the other hand, if it is not
enough to evaluate some kind of
performance, other tool should be use to
complement or to substitute this one.
If this tool is good to evaluate the
component, an analysis of how much
memory and disk is necessary and the
processing capacity of the component could
include the following formula:

(Number of outputs with success over a
period of time * 100) / Number of
invocations

0 <= x <= 100; which closer to 100 being
better

Portability
Quality Attribute Coupling, Cohesion, Simplicity, Reusability

and Modularity analyzes
SCTM level I
Technique Coupling, Cohesion, Simplicity, Reusability,

Modularity analyzes using Checkstyle tool19
Goal Evaluates the internal source code of the

component
Question Is the Checkstyle tool efficient enough to

measure those attributes?
Metric Analysis of the results and coverage of the

tool
Interpretation If the tool can mine these kinds of

information from the source code and
present them to be analyzed, it is good to
evaluate the component. On the other hand,
if it is not enough to evaluate some kind of
attributes, other tool should be use to
complement or to substitute this one.
If this tool is good to evaluate the
component, an analysis of the metrics
collected in the tool can be used to define
those attributes from the component.

The idea is that the component should
have: less coupling, high cohesion, high
modularity, ways to perform the
function in a simple way and high
reusability.

19 Checkstyle – http://checkstyle.sourceforge.net

Appendix A – Metrics Framework

187

• Metrics to track the Evaluation Process Proprieties

Consistent and good evaluation results can only be achieved by following a

high quality and consistent evaluation process (Comella-Dorda et al., 2003).

However, to assure the efficiency and efficacy of the process it is important to

define some metrics. The idea is to obtain feedback from those metrics in order

to improve the activities and steps proposed to evaluate the component quality

(that were presented on Chapter 7). Next, two metrics that could be used with

this purpose will be presented:

Component Evaluation Process
Goal Adequately evaluate the software

component.
Question Can the evaluation team evaluate

everything they planned to execute using
the techniques, documents and models
developed during the process activities?

Metric Total documented functions / Total
component functions (or Total
measurement accomplished)

Interpretation 0 <= x <= 1; closer to 1 being better.

Component Evaluation Process
Goal Analyzes the usability of the templates

provided
Question Did the templates helped during the

evaluation development?
Metric Evaluation team feedback
Interpretation If the templates did not help during the

evaluation development, they should be
adapted to improve the time of the
component evaluation process.

Number of positive feedbacks / All
feedbacks

0 <= x <= 1; closer to 1 being better.

188

Appendix B. Component
Quality Evaluation Form

Appendix B – Component Quality Evaluation Form

189

Component Certification

<Component Name>

Version <Document Version> | <Document date version>

Responsible: <Responsible Name>

<Customer or Component
logo>

Appendix B – Component Quality Evaluation Form

190

Historic Changes

Date Version Description Author

Appendix B – Component Quality Evaluation Form

191

Contents

1. Introduction ___ 192

1.1 Overview of the Component ___ 192

1.2 Conventions, terms and abbreviations list______________________________ 192

2. Software Component Evaluation ___ 193

2.1 Establish Evaluation Requirements activity ____________________________ 193

2.1.1 Form an Evaluation Team __ 193
2.1.2 Define the Goals and Scope _______________________________________ 193

2.1.3 Analyze the System and Environment _______________________________ 193

2.1.4 Define the Quality Characteristics __________________________________ 193

2.1.5 Specify the Required Documentation________________________________ 194

2.1.6 Define External Quality Characteristics______________________________ 194

2.2 Specify the Evaluation activity _______________________________________ 194

2.2.1 Specify the Quality Attributes _____________________________________ 194

2.2.2 Define the Software Component Techniques Model (SCTM)_____________ 194
2.2.3 Analysis of the Evaluation Techniques ______________________________ 195

2.2.4 Define Goal-Question-Metric (GQM) _______________________________ 195
2.2.5 Establish Punctuation Level of Metrics ______________________________ 195

2.3 Design the Evaluation activity__ 196

2.3.1 Document the Evaluation Technique/Method _________________________ 196

2.3.2 Select (or Develop) Tools __ 196

2.3.3 Define the Environment __ 196
2.3.4 Develop the Evaluation Schedule___________________________________ 197

2.3.5 Define the Evaluation Cost__ 197

2.4 Execute the Evaluation activity_______________________________________ 197

2.4.1 Collect Data ___ 197
2.4.2 Analyze the Results ___ 198
2.4.3 Evaluation Report___ 198

3. References __ 199

Appendix B – Component Quality Evaluation Form

192

1. Introduction

<This section should present a brief introduction of the component that will be submitted to the
evaluation, the context and motivation to do so.>

1.1 Overview of the Component

<This section will present a brief overview of the component, presenting the problem that the
component solves, in which domain it works, information about its internal organization and in
which architecture it was developed.>

1.2 Conventions, terms and abbreviations list

This section presents the Abbreviations list used in this document.

Term Description

Container Environment that the component should be deployed

OS Operational System

Appendix B – Component Quality Evaluation Form

193

2. Software Component Evaluation

<This section presents the activities used to execute the software component evaluation process
module which was described during this thesis. The other modules will be used during some
sections of this process as required. Next section will present the steps that should be followed
to evaluate the component quality.>

2.1 Establish Evaluation Requirements activity

<This activity describes all the requirements that should be considered during the component
evaluation.>

2.1.1 Form an Evaluation Team

<This step presents the evaluation team that will execute the component evaluation.>

Table 1. Team Evaluation.

Evaluation Team Stakeholder

Alexandre Alvaro Evaluation Responsible

Valdir Alvaro Software Development expert

Maria da Graça Software Architecture specialist

Denise Alvaro Application Server specialist

Fabio Henrique Software Engineering Specialist in Java Programming Language

Eduardo Monteiro Software Engineering Specialist in Java Programming Language

2.1.2 Define the Goals and Scope

<This step should answer some questions like: (i) What does the evaluation expects to achieve?;
(ii) What are the responsibilities of each member of the team?; (iii) When should the evaluation
finish?; (iv) What constraints must the evaluation team adhere to?; and (v) What is the related
risk of the component to its target domain?

This step should contain the goals of the evaluation; scope of the evaluation; component and
domain risk-level; statement of commitment from both stakeholder(s) and customer(s); and
summary of decisions that have already been made.>

2.1.3 Analyze the System and Environment

<This step should describe the whole environment of evaluation as precisely as possible.
Additionally, the team members should answer the following questions: (i) How much effort will
be spent to provide the whole infra-structure to evaluate the component? How is the complexity
and what are the constraints of this environment?; (ii) What is the size of the selected systems (if
available)? What is(are) the target domain(s) of those systems?; (iii) What is the impact of the
software component in the selected system?; and (iv) What are the component dependencies?>

2.1.4 Define the Quality Characteristics

<This step defines the quality characteristics and sub-characteristics that will be used to
evaluate the component quality. Still on, the team evaluation should define the importance level

Appendix B – Component Quality Evaluation Form

194

of each characteristic defined according to this classification: 1-Not Important; 2-Indiferent; 3-
Reasonable; 4-Important; 5-Very Important.>

 Example:

Table 2. Characteristics and Sub-Characteristics defined.

Characteristics Sub-Characteristics Importance
Functionality Accuracy 4
Functionality Security 3
… … …

2.1.5 Specify the Required Documentation

<This step describes which documents are necessary (essential) to execute the component
evaluation. After that, the Customer should be contacted in order to provide those documents
before the evaluation starts.>

2.1.6 Define External Quality Characteristics

<This step describes the characteristics that are not presented on the Component Quality Model
(CQM), presented on Chapter 5, and should be considered to evaluate any component quality
aspects. After defining the characteristics, it is interesting to complement the table 2 with the
new quality characteristics and to define its relevance to the component quality evaluation.>

2.2 Specify the Evaluation activity

<This activity describes how each quality attribute will be evaluated and which techniques and
metrics will be used/collected.>

2.2.1 Specify the Quality Attributes

<This step complements the Table 2 with quality attributes for each sub-characteristic as show
in Table 3. The quality attributes could be selected from CQM also. In this way, the quality
aspects of the component are completely developed.>

Example:

Table 3. Importance related for each characteristic.

Characteristics Sub-
Characteristics Quality Attributes Importance

Functionality Accuracy Correctness 4
Functionality Security Data Encryption 3
… … ... …

2.2.2 Define the Software Component Techniques Model (SCTM)

<During this step the evaluation team will define which level should be considered to evaluate
the quality characteristics proposed earlier (the guidelines for selecting evaluation level could
help the evaluation team in this task). Chapter 6 presented the SCTM model and the correlation
between those evaluation techniques X quality attributes presented on CQM. Thus, it could be
interesting to put another column on the Table 3 in order to show which techniques are
interesting to evaluate the proposed quality attributes as show in Table 4.. Of course, these
techniques will be based on the level that was defined by the evaluation team.>

Appendix B – Component Quality Evaluation Form

195

Example:

Table 4. Evaluation techniques defined.

Characteristics Sub-
Characteristics

Quality
Attributes

SCTM Level /
Evaluation Technique Importance

Functionality Accuracy Correctness II. Black-Box Testing 4
Functionality Security Data Encryption III. Code Inspection 3
… … ... … …

2.2.3 Analysis of the Evaluation Techniques

<During this step, the evaluation team will analyze the Table 4 in order to define if the
evaluation techniques proposed are useful or if it other(s) technique(s) not supported by SCTM
are needed. If true, the evaluation team should establish this “new” technique, describe it,
reference it from the literature and add in the Table 4.>

2.2.4 Define Goal-Question-Metric (GQM)

<This step will define all metrics necessary in order to collect the data and analyze it at the end
of the evaluation process. It should be defined, at least: one metric for each quality attribute
proposed on the Table 4; and one metric for each module of the framework.>

Example:

Table 5. GQM example for Correctness Quality Attribute.

Functionality

Sub-Characteristic Accuracy

Quality Attribute Correctness

Goal
Evaluates the percentage of the results that
were obtained with precision

Question
Based on the amount of tests executed, how
many test results returned with precision?

Metric Precision on results / Amount of tests

Interpretation 0 <= x <= 1; closer to 1 being better

2.2.5 Establish Punctuation Level of Metrics

<Based on the last step, this one will define the score level of each metrics defined earlier,
based on the interpretations defined for each metric.>

Example:

Table 6. Example of Score Level in the GQM definition.

 Functionality

Sub-Characteristic Accuracy

Quality Attribute Correctness

Goal
Evaluates the percentage of the results that
were obtained with precision

Question
Based on the amount of tests executed, how
many test results returned with precision?

Appendix B – Component Quality Evaluation Form

196

Metric Precision on results / Amount of tests

Interpretation 0 <= x <= 1; which closer to 1 is better

Score Level

• 0 – 0.3: Not acceptable

• 0.31 – 0.6: Reasonable quality

• 0.61 – 1: Acceptable

2.3 Design the Evaluation activity

<This activity describes the whole configuration of the environment that will be used to
evaluate the component quality.>

2.3.1 Document the Evaluation Technique/Method

<During this step the evaluation team will document the techniques used during the component
evaluation (those described on section 2.2.2.). The whole team must have knowledge in each
specific technique proposed early in order to help during the documentation and for help the
members that don’t know so much about certain technique.>

2.3.2 Select (or Develop) Tools

<This step will define how the evaluation team will execute the evaluation techniques defined
earlier. They can use a tool, or develop a tool, or a specific method, or a framework, etc. in
order to evaluate the quality attributes. After defining the tools/method/technique/etc, it is
interesting to document it so that the whole team can better understand and use it.

The team could use the Table 4 in order to document which tool/method/process/technique will
evaluate each technique, as shows in Table 7:>

Example:

Table 7. Definition of the Tools that should be used during evaluation.

Characteristics Sub-
Characteristics

Quality
Attributes

SCTM Level /
Evaluation
Technique

Importance Tool used

Functionality Accuracy Correctness
II. Black-Box
Testing

4
Junit20,

FindBugs21

Functionality Security
Data
Encryption

III. Code
Inspection

3 PMD22

… … ... … … …

2.3.3 Define the Environment

<This step describes, as precisely as possible, the whole environment to evaluate the
component. There are two options: (i) specify the system that the component will work in order
to evaluate the quality of the components executed in these systems provided by the costumer;
(ii) specify a well-defined environment for the component to be executed and analyzed.>

20 http://www.junit.org
21 http://findbugs.sourceforge.net
22 http://pmd.sourceforge.net

Appendix B – Component Quality Evaluation Form

197

2.3.4 Develop the Evaluation Schedule

<This step will provide the time spent to evaluate the component quality and the activities to be
executed for each stakeholder defined on section 2.1.1., as shows in Table 8.>

Example:

Table 8. Component Evaluation Scheduler.

Activities 01/11/2007 05/12/2007

Configure the environment Alexandre Alvaro

Develop the black-box test
case

Valdir Alvaro, Maria da Graça

Define the static analysis that
will be considered

Denise Alvaro

Analyze the source-code
Fabio Henrique, Eduardo
Monteiro

Measure the whole process
using the metrics defined

Alexandre Alvaro

Generate the final report Alexandre Alvaro

2.3.5 Define the Evaluation Cost

<Based on the team expertise, this step describes the evaluation costs, based on: the
number/cost of each stakeholder and the time spent by the stakeholder on each activity of the
evaluation. If the team evaluation has more expertise in previous evaluations or in other kinds
of costs estimation, they should use it to develop the evaluation cost. >

2.4 Execute the Evaluation activity

<This activity will execute the whole planning of the component evaluation. First the team
evaluation will configure the environment, after that it will execute the evaluation in order to
Analyze if the component has the desired quality level or not.>

2.4.1 Collect Data

<During execution of the evaluation (last section), all data provided is collected using the
metrics defined in section 2.2.4. A table should be used to store those values in order to be
further analyzed. An example is show in Tale 9.>

Example:

Table 9. Table to document the results obtained during component evaluation.

Characteristics Sub-
Characteristics

Quality
Attributes

SCTM
Level /

Evaluation
Technique

Importance Tool
used Results

Functionality Accuracy Correctness
II. Black-
Box
Testing

4
Junit,

FindBugs
0.7

Functionality Security
Data
Encryption

III. Code
Inspection

3 PMD 0.8

… … ... … … … …

Appendix B – Component Quality Evaluation Form

198

2.4.2 Analyze the Results

<During this step the evaluation team will analyze all data collected in order to provide the
quality level of the component. Some adjustments could be done in this step because there are
some quality attributes that could influence, in a positive or negative way, other quality
attributes. Thus, these questions should be carefully analyzed and considered by the evaluation
team.

Moreover, the evaluation team should consider the importance level of each quality attribute in
a way that different weights could be applied for each results obtained.>

2.4.3 Evaluation Report

<In this step, the evaluator responsible for the component evaluation will develop a report that
contains the information obtained during the previous steps and the evaluation team should
provide some comments in order to the customer improve their component.

The evaluator should consider if the component achieves the required quality to be considered
in the level in which it was evaluated. This could be achieved through the analysis of the score
level of each metric defined during the component evaluation process execution.>

Appendix B – Component Quality Evaluation Form

199

3. References

<This section will provide the references to tools, processes, techniques, methods cited during
this documents, in such format :>

[1] Authors, Title; Conference/Journal (if applicable); Date;

200

Appendix C.

Questionnaires used in the

Experimental Study

 This appendix presents the two questionnaires used in the experimental

study.

QT1 – INDIVIDUAL QUESTIONNARIE FOR THE PARTICIPANTS OF

THE EXPERIMENT

Date: __/__/____

Course: () Computer Science () Computer Engineering () Informatics

Bachelor () Data Processing

() Other: ________________________

Degree: () Graduate () M.Sc. () PhD. () Specialization

In which of the categories below do you belong, in relation to software

quality?

() I have no experience in software quality.

() I have developed some projects during graduation/postgraduation courses,

using software quality techniques.

() I have developed, professionally, some projects using any kind of software

quality techniques (up to 3).

Appendix C – Questionnaires used in the Experimental Study

201

() I have developed, professionally, several projects using any kind of software

quality technique (more than 3).

() I’m coordinator/manager of software quality in my company (up to 2 years)

() I’m coordinator/manager of software quality in my company (more than 2

years)

() Other, specify: __

Please, inform which courses you attended in the software quality /

software evaluation / software engineering / software reuse areas

Do you know and/or work with any software quality techniques?

Which one(s)?

How much time do you have in experience in each technique?

Appendix C – Questionnaires used in the Experimental Study

202

Check you experience or the activities (positions) that you exercise (or

have exercised), in the software development area:

() Systems analyst

() Software architect

() Software engineer

() Components developer

() Applications developer (with components)

() Tests engineer

() Quality engineer

() Configuration engineer

() Project manager

() Teacher (university) in informatics (reuse-oriented disciplines)

() Others: _____________________________________

In how many developments of applications using some software quality

technique have you participated?

Large complexity:

() None () 1 - 2 () 3 - 7 () More than 7

Medium complexity:

() None () 1 - 2 () 3 - 7 () More than 7

Small complexity:

() None () 1 - 2 () 3 - 7 () More than 7

Informing the amount of training on software quality you have, by

checking the correspondent items and quantities below (excluding the

course ministered in this semester)

Appendix C – Questionnaires used in the Experimental Study

203

Courses (up to 8 hs):

() None () 1 - 2 () 3 - 7 () >7

Courses (up to 40 hs):

() None () 1 - 2 () 3 - 7 () >7

Courses (more than 40 hs):

() None () 1 - 2 () 3 - 7 () >7

Symposiums/Conferences:

() None () 1 - 2 () 3 - 7 () >7

Publications of national papers:

() None () 1 - 2 () 3 - 7 () >7

Publications of international papers:

() None () 1 - 2 () 3 - 7 () >7

Others: _______________________________

In which area are you most interested:

() Software Engineering () Networking/Distributed Systems () Databases

() Artificial Intelligence () Hypermedia () Computers architecture

() Graphical Computing

() Other: _______________________

Observations or comments: (please use the back page if the space below is

insufficient)

Appendix C – Questionnaires used in the Experimental Study

204

QT2 – INDIVIDUAL QUESTIONNARIES FOR THE PARTICIPANT OF

THE EXPERIMENT

Regarding the component evaluation process, answer:

1) Which difficulties did you find in the Establish Evaluation

Requirements? (justify)

2) Which improvements would you suggest for the Establish

Evaluation Requirements activity?

3) Which difficulties did you find in the Specify the Evaluation?

(justify)

4) Which improvements would you suggest for the Specify the

Evaluation activity?

Appendix C – Questionnaires used in the Experimental Study

205

5) Which difficulties did you find in the Design the Evaluation?

(justify)

6) Which improvements would you suggest for the Design the

Evaluation activity?

7) Which difficulties did you find in the Execute the Evaluation?

(justify)

8) Which improvements would you suggest for the Execute the

Evaluation activity?

9) Do you have any other consideration about the whole process?

Appendix C – Questionnaires used in the Experimental Study

206

Regarding the Component Quality Model (CQM), answer:

10) Do you consider that the Component Quality Characteristics

presented on the Component Quality Model (CQM) are sufficient to

measure the component quality? If you needed to propose any other

quality characteristic during the evaluation process that is not

covered in the model, justify your decision.

Regarding the Software Component Techniques Model (SCTM),

answer:

11) Do you consider that techniques provided on the Software

Component Techniques Model (SCTM) are sufficient to evaluate the

component quality? If you needed to propose any other quality

technique that is not covered in the model, justify you decision.

12) Do you think that Guidelines for selecting evaluation level

helped you during the definition of the SCTM level? Why?

Appendix C – Questionnaires used in the Experimental Study

207

13) Which improvements would you suggest for the Guidelines for

selecting evaluation level?

Regarding the Metrics Framework, answer:

14) Do you think that the Metrics Framework (using the Goal-

Question-Metrics (GQM) paradigm) and which contains a set of

metrics examples to help the evaluation team was fundamental

during the measurement proposals? (justify)

Regarding the whole process, answer:

15) After using the whole Software Component Quality Framework,

do you believe that the component quality could be precisely

evaluated/measured through this Framework?

Appendix C – Questionnaires used in the Experimental Study

208

16) Other suggestions, difficulties, comments, etc. about the

Framework.

l

