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Abstract. Stochastic models are widely used for the performance evaluation of parallel programs and systems.
The stochastic assumptions in such models are intended to represent non-deterministic processing requirements as
well as random delays due to inter-process communication and resource contention. In this paper, we provide compel-
ling analytical and experimental evidence that in current and foreseeable shared-memory programs, communication
delays introduce negligible variance into the execution time between synchronization points. Furthermore, we show
using direct measurements of variance that other sources of randomness, particularly non-deterministic computational
requirements, also do not introduce significant variance in many programs. We then use two examples to demonstrate
the implications of these results for parallel program performance prediction models, as well as for general stochastic
models of parallel systems.

1. Introduction

The execution of a parallel program on a multiprocessor system is influenced by a number of non-deterministic
factors. These can include non-deterministic processing requirements (if the CPU requirements of the program vary
significantly across different executions on a particular input), as well as random delays due to inter-process commun-
ication events and contention for shared hardware and software resources. Performance models of parallel programs
and systems have typically used stochastic task execution times to represent such non-determinism. In many parallel
programs, however, the CPU requirements are fixed or almost fixed for any particular input. (We provide some evi-
dence for this later in the paper.) For such programs, does the variability due to random delays justify the stochastic
assumptions in these performance models? More generally, how do random delays influence the variance of execution
time of synchronizing processes in parallel programs? The answers to these questions should be useful not only for
performance evaluation, but for programmers as well. To our knowledge, however, these questions have not previ-
ously been addressed.

In this work, we first attempt to quantify the non-determinism introduced by random delays in shared-memory
parallel programs. We describe a renewal model of program behavior that can be used to evaluate the variance and
distribution of the execution time of a process between synchronization points, in the presence of random delays. The
model yields a simple estimate for the variance in terms of basic and intuitive parameters. We apply the model to dif-
ferent phases of several shared-memory programs, using detailed measurements to obtain the necessary parameter
values. We also present direct measurements of the variance and distribution of process execution times, which
include variability due to processing requirements as well. We use these to compare the relative influence of the two
sources of non-determinism, as well as to evaluate the overall variance and distribution of execution time.

T This work is supported in part by the National Science Foundation (CDA-9024618, CDA-8920777, CCR-9024144) and by an IBM Gradu-
ate Fellowship.

* This paper appears in the Proceedings of the 1993 ACM SIGMETRICS Conference on Measurement and Modeling of Computer Systems.



One key conclusion we obtain is that communication delays do not introduce significant variance into the exe-
cution time of a process between synchronization points. This holds for all phases of all programs we have analyzed,
even when resource contention is severe and causes relatively large delays during program execution. Furthermore,
the overall variance (due to both random delays and variations in processing requirements) is also extremely small in
all but one program that we measured.!

We explore in some detail the implications of these results for parallel program performance prediction models
as well as for more general stochastic models of parallel systems. One implication is that it appears possible to use a
deterministic model for parallel program performance prediction. We show the potential advantages of this approach
by comparing a simple deterministic model based on the above observations to some previous stochastic models
[9,10,15, 19,25] for one parallel program. A number of stochastic models have also been used to study more general
performance aspects of parallel systems [3, 5, 11-13,17-19,22,28]. Many of these models assume exponentially dis-
tributed task execution times to permit tractable solutions. Our work implies that it is important to determine if a result
of such a model is strongly dependent on the exponential task assumption; in particular, such a result will not be
applicable to many parallel programs. We give one example each of previous results that are and are not strongly
dependent on such an assumption. Finally, we briefly discuss an implication of our results for programmers of parallel
systems.

The renewal model of process behavior also predicts that process execution times in the presence of random
delays asymptotically approach a normal distribution. We show using direct measurements that, in many programs,
even relatively short execution intervals have distributions that are “close” to the normal, in a technical sense.

This paper is organized as follows. We define some key terms and concepts in Section 1.1 and review related
work in Section 1.2. In Section 2 we present the renewal model and its analysis for variance as well as for distribu-
tion of task time. In Section 3, we present the results of our measurements of parallel programs. In Section 4, we dis-
cuss the implications of these results for the issues mentioned above. Finally, Section 5 summarizes the results of the
paper, and suggests some interesting questions for future work.

1.1. Basic Terms and Concepts

Throughout this paper, we use the term task to denote a unit of allocation of work in a parallel program, and
process to denote the logical entity that executes tasks. (The latter is sometimes called a thread). As an example, in a
parallel loop with independent iterations and bounded by barrier synchronizations, the tasks would be the individual
iterations of the loop and each process would typically execute a large number of such tasks between the successive
barriers. By synchronization point we mean a partial or full barrier, i.e., a point in the execution of a process where it
potentially has to wait for one or more other processes to complete some part of their execution. For the model in this
paper, contention for software objects such as locks is a further source of random delays, rather than synchronization,

Finally, we emphasize that the focus of this work is the behavior of a parallel program (in particular, the vari-
ance and distribution of execution times) for a single input data set, rather than across different input sets. This is con-
sistent with our goal of understanding the influence of non-determinism on synchronization costs within a parallel
program.

1. The exception was a program that showed significantly higher execution times in some executions than in others, for the same input.




1.2. Related Work

To our knowledge, there has been no previous attempt to study the effect of random delays on the variance or
distribution of execution times. However, one previous paper focuses on estimating the mean and variance of the pro-
cessing requirements of tasks in the presence of data-dependent effects such as conditional branch probabilities and
loop frequencies [21]. In that work, Sarkar describes a framework for determining the mean and variance of program
execution times using frequency information from a counter-based execution profile of the program. His framework
for estimating these parameters of execution times has been implemented as part of the PTRAN project at IBM
Research [2]. However, he does not present any data from actual programs to show what parameter values occur in
practice.

Finally, stochastic models that allow general distributions of task-time have been applied using different
specific distributions, including the normal distribution. [6,8,10]. Dubois and Briggs [6] as well as Greenberg [8]
argued that a task could be asymptotically normally distributed because it is the sum of a large number of (non-
deterministic) instruction execution times. Our proof in Appendix A is essentially a formalization of this argument.

2. Renewal Model of the Effect of Random Delays

In this Section, we provide a framework for analyzing the variance and distribution of execution time attribut-
able to random delays. We first describe a model of process behavior, and the assumptions in our analysis. In Section
2.1, we derive exact and approximate expressions for the variance, and use the exact expression to validate the
approximation. We also use the approximate expression to study the variance for hypothetical values of the model
parameters. In Section 2.2, we use the same model to derive the asymptotic distribution of execution time.

We consider a program executing on a parallel system, and focus on an interval in the execution of one process.
In Section 3, we will apply the model to intervals between synchronization points, but the model and analysis in this
section apply to other intervals such as a single task execution as well. Let D denote the total CPU requirement of the
process in this interval, and let the random variable T denote the length of the interval, i.e., the total time to complete
this processing requirement. In general, the execution of the process in the interval consists of a sequence of alternat-
ing processing and delay sub-intervals, where each delay represents a sub-interval in which the process busy-waits or
is suspended (for example, for remote communication, access to a critical section, or other accesses to shared
resources). Denoting the number of intervals required to complete the total processing requirement (D) by R, the
lengths of successive processing sub-intervals by (P;, i 2 1} and the lengths of delay sub-intervals by (C;, i = 1} with
CEEZle C;, the total interval length is given by:

T=P1+C1+P2+C2+"‘+PR+CR+PR+1 (1)

We assume (1) that the 2xR random variables {P;:1<i<R} and {C;:1<i<R} are mutually independent, (2)
{P;:1<i<R} have common distribution F p, (3) {C;:1<i <R} have common distribution F ¢, and (4) that each of
these distributions has finite variance. In practice, in the presence of resource contention and non-stationary behavior
(such as a burst of cache misses as each new task begins execution) these assumptions may be violated. One goal of
the measurements in Section 3 is to validate the accuracy of the model results. Without these assumptions, the process
behavior becomes much more difficult to analyze, and the solution would require more complex (and less intuitive)
parameter values that would be difficult to measure for real programs.

For our further analysis of the model, we assume that D has zero variance, i.e., that D is constant for this pro-
gram interval. This assumption is made because the goal of this analysis is to study the variability due to random

delays alone. The random variable R and the sequence of processing times {P;:1<i<R+1} must satisfy Zf:l‘ P, =



D. Under these assumptions, denote the distribution, mean, variance and coefficient of variation of the total execution
time T by Fryp, Hrip, c%u, and CV7p, respectively.2 Since D is assumed to be constant, CVr p=0rp/lir)p =
Ocy /(D + licy). Thus, CVyyp is a measure of (normalized) variability in the execution time of the interval due to ran-
dom delays. This is the principal measure we will use to understand the influence of random delays on specific pro-
grams, when we apply the model to these programs in Section 3.

If the assumption that D is constant is true for a particular program interval, then CVyyp is the coefficient of
variation of execution time of that program interval. If the value of D can vary across different executions (for exam-
ple, if the instructions executed in a task depend on which tasks have previously been completed by other processes),
D itself can be influenced by the random delays experienced by this process as well as other processes of the program,.
However, if the variability of D is small relative to the average length of the interval, CV7p can still be used to give a
qualitative estimate of the impact of random delays. Thus, for such programs, it will be important to understand to
what extent the value of D for this interval can vary across different executions of the program.

2.1. Analysis of the Normalized Variance CVrp

The main goal of this section is to derive an expression for CVrp in terms of five input parameters: D, [ip, 63,
W and 6%, where the latter four terms denote the mean and variance of {P;:1<i<R} and the mean and variance of
{Ci:1<i<R} respectively. We first derive pirp and 6%)p in terms of |1 and 03, and then derive g and 62 in terms
of the other input parameters. Note that R is determined only by {P,}, ie., it is independent of {C;}. Hence, for
x2D, we can write the distribution of T, Fy;p(x) = P{T <x}, as

Frp()=P(R=0} + ¥, P(R=k)P {3/ C;<x-D}, x2D
k=1

=P{R=0} + 3 P{R=k}F c*")(x-D), x 2D
k=1

where F ") denotes the k-fold convolution of F. with itself, (Note Frp(x)=0, x<D.) On taking transforms, we
obtain:

Fp(s) = 3 P{R=k}e™* 7). @
k=0

k
Differentiating (2) and using E[T*] = (-1)"5;,‘— F110(5) =0 gives piyp and 6%,p in terms of g and o3:

Hrp =D + lg Yo (3a)
of1p =g OF + ic® o} (3b)
We now focus on evaluating |1 and 6%, to derive both exact and approximate expressions for iy, and 6%p.

2.1.1. Exact derivation for pyyp and o} p

The analysis of R is complicated by the dependence between {P;:1<i<R} and Pg,;. We can avoid this
difficulty by re-casting R as a function of a sequence of independent, identically distributed RVs {P;:1 < i < =},
each having the same distribution as each of {P;: 1<i<R}:

2. In general, we use jty, 6%, CVy and Fy to denote the mean, variance, coefficient of variation and distribution function of the random
variable X (CVy=0y/{1y). We denote the Laplace transform of (the distribution of) X as %.




R()=max {r20: /7P’ <t} C))

Then R, as defined earlier, has the same distribution as R(D), and Pg,y =D — Efg’)Pi. But (4) is just the definition of
a renewal process generated by {P;’: 1<i < oo}; specifically, R(¢) is the number of renewals by time ¢ [27].
The following expressions for pg(¢) = E[R(r)] and its ordinary Laplace transform are well-known [27];

Hr(6) = Fp(1) + U (1)*F p(0),

Fe(s) /s

Lpp () = -5 (5)

The corresponding expressions for (g (f) = E[R2(¢)] and its Laplace transform are also not difficult to derive 271

t
M (1) = MR () + 2 [ e(t—x)diig (x), £ 20
0

(1+ F(s)) Fo(s) /s
(1-%(s))?

where L(1g()) and L(ug(¢)) denote the ordinary Laplace transforms of pg(¢) and pga(¢) respectively, and # denotes
the convolution operator. (5) and (6) together allow us to compute pz(D) and 62(D) for a particular distribution
F p(t), but this generally requires numerical inversion of the Laplace transforms. A more practical application of (5)
and (6) is to validate simpler approximations for jz and 63, which we derive next.

Ll (1)) = (6)

2.1.2. Approximate expressions for |iyp and 6%,p

Estimates for [Lg(¢) and 6%(¢) are given in the Central Limit Theorem for renewal processes [27], which states
that as ¢ — oo, R(f) is asymptotically normal with mean® ¢/j1p and variance 63 / pp3. Therefore, we estimate o3 by
Do? / pp® = (D/pp)CV3. Using these estimates for Uk and o} in (3) gives us our final approximate expressions for
the mean and variance of T:

He D
Mrp =D (1+ T ), Ghp= T pe? (CV% +CV3), (7a)

1 He
CVqip = \CVZ + CV2 7b
b D /up Hc+Hp ¢ F (75)

The key terms in this expression for CVyp include the average number of sub-intervals D /pp=|1z, the average frac-

tion of time the process is delayed pc/(lic+ip), and a term representing the variability of the individual processing
and delay sub-intervals.

ie,

The above expressions for pryp and G%l p are only asymptotically exact, but they can be compared at finite D
against exact values calculated using (5) and (6), for specific distributions F p, and sf)eciﬁc values of Wp, ¢, CVp and
CV¢. We do so in Figure 2.1 using gamma and 2-stage hyperexponential distributions for F p, for pe/pp = 1, CV¢ =
2.0 and for a range of values of CVp. The figure shows that for lc/tp = 1, the error in the approximation is poten-
tially significant when D/up < 40 and CVp or CV¢ > 4, but is likely to be acceptably low otherwise. The error
- increases when [i-/p increases (not shown), and pc = pp is conservative relative to measured parameter values in
Section 3.

3. In fact, this expression for the mean is exact for all 1 > 0 if, and only if, the first interval P, has distribution equal to the distribution of
residual life of P;,i 2 2. For example, this holds automatically for the exponential distribution.



a 10 g 10
8 8
E's f 6
r 4 CVp = r 4 CVp=
0 2 0.2,0.5 o 2 0.2,0.5
2 i.g 5 /”’ 2.0,4.0
-4 . 4
-6 -6
-8 -8
'100 /40 80 120 160 200 ‘100 40 80 120 160 200
Diup Dipp
(a) F p: Gamma Distribution (i1p = 0.5)
g 10 9 10
E 8 g 8
T 6 " 6
T 4 . r 4 CVP=
0 2 CVe = ° 2 2.0
T 0 2.0 0
4.0 40
2 -2
4 4
-6 6
-8 -8
-10 7= 10—
0 40 80 120 160 200 0 40 80 120 160 200
Diup Dipp

(b) F p: Hyper-Exponential Distribution (1, = 0.5, p; =0.9)

Figure 2.1. Relative error in the approximations for
Mean pyp (left) and Variance o3 p (right)

He =Hp, CVc=2.0

2.1.3. Quantifying the Variance due to Random Delays

A key observation from (7) is that CVyp decreases as 1/\/[1; = 1/\]57[1;' . Thus, for intervals containing a very
large number of delays, we expect the total delay time to have very little overall variability relative to 7. (Intuitively,
the individual fluctuations of a large number of delay times will tend to cancel each other out in the long run.) We can
use (7) to quantify how large D/pp must be for this observation to hold, for various
values of the other parameters. In Figure 2.2, we again set i = Hp and show CVqyp for a wide range of CVp and
CV¢. (Note that CVp and CV, are interchangeable as far as their influence on CVrp is concerned.) The graphs show
that CVrp can be high (>0.5) when CV, or CV¢ is very high (=10) and the interval contains 100 or fewer delays.
For intervals with 1000 or more delays, however, CVrp is low even when CVp and CV are as large as 10 and pic =
Wp. Furthermore, when CVp and CV are close to 1, even intervals containing as few as 50 delays have very low
CVyp.
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The above arguments are inconclusive about whether random delays cause significant variability in actual pro-
grams, since it is unknown what values of the model parameters occur in practice. One goal of the measurements
presented in Section 3 is to obtain these parameter values for real programs, and show where in the parameter space
typical programs can be expected to lie.

2.2, Asymptotic Analysis of the Distribution Fr|p

We were able to obtain explicit expressions for pr(p and 6%p in terms of the Laplace transforms of 15 and 3.
Obtaining general expressions for the distribution of T is difficult. We can, however, derive the form of the distribu-
tion in the special case when D is large. In that case, we show in Appendix A that it is possible to apply the version of
the Central Limit Theorem for cumulative (regenerative) processes [27] to prove:

T(D) = Normal(u(D),o(D)) as D~ o,

D Do% 2Da?
ullc , Gz(D)= C + He P
P

np? ®

KWD)=D+

where = denotes convergence in distribution.

Two points are worth noting here. First, the mean, (D), and variance, o%(D) are the same as Wrip and CVqp
calculated in (7) using the estimate for |1z and 0% . Second, there is an important difference between the estimates for
g and o} and the asymptotic normal distribution of T calculated in (8): the convergence in (8) depends on o2,
whereas the estimates of yp and qﬁ did not. Thus, high variance of communication delays could make a moderately
large task look different from normal, but the estimate for iz and 0%, and hence the estimate in (7) for Urp and c”ﬁ D>
could still be accurate. '



Table 3.1. Applications used for the Measurement Experiments.

Name Application Phase Structure Dominant Phases Input Data
MP3D Hypersonic flow Five phases with Move : more than Small: 5000 molecules
simulation intervening barriers 90% of total work Large: 20000 molecules
Locus Standard cell Two iterations, parallel - Small: bnrE
wire routing loop per iteration
Water Water molecule One large, several small Inter-molecular Small: 64 mols
simulation phases; intervening barriers | force evaluation: Large: 343 mols
(in each iteration) almost all the work.
Barnes Gravitational One large, several Force computation: | Small: 1024 bodies
N-body simulation small phases 90% of total work Large: 8192 bodies
Bicon Graph More than 50 phases; - Large: 4096 nodes,
Biconnectivity intervening barriers 16384 edges
Hydro Microhydrodynamics: N parallel loops - Toy: 2 particles
particle motion (N = no. of particles) Small: 8 particles
in viscous fluids
PSIM Multistage net- Single parallel - Small: 1024 node network
work simulation phase per iteration Large: 4096 node network

3. Applications of the Model

In this section, we address the questions raised in Section 2, using data obtained from measurements of parallel
programs. We begin with a description of the applications and measurement methodology in Section 3.1. In Section
3.2, we apply the renewal model to study the impact of random delays on these programs, by using the data to show
where in the parameter space of the model these programs lie. In Section 3.3, we examine whether the assumptions of
the model introduce significant errors into the qualitative conclusions obtained. While addressing this question, we
measure the overall variance in process execution times, due to both random delays and variation in processing
requirements. This also allows us to comment on the total variance found in practice. Finally, in Section 3.4 we exam-
ine whether real programs exhibit normally distributed process execution times in practice,

3.1. Applications and Measurement Methodology

We measured a variety of applications on a 20-processor Sequent Symmetry S-81, as well as a few shared-
memory applications running on the Thinking Machines CM-5. Table 3.1 gives a brief overview of the applications
and inputs (Small and Large are mainly labels we will use for convenience. The Large input size is a somewhat more
realistic data set than the Small size). Four of the applications (MP3D, Locus Route, Water and Bames) are from
the Splash suite, which was developed to provide a realistic set of parallel applications for performance evaluation of
parallel systems [23]. The other three are also real applications in the sense that they were written to solve computa-
tionally intensive problems of interest to their authors. Hydro is a parallel simulation of particle motion in viscous
fluids, with efficient communication. [7]. PSIM was developed at Lawrence Livermore Laboratories to simulate the
indirect binary n-cube memory server network in a large parallel vector-processing environment [4]. Bicon is an
implementation of a parallel algorithm to find the biconnected components of large graphs [24].

We measured each of the programs running stand-alone, allowing us to characterize the non-determinism
intrinsic in the program. This is important because parallel system models (such as those for parallel program perfor-
mance prediction or for analysis of scheduling policies) require parameters that characterize the intrinsic behavior of
the program as input. It is also worth noting that intrinsic random delays are the key unknown for determining syn-
chronization costs in multiprogrammed systems where the processes of an application are (essentially always) co-




scheduled. The intrinsic random delays in the applications of Table 3.1 are communication delays due to remote
memory accesses. In particular, page faults and lock contention did not cause significant delays in these programs.

For each application, we focused on one to three phases of the program, where a phase is bounded by barrier
synchronizations, and has no intervening synchronization points. We measured one process in each phase, and the
interval length T corresponds to the execution time of the measured process between the corresponding barriers. D is
the total processing in that interval, and the delay sub-intervals {c;} are the remote communication delays. Some
experiments require repeated measurements of a particular phase; exactly the same input data set is used for each such
measurement, as explained in Section 1.1.

3.2. Measurements for Evaluating Execution Time Variance

Before presenting the results for the evaluation of variance due to random delays, it is important to note that
CVr,p (the measure of interest) will be estimated for a program phase from a single execution of the program. As dis-
cussed in Section 2, for program phases in which the processing requirement (D) does not vary across different runs,
CV%yp is the normalized variance in execution time of the interval, due to random delays. For phases in which D
varies across runs but the variability in D is small relative to the average length of the interval (see Section 3.3),
CVr)p should still give a qualitative estimate of the influence of random delays on the variance of execution time.

3.2.1. Measurements on the Sequent Symmetry

Shared-memory on the Sequent Symmetry is supported by an invalidation-based snooping cache protocol, and
the communication delays are due to three types of remote requests (read-shared, read-invalidate and invalidate).
The measurements were made using non-intrusive hardware probes to record the relevant bus events.* The various
parameter values were subsequently derived from the stored traces.

Table 3.2 gives the measured parameter values, as well as the model results (urp and CVyyp), for each of the
application phases executing on 16 processors on the Sequent. Values for pp and yi- are given in units of bus cycles
(equal to 0.1 microseconds), and for D and [z p in units of 1000 bus cycles (100 microseconds). The applications are
listed in generally increasing order of processing demand D, although the demand varies from phase to phase in each
application. In addition to the five basic input parameters, we also give the values of R = D/, (the measured number
of random delays) and U/ (Uc+Hp).

Before interpreting the results obtained, two points are worth noting about the measured parameters in Table
3.2. First, the values fall in the region of the parameter space where the approximate solution of the renewal model is
expected to be accurate (Figure 2.1). Second, the measured application phases vary widely in terms of all five input
parameters, as well as the number of random delays (D /pp) and communication overhead (e /(Uc+p)). In particu-
lar, the total processing demand (D) varies by more than 4 orders of magnitude (from 770 microseconds for the
Res—Move phase of MP3D to more than 33 seconds for Hydro), the number of random delays varies (somewhat in
proportion to D) from 33 to 72707, CVp and CV, are as high as 4.35 and 1.68, respectively, and communication
overhead is as high as 0.24 (Bicon). Thus, the measured applications have widely varying behavior, and communica-
tion requests experience significant variability.

The most striking observation from the table is that in every one of these application phases, the predicted vari-
ability of execution time due to random delays (CV7,p) is extremely low. The highest estimated CVrp on this system
is 0.022 (for the Res-Move phase of MP3D) and this was obtained with a much smaller input size than expected in

4. A Tektronix DAS 9200 Logic Analyzer was used for this purpose.



Table 3.2. Measurements of Renewal Model Parameters: Sequent Symmetry.

Application Measured Parameter Values Model Results
Program Phase Input D (XIOB) e He CVP CVC R= 'IL He Hrip (X].OB) CV'”D
Hp | Hptlc
MP3D  Res-Move | Small N 2369 | 12.00 | 2.00 | 1.68 33 0.05 8.0 | 0.0221
Res-Coll Small 11.7 182.0 990 | 1.38 | 130 64 0.05 124 | 0.0122
Move Small 608.2 410.1 | 14.6 1.03 | 0.80 1483 0.03 629.8 | 0.0012
Res-Move | Large 263 3165 | 11.60 | 134 | 149 83 0.04 27.2 | 0.0078
Res-Coll Large 33.7 267.8 | 1130 | 1.13 | 1.26 126 0.04 35.1 | 0.0061
Move Large 2396.7 349.0 | 129 1.06 | 043 6867 0.04 2485.1 | 0.0005
PSIM - Small 325.5 762 | 111 0.86 | 0.50 4272 0.13 372.8 | 0.0019
- Large 1507.9 668 | 10.8 074 | 044 22573 0.14 1752.2 | 0.0008
Bicon Connl Large 191.7 1475 | 235 223 | 0.79 1300 0.14 222.3 | 0.0090
Lowhigh Large 279.9 2174 8.7 1.15 | 051 1287 0.04 291.1 | 0.0014
Tour Large 3785.2 72.7 | 234 4.82 | 0.67 52066 0.24 5003.54 | 0.0053
Locus Im.2 Small 2159.8 2314 | 10.60 | 3.58 | 0.53 9334 0.04 2258.9 | 0.0016
Im. 1 Small 2904.1 1379 | 1470 | 4.02 | 0.80 21059 0.10 3214.1 | 0.0027
Water  Inter-mol | Small 4203.0 | 1584.8 9.9 3.71 | 0.36 2652 0.006 4229.1 | 0.0004
Inter-mol | Large || 122667.6 | 37675 | 1050 | 2.55 | 0.34 32559 0.003 123009.4 | 0.0000
Barnes Force Small 16577.9 | 4781.6 8.0 242 | 034 3467 0.002 16605.6 | 0.0001
Force Large || 223443.5 | 3073.2 7.6 222 1 026 72707 0.002 223995.2 | 0.0000
Hydro  Nucleus Toy 102967.3 | 9662.8 8.5 435 | 036 10656 0.001 103057.8 | 0.0000
Nucleus Small j| 336718.3 | 67359 8.0 273 | 033 49989 0.001 337120.0 | 0.0000

practice [23]. To analyze these results further, we compare the measured parameters against regions of the parameter
space in Figure 2.2 (recalling that Figure 2.2 is pessimistic for communication overhead less than or equal to 0.24). In
all but a few of the cases D/ip > 1000 and, as shown in Figure 2.2, this alone explains why the predicted CVyyp is
extremely low for those cases. Thus, D/, has a dominant role in determining CVyp in most cases on this system.
In the few cases where D /|1, is on the order of 100 or less (and in many other cases in the Table), CVp and CV, are
both less than 2. Thus, again, CVyp is extremely low. In fact, for the worst case combination of parameter values
across all the measured application phases (D/pp = 33, peo/(UcHp) = 0.24, CVp = 4.82 and CV, = 1.68), the
renewal model predicts that CVyp would be 0.21, which is still low.

We next consider how these parameter values could change for applications on highly parallel shared-memory
systems. First, the range of D /i seen here (more than 4 orders of magnitude) could be representative of larger sys-
tems as well. Large values of D/, are still likely to occur due to scaling up problerri sizes, yet the fraction of applica-
tions that have small D /pp could also increase if finer granularity of synchronization is supported efficiently in future
systems, or if applications can use new primitives to completely overlap a significant fraction of communication
events with computation. In applications for which D /pp is as large as in most cases seen here, CVyp should con-
tinue to be low, because the effect of pe/(Ue+pp), CVp and CV would have to be one to two orders of magnitude
higher than observed here to yield even CVyp = 0.1. In applications where D /pp is significantly lower, increases in
He/(Ue+iLp), CVp or CV are important to consider. It is not clear how these parameters would extrapolate to other
applications and systems. efficiency considerations alone dictate that pc/(jtc+Huip) will generally be less than about
0.5 (i.e., 50% efﬁciency).5 CVp arises due to the non-uniform intervals between cache misses and there do not appear

5. On multithreaded processors, however, fe/(ic+}tp) could be somewhat higher and still allow reasonable efficiencies.
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Table 3.3. Measurements of Renewal Model Parameters: Sequent Symmetry with Bus Load.

Application Measured Parameter Values Model Resuits
Program Phase | Input | D (10" | mr | Mo | CVe | CVe | R=-- e |l x10°) | CVapp
Be | Hetlc
MP3D Res-Move | Small 263 | 3157 | 45.80 | 1.66 | 0.75 83 0.13 30.1 | 0.0253
Move Small 2342.0 | 4087 | 5940 | 099 | 0.67 5730 0.13 2682.6 | 0.0020
PSIM - Small 13039 | 719 | 461 0.76 | 0.82 18134 0.39 2139.8 | 0.0032
Bicon Connl Small 162.8 89.7 | 49.80 | 1.84 | 0.70 1815 0.36 2532 | 0.0165
Tour Small 6443.5 81.1 | 541 094 | 0.68 79451 0.40 10741.8 | 0.0016

to be reasons to believe that this will be significantly different in future systems. We next discuss two further experi-
ments that were designed with the goal of producing higher values of CV¢ and ¢/ (UcHUp), which could exist in
future parallel systems. In any case, the model demonstrates the need to obtain these parameter values, and provides a
framework for estimating the influence of these parameters as future systems become available.

3.2.2. Measurements on the Sequent with External Bus Load

For this experiment, we wrote an artificial parallel program to increase the bus contention. All tasks of the
“bus-loading” program repeatedly read and write a fixed memory location causing that cache line to bounce from
cache to cache. We repeated the measurements with MP3D, PSIM or Bicon running on 4 processors, and the bus
loading program on 14 other processors. (We used the smaller input size in each case, which gives approximately the
same total work per process per phase as the larger input on 16 processors). The results for these measurements are
given in Table 3.3. Comparing with the numbers in Table 3.2, we see that i /(Mc+p) is much higher, yet CV is not
significantly different despite the increased contention. Thus, the highest estimated value of CVyp seen here is still
only 0.025.

3.2.3. Measurements on the CM-5

We were also able to measure two of the above programs on a 32-processor Thinking Machines CM-5, a sys-
tem that is scalable to much larger numbers of processors. Since the CM-5 does not support shared memory, we used
the Wisconsin Windtunnel [20] to simulate the execution of the shared-memory applications. In this simulator, the
application program executes at full hardware speed on the processing nodes of the CM-5, but traps into software on
memory references to cache blocks that would not be in the target machine’s cache, Explicit messages are used to
obtain remote cache blocks. As on the Sequent, the delays for remote communication were the delay intervals,
{C;:1<i<R}. Since every remote communication event causes a trap into the software handler on the local node,
the measurements are done in software. In measuring the processing intervals, we ensured that the time to service
remote memory requests (i.e. interrupts) from other nodes was excluded. Other than these interrupts the application
runs at full hardware speed between traps; hence the measured processing intervals are realistic values for these appli-
cations. The software overhead required to service the traps could not be fully eliminated and therefore the measured
communication costs are higher than on large-scale parallel systems of the future. These measurements serve (o test
our conclusions under high communication overhead.

We ran the simulator with a 64 kilobyte, 4-way set associative cache per node, and a full-directory non-
broadcast invalidate cache coherence protocol [1]. One might expect CV¢ to be high on this system because some
but not all remote requests have to be forwarded from the directory to a third node that will supply the updated copy
of the block, and there could be significant queueing delays for the trap handlers on the nodes.
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Table 3.4. Measurements of Renewal Model Parameters: CM-5 + Wisconsin Windtunnel.

Application Measured Parameter Values Model Results
Program Phase Input || D(ms) | mp(us) | pes) | CVp | Ve | R=2 | 2 |l o) | CVapo
He | Hetlc
MP3D Move Small 44.82 49.3 15515 | 6.18 | 0.88 909 0.969 1454.86 | 0.2006
Move Large 147.84 42.0 |.15085 | 3.68 | 0.76 3520 | 0.973 5451.10 | 0.0617
Water Inter-mol | Small 2538 | 564.0 7948 | 412 | 1.75 450 0.585 611.5 | 0.1234
Inter-mol | Large(512) || 6729.27 | 376.8 7719 | 326 | 050 17859 0.672 || 20514.63 | 0.0166

The data for MP3D and Water are given in Table 3.4. The communication overhead for Water is high (as
expected) but probably only slightly higher than is likely in communication-bound applications on future parallel sys-
tems. In MP3D however, the overhead is extremely high, primarily because of very frequent remote communication.
In practice, applications may have to restructured for less frequent communication, and MP3D can be considered an
extreme case to test the conclusions of the model. Despite the high overhead, CV is not significantly higher than in
the previous experiments for either program, and CVy is still only 0.2 or less. Unless much higher CV, is observed
when more of the communication is implemented in hardware, it seems plausible that even in such systems communi-
cation costs will not introduce significant variability in execution times.

3.3. Measurements of CVy (and CVyp)

The measurements we present in this subsection have two goals. First, we estimate CVy, i.e, the variability in T
due to all sources, using direct measurements of a set of the application phases, to see how much overall variability
occurs in practice. Second, we use these measurements of CVy (1) to qualitatively validate the values of CVrip
predicted by the renewal model in cases where this is possible, and (2) to compare the relative influence of variability
in processing requirement D and variability in total delay Cy in cases where this is relevant.

Table 3.5 gives values of CVy measured in software for several application phases on the Sequent Symmetry
(estimated using samples of T from 100 to 300 runs of each phase).6 The predicted values of CVrp for these phases
are repeated from Tables 3.2 and 3.3 to aid in the comparisons below. The measured values of CVr show that in all
but one of these programs, the overall variability due to processing requirements as well as communication delays is
very low (less than 0.05), and it is also fairly low in the exceptional case of Locus Route.

For several of the measured phases (i.e, those in MP3D, Water and Barnes), D is fixed for different runs on the
same input. In these cases, CVy should be equal to CVrp, thus the measured CVy can be directly used to validate the
predicted values of CVyyp. In each of these cases, the measured and predicted values agree within the expected accu-
racy of the software measurements. For the remaining cases in the table, the measured CVr provides an (approximate)
upper bound on CVr|p. Thus, in all cases except Locus Route the measured values of CV7 directly indicate that the
very low variability predicted by the renewal model is qualitatively correct.

Bicon, Locus Route and PSIM each have variability in D due to the nature of the computational algorithm,
(For example in Locus Route, a process repeatedly computes the route for the next wire in a work queue, where the
time to compute the route depends on which wires have previously been routed. Variability in the initial task assign-
ments as well as in the individual task execution times due to random delays will cause D to vary across different

6. A higher degree of accuracy in the measured CV; could be obtained with increased effort by increasing the number of samples and/or
by using hardware measurement probes. The increased accuracy is not needed here.
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Figure 3.5. Measured Total CV;, and Predicted CVr, ,,’f

Program Phase Input | Measured | Predicted
MP3D  Move Small 0.0076 0.0020
MP3D Move Large 0.0058 0.0005
PSIM - Smail 0.0335 0.0019
PSIM - Large 0.0098 0.0008
Bicon Connl Large 0.0108 0.009
Bicon  Tour Large 0.0345 0.0053
Bicon  Lowhigh | Large 0.0404 0.0014
Locus Im.2 Small 0.0882 0.0016
Locus Itn.l Small 0.1396 0.0027
Water  Inter-mol | Small 0.0006 0.0004
Barnes Force Small 0.0008 0.0001
Barnes Force Large 0.0005 0.0000

+ First case is for MP3D running on 4 processors, with bus load from 14 processors. All others are on 16 processors,
with no external load.

runs.) In these cases, the values of CVy and CVrp (assuming these are approximately accurate) suggest that the vari-
ability in D dominates that in the total delay (but is still low). In the case of Bicon, we were able to obtain further evi-
dence for this conjecture, using the following calculation for the Lowhigh phase. Each task execution time in this
phase is determined by a measure of a node in the graph that appears to vary quite randomly for each task across dif-
ferent runs. Furthermore, the measured variance of execution times of all tasks of the phase in a single run on one pro-
cessor agreed very closely with the measured variance of a subset of the tasks that would have been assigned to the
measured process during a parallel run. We thus hypothesized that the meas- ured variance in task times on a single
processor is a good estimate of the variance in task processing requirements across different parallel runs, for the
tasks assigned to the process. Using this to calculate the component of CV? due to variations in D, we obtained a
value of (0.042)2. Thus, this value added to CV%,,, agrees quite closely with the measured value of CV%.

3.4. Measurements of Execution Time Distribution

In Section 2.2, we showed that the distribution of execution time in an interval asymptotically approaches a nor-
mal distribution, when the non-determinism is due to random delays. Since this is an asymptotic result and since there
are other sources of non-determinism, it is important to determine if real program phases show normally distributed
execution times. This can be done using the measured samples of running times used in Section 3.3. Here, the sam-
ples are used to construct an empirical distribution which is an estimate for the unknown parent distribution. Further-
more, the mean |1 and variance o> of the samples can be used to construct a Normal distribution, and thus the shape of
the estimated parent can be directly compared to a Normal for each phase. In addition, the Kolmogorov-Smirnov
statistic can be constructed from the measured samples and used to derive a confidence band for the actual parent dis-
tribution [26]. This gives an error bound between the estimated and actual parent distribution at a certain level of
confidence.

The empirical distribution calculated using 300 samples, the upper and lower ends of the 95% confidence band,
and the predicted Normal distribution, are shown in Figure 3.1(a) for the Connl phase of Bicon. We see that the
empirical distribution very closely tracks the normal distribution. The corresponding curves are given for the Lowhigh
phase in Figure 3.1(b), and although we believe the variations in task execution times are the dominant cause of vari-
ance in this case, we again see that the empirical distribution closely tracks the normal. In fact, this is not surprising
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Figure 3.1. Comparing Measured Execution Time Distributions and
Predicted Normal for Various Program Phases

because the measured process executes 256 individual statistically identical tasks, and thus the sum of the processing
requirements itself has converged to a normal distribution. The width of the confidence bands is +0.076 in both cases.
The same data (from 80 and 100 samples) are shown in Figure 3.1(c) for the Move phase of MP3D executing on 16
processors with an input size of 20000 particles, and in Figure 3.1(d) for MP3D executing on 4 processors with input
size of 5000 particles, but with the external bus loading program executing on 14 processors in the latter case. In both
cases, the distribution is very close to normal.

Finally, the curves for the two iterations of Locus Route are shown in Figure 3.1(e,f). The empirical distribu-
tions (calculated using 100 samples each) are different from the corresponding (predicted) normal distribution in each
case, particularly for Iteration 1 which clearly shows a trimodal form. The processing demands of a task in this pro-
gram can be affected by which tasks have been completed previously (and thus even by the order of previous comple-
tions), and in a few runs the execution times of the iterations are significantly higher than in most other runs. The vari-
ability in communication delay, which would otherwise yield normally distributed execution times, is much smaller
than this variability in processing demand.
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4. Implications of the results

The data presented in Section 3 strongly indicate that the principal effect of communication delays in shared-
memory parallel programs is to increase the mean completion time of a process in a phase, and not the variance, even
under conditions of high communication costs and contention. Furthermore, the data indicate that the overall variance
of execution time between synchronization points due to both communication delays and processing requirements is
also extremely small in many programs. In this Section, we use examples to demonstrate the implications of the above
results for parallel program performance prediction, as well as for other performance models of parallel systems. We
also briefly touch upon the implications of the above results for parallel programming, as well as the implications of
the results presented in Section 3.4 that moderately large processes in many programs have normally distributed task
execution times.

4.1. Implications for Parallel Program Performance Prediction Models

A fundamental step in parallel program performance prediction is to estimate the mean waiting time experi-
enced by processes at synchronization points. Calculating synchronization delays in a model based on non-
deterministic task times is, however, extremely difficult. Thus, stochastic models that apply to any but the simplest
program structures have had to assume exponentially distributed task execution times for tractability, and yet require
extremely complex solution heuristics [9, 151 or Markov chains with exponentially growing state space sizes [16, 25].
The results of our work indicate that models that assume exponentially distributed task execution times may seriously
overestimate the waiting time for many programs. The renewal model shows that it is possible for very small tasks to
experience significant variance in execution time due to random delays. In such cases the assumption of exponen-
tially distributed task times could be accurate. The data in Section 3 show, however, that such tasks have to be
extremely small; for example, even tasks of a few hundred instructions may not match the exponential task assump-
tion. Thus, for an analytical model to be accurate for many programs, it should be able to represent tasks with low or
extremely low variance. To date, stochastic models with this capability have been restricted to programs with very
simple task graphs and require further simplifying assumptions such as i.i.d. (independent, identically distributed)
tasks within each parallel phase [10, 14].

The results of Section 3 suggest a different and potentially simple approach to this problem. Specifically, those
results indicate that ignoring the variability in task times when evaluating the waiting time at synchronization points
could give accurate results in many programs. With this assumption, estimating synchronization delays should be
relatively simple for a large class of programs, once the mean execution times of the tasks (including mean communi-
cation and other delays) are known.

To further evaluate these implications, we present some preliminary data comparing the results obtained from
three performance models for the MP3D application on the Sequent Symmetry. The first two models are specific
instances of the Kruskal and Weiss model [10]. This model is restricted to programé with alternating serial and paral-
lel phases where each parallel phase consists of i.i.d. tasks, but allows any continuous distribution of task execution
time with coefficient of variation less than or equal to 1. In the first case, we apply this model assuming exponentially
distributed task execution times. Note that any errors introduced by this assumption will be found in the other models
that assume exponentially distributed task times as well [9,15,16,19,25]. Henceforth, we refer to this as the
Exponential Task model. In the second case, we apply the Kruskal and Weiss model using the true variance of task
times (actually, estimates of the variance obtained as explained below). The third model is a simple deterministic
model as suggested above.

The parameter values for these models were derived as follows. The individual task processing requirements
were measured in software with the program executing stand-alone on a single processor (to eliminate contention
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Table 4.1. Results of Performance Prediction Models for MP3D.

Input Procs || Measured || Exponential Model Actual Variance Model Deterministic Model
Size Time (sec) Prediction | %Ermror Prediction YoError Prediction | %Error
5000 1 0.998 1.015 1.722 1.015 1.722 1.017 1.926
particles 2 0.508 0.551 8.584 0512 0.793 0514 1.126
4 0.258 0317 22.501 0.260 0.738 0.260 0.527

8 0.134 0.193 44218 0.133 -0.505 0.133 -0.483

12 0.093 0.150 61.239 0.091 -1.948 0.092 -1.606

16 0.073 0.126 71.762 0.069 -5.859 0.069 -6.264

20000 1 3.891 4.009 3.039 4.009 3.039 4.005 2924
particles 2 1.980 2.089 5.468 2.011 1.570 2.007 1.336
4 1.002 1.123 12.019 1.014 1.105 1.009 0.688

8 0.509 0.631 23.938 0514 1.017 0510 0.173

12 0.345 0.462 33.770 0.348 0.642 0.342 -0.940

16 0.267 0374 39.844 0.263 -1.675 0.258 -3.601

effects). The mean communication cost for each phase on P processors was estimated using a simple M/M/1//P model
for the bus. For each phase, the request rate used for all values of P was the mean request rate 1/, measured with
the program running on 16 processors (the values given in Table 3.2). Although this introduces some error in the
predicted remote memory response times when P<16, it should affect all models approximately equally. We assumed
there was no queueing for the caches or memory. The only other data required are the actual variance of task execu-
tion times, for the second Kruskal and Weiss model alone. Since the model assumes i.i.d. tasks per phase, the (small)
variations in processing requirements across the different tasks in a phase were incorporated as one component of the
variance. This was added to the variance of communication delays in each task, estimated using the analytical model
in Section 2 and using the parameter values presented in Section 3.2 (except that D now corresponds to the average
processing requirement of the individual tasks rather than the total for the entire phase). It is worth noting that, to the
best of our knowledge, this is the first application of the Kruskal and Weiss model for a real program, and the renewal
model for the variance due to random delays was crucial in making this possible.

The measured running times of the program for 5000 and 20000 particles (averaged across 40 runs in each
case), the corresponding running times predicted by the three models, and the percentage error in these predictions are
given in Table 4.1. The exponential task model is pessimistic for even small values of P: as expected, it greatly
overestimates the synchronization cost at each barrier. The error is appreciably lower (but still quite large) in the case
of the larger input size because there are many more tasks per phase, which mitigates the influence of the exponential
task assumption to a greater extent. (For example, the dominant Move phase has 317 and 1,274 tasks for the small and
large input sizes respectively.) The Kruskal-Weiss model using the actual variance of task times is extremely accurate
since the program fits the assumptions of the model well and the model accurately accounts for all the significant fac-
tors (the mean and variance of task processing times, as well as the mean and variance of communication delays). The
Deterministic model is almost as accurate in all cases even though it ignores the variance due to communication. Both
these models have errors of only 1% to 3% in all but one case (which showed about 6% error).7

7. One might expect the predicted execution times on 1 processor to be almost exactly equal to the measured value. However, the meas-
ured total running times given in the table are averages across 40 runs, whereas the individual task processing times used by the models are
obtained from a single measurement run. This introduces a small discrepancy.
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Although this is only one application on one system, it serves to demonstrate the potential significance of the
result that execution time variance may be very low for many programs. The deterministic model has the advantage
that it does not require the variance due to communication delays, which is much more difficult to estimate than the
mean delay alone. It also has the potential advantage that it might more easily be extended to more general task
graphs than the Kruskal and Weiss model. A more complete evaluation of the deterministic approach for performance
prediction is a subject of further study.

4.2. Implications for General Parallel Processing Models

A number of stochastic models have also been used to study various aspects of parallel systems [3,5,11-
13,17-19,22,28]. In many cases, the goal of these models is a qualitative comparison of design alternatives based on
quantitative performance estimates (for example, models used to compare scheduling policies). Many of these models
assume exponentially distributed task or process execution times to permit tractable analysis. Our results show that it
is important to determine by informal reasoning or formal validation how the model results depend on the exponential
assumption. If a result would be significantly weaker, or even different, for programs that have much lower task time
variance, it may not apply to many parallel programs.

One result that is not strongly dependent on the distribution assumption is as follows. Nelson et al [17] showed
that in an environment containing mixed sequential (interactive) and large parallel (batch) jobs, an unpartitioned sys-
tem yields better performance than one in which processors are statically partitioned among the two classes. They
assumed that the parallel jobs consisted of tasks with exponentially distributed execution times. But, in fact, Setia and
Tripathi [22] showed that the same conclusion holds with a completely different assumption about task times.
Specifically, they assumed that each job consisted of tasks of equal size, while the total execution time of the jobs on
any fixed number of processors was assumed to be exponentially distributed.

In contrast, one result that is significant for exponentially distributed tasks but weaker for tasks with lower vari-
ance is Nelson’s result [19] that higher variance of parallelism can yield lower response times, when queueing effects
are small. He considers a parallel processing system with P processors and an arrival stream of parallel jobs, where an
arriving job splits into n tasks with probability B,, 1 < n < Np,,. Each task has exponentially distributed processing
requirement with unit mean. He compares two types of jobs, one with higher variance of parallelism than the other,
and shows that the jobs with higher variance have significantly lower response times when queueing effects are negli-
gible. This result arises because the completion time of n tasks on P processors is a concave increasing function of n.
(For example, for exponentially distributed task times with mean 1/W, and for n € P, it is given by (1/p) E:::’l'lli.)
Although this result holds for any concave task time distribution, it is weaker when the curve grows more slowly as a
function of n, such as for distributions with lower variability. To show the effect of the choice of distribution, consider
the two systems (A and B) that were compared in [19], each with 8 processors but different distributions of parallel-
ism (B;) as given in Figure 4.1. Both systems have mean parallelism of 2.4, but A has a higher variance of parallelism
than B. If each task has exponentially distributed execution time, the ratio of the mean response times of A and B is
about 0.82 (i.e., A has 18% lower response time). Now consider the same two systems, but assume task execution
times are normally distributed with unit mean and variance o2. In Figure 4.1, we plot the ratio of average response
times of A and B for a range of values of CV = . The ratio is close to 1 for low variance and approaches approxi-
mately 0.82 as & gets close to 1. We repeat this comparison for another pair of systems, C and D, with 32 processors
each, and C having a higher variance of parallelism. The performance ratio of C to D is about 0.75 with exponentially
distributed task times, but it is again close to 1 for low o. Thus, jobs with higher variance of parallelism do show
lower response times, but the effect is significant only when the variance of task execution time is high.
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Figure 4.1. Comparing predictions from Exponential and Normal Distributions.

The above example is intended only to emphasize that it is important to evaluate the effects of distribution
assumptions on the results of a model, as we stated earlier. If a result is dependent on a task time distribution with
high variance, our findings show that it may not apply to many parallel programs.

4.3. Implications for Programmers

Load balancing is an important aspect of the design of efficient parallel programs. In particular, programmers
have to choose between static and dynamic load balancing for probably every parallel program. Static load balancing
is an attractive choice because it is simpler to implement and debug. In most systems today, static scheduling per-
forms well if the computation load is evenly balanced. In future systems with much higher communication costs rela-
tive to computational speed, static scheduling would not perform well if contention introduced significant variability
in task completion times, even when the computational work is divided evenly among the processes. Our results indi-
cate that this problem is not likely to arise in practice, and the effect of random communication delays can usually be
ignored in making the choice between static and dynamic scheduling.

4.4, Implications of Normally Distributed Task Times

Knowledge of the shape of the distribution of task times, while interesting in itself, may also have some practi-
cal implications. For example, in simulation studies of parallel systems, some assumptions about the workload are
necessary. In particular, when non-deterministic tasks are modeled, some default distribution is often chosen. Our
results show that a normal distribution should be a reasonable choice in many cases.

5. Conclusions and Future Work

In this paper, we have studied the effect of random delays, as well as other sources of non-determinism, on the
execution time of processes in parallel programs. We described an analytical model of program behavior that yields
considerable insight into the effect of random delays on the variance and distribution of process execution time over
any interval. We used detailed measurements of several shared-memory programs on two different systems to
parameterize and apply the model to those programs, and thus to evaluate the variance of process execution time
between synchronization points due to communication delays. We also used direct measurements of variance due to
all sources of non-determinism. The key conclusions of our study, for shared-memory programs on systems of the
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foreseeable future, are:

o Communication delays introduce negligible variance into the execution time of a process between successive syn-
chronization points, even under conditions of high communication cost and contention. Furthermore, this conclu-
sion is likely to hold for task execution times of moderate or large size as well.

¢ For many but not all such programs, non-deterministic processing requirements also introduce very little variance
into the execution time between synchronization points. (In particular, heuristic search programs can be excep-
tions.)

We then showed that the above results could have potentially important implications for performance analysis
of parallel programs and systems. One consequence of these results is that a deterministic model might be used for
parallel program performance prediction, because it appears reasonable to ignore the variability in execution times
when estimating synchronization delays (as we showed for one example program). This could be important because a
deterministic model may be much simpler to solve than stochastic models, and may apply to a large class of programs
as well,

A related consequence of our results is that the assumption of exponential task times can produce large errors in
running time estimates. Again, this argument is borne out by the example program mentioned above, and underscores
the potential advantages of a deterministic model.

For general performance models of parallel systems, the results imply that conclusions of such models that
depend heavily on an exponential task assumption may not hold for many parallel programs. It is thus important to
evaluate to what extent the conclusions of a model are dependent on such an assumption.

We also used the analytical model to prove that process execution times in the presence of random delays
asymptotically approach a normal distribution, and we used direct measurements of the distribution of process execu-
tion times to show that, in practice, phases of many real programs exhibit a distribution that is very close to normal.

These results raise some issues that would be interesting to address in future. The preliminary results of Section
4.1 indicate that the deterministic approach to parallel program performance prediction could yield promising alterna-
tives to previous stochastic models. Developing a generally applicable and efficient deterministic model based on
these ideas, as well as a thorough evaluation of the model and comparisons with previous models is the subject of our
current work. It would also be interesting to characterize the class of programs that do have significant variability in
processing requirements, as we found for L.ocus Route. In particular, how common are such programs in practice?
How can performance prediction models be extended to evaluate such programs? It may even be necessary to derive
suitable performance metrics for such programs, since their execution time can vary significantly in different runs.
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Appendix A. Proof that F; is Asymptotically Normal
Claim. If o3 and o are finite, then (TDY-WD))/o(D) = Normal(0,1) as D—» o0, where (D) and o(D) are as
given in (7).

Proof. The proof is essentially a direct application of the Central Limit Theorem for cumulative reward processes.
For a renewal process generated by the i.i.d. sequence {X;} (with E[X;]1=p), let {W;} be a sequence of i.i.d. random
variables (rewards), where W; is independent of {X ;: j#i}. Define the cumulative reward C(r) to be
Cit)= Z::f OW;, where R(f) is the number of renewals up to time ¢ (just as was defined in (4), Section 2.1). Then, if
E[X7] and E[W?] are finite,

1
C(t)~ —tE[W
® uf W]

773 = Normal(0, 1) as t—» oo,
[(t/u) Var(W, - E[Wl]Xllu)J

(A slightly more general case is proved in [27, p. 124].) In our model, let X; = P;, W; = C;. Then n=pp, E[W,]=pc,

and C(D) = Ef;lD)C‘-. Then, under the hypotheses of the claim, the above theorem directly applies, showing that
C(D) converges to a Normal with mean Dy /pp, and variance given by

Var(€ (D)) = 2 var(c, - L E[C,1P)
Hp Hp

2
(¢}

=<+

Hp Hp

But, T =D + C(D), since C(D) is just the total of the communication delays in the first R (D) cycles. Thus T also

converges to a Normal with mean Py = D + D)/pp and variance 6% the same as the variance of C (D) calculated

above. QED.

Duc?
3 Op

221-












