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Abstract

Real-time scheduling theory is designed to provide

a prio~i verification that all real-time tasks meet their

timing requirements. However, this body of theory gen-

erally assumes that resources are instantaneously pre-

emptable and ignores the costs of systems services. In

previous work [1, 2] we provided a theoretical foundation

for including the costs of the operating system sched-

uler in the real-time scheduling framework. In this pa-

per, we apply that theory to the Real-Time (RT) Mach

scheduler. We describe a methodology for measuring

the components of the RT Mach scheduler in user space.

We analyze the predicted performance of different real-

time task sets on the target system using the schedul-

ing model and the measured characteristics. We then

verify the model experimentally by measuring the per-

formance of the real-time task sets, consisting of RT

Mach threads, on the target system, The experimen-

tal measurements verify the analytical model to within

a small percentage of error. Thus, using the model we

have successfully predicted the performance of real-time

task sets using system services, and developed consis-

tent methodologies to accomplish that prediction.

1 Introduction

In real-time computing, correctness depends not cmly on

the results of computation but also the time at which
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outputs are produced and communicated. A primary

goal of real-time systems design is to ensure timing cor-

rectness of real-time tasks. To achieve this goal, sig-

nificant work has gone into developing scheduling algo-

rithms and analysis that determine a priori if a given

set of tasks will meet their timing requirements on a

given set of resources. However, there is a significant

gap between the scheduling theory that verifies that all

tasks will meet their timing requirements and the imple-

mentation of real-time scheduling algorithms on systems

consisting of real processors with real operating systems

and real networks. This theory must be updated to re-

flect the costs of implementation.

The first step towards closing that gap is to account

for the costs of operating system services. We wish

to develop a methodology for characterizing (measur-

ing) real-time kernels and a theory to allow the user to

include those measurements in the scheduling analysis

framework,

Unfortunately, the current state of the practice in

commercial real-time operating systems is not useful to

allow real-time systems designers to include these costs

in their systems analysis. Currently, vendors quote per-

formance numbers for isolated measurements that are

meaningless from a scheduling theory standpoint. Ta-

ble 1 shows a list of commonly quoted numbers pulled

from recent discussions on a real-time bulletin board [3].

Though interesting for a first-level comparison of kernel

performance in isolated areas, these measurements hold

little value because they do not tell the systems designer

what he or she needs to know: what are the true costs of

using a given operating system, how do I include these

costs in a scheduling analysis framework, and will my

tasks meet their timing requirements if I use this oper-

ating system and its services.
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psos+ VRTX32 LynxOS VxWorks PDOS

Create/Delete Task 591 371 - 1423 1113

Ping Suspend 114 128 - 117 79

Suspend/Resume 71 83 - 69 27

Get/Release Semaphore 55 63 55 74 2

Interrupt Response 6 6 13 6 3

Int/Task Response 163 169 175 125 41

All times in psecs

Table 1: Commonly Quoted Performance of Commercial Kernels

In previous work [1, 2] we developed scheduling

models for different theoretical implementations of oper-

ating system schedulers. The scheduler is the core of the

operating system, and only after including its costs can

we hope to include other system services. This theory

[1] included the costs of interrupt handling, scheduling,

and preemption to allow the user to analyze the schedu-

labi.1.ity of a set of periodic real-time tasks with hard

deadlines. This paper applies that theory to develop a

scheduling model for the Real-Time Mach fixed priority

scheduler. We characterize the RT Mach scheduler in

the worst case using the pizie [4] profiling tool. Worst

case measurements must be used to ensure that tim-

ing correctness is maintained at all times. We develop

analytical models for real-time task sets’ performance

using the RT Mach scheduling model and the measured

RT Mach components. Finally, we verify the RT Mach

scheduling model experimentally against the analytical

models on a DECstation 5000 running the RT Mach

kernel using real-time threads with tightly controlled

timing characteristics. These results show that we are

able to predict the timing performance of real-time task

sets on the target platform to within a small percentage

error.

The paper is organized as follows. Section 2 pro-

vides background in real-time scheduling theory and

analysis. In Section 3 we develop a model for the Real-

Time Mach scheduler. Section 4 characterizes the MK75

version of RT Mach running on a DECstation 5000.

This section includes a methodology for performing this

characterization using pixie and the results of the mea-

surements. The model is validated experimentally in

Section 5 by measuring the breakdown utilization of a

set of reaJ-time threads on the target system. Section 6

discusses our conclusions and future directions for this

work.

2 Background

We first present a formal notation for describing a real-

time task set. We consider here only “hard” periodic

real-time tasks, where each task has a deadline by which

its execution must be complete, otherwise the system is

said to have failed. Aperiodic tasks have been included

within the periodic scheduling framework through the

use of aperiodic servers in [5, 6], Other modifications

to the original periodic scheduling framework include

adding synchronization [7] and scheduling for buses [8].

A good overview of real-time systems is found in [9].

A real-time task set is composed of n tasks. Each

task -rZ, 1< i ~ n, is described by a period, T%, a dead-

line, D;, and a worst case estimated execution time, Ci.

We assume that all deadlines are before or at task peri-

ods. Each instantiation of a task, which occurs once per

period, is called a job of that task. Tasks are scheduled

by fixed priority, preemptive algorithms, which assign

the resource to the task with the highest priority. A task

set that meets all its deadlines is said to be schedulable.

Liu and Layland developed sufficient conditions for

determining if a task set is schedulable under any fixed

priority algorithm based on its utilization. Utilization is

defined as U = ~~=1 C%/Ti. They found that a task set

is schedulable if U < n(21/n – 1). This bound rapidly

converges to in 2 = 69’%0 as n gets large. However, the -

Liu and Layland bound is just sufficient; a task set can

have a higher utilization and still be schedulable. The

bound developed by Lehoczky, Sha, and Ding [10] pro-

vides a necessary and sujjicient condition for schedula-

bility. This bound checks the worst case response time

of every task. The worst case is found for a critical

instant, where every other higher priority task arrives
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simultaneously with the task in question. If each task

meets its deadline in its first period following a critical

instant, then all tasks will always meet their deadlines

under any phasing. This is expressed mathematically

as:

Both the Liu and Layland and the Lehoczky, Sha,

and Ding scheduling tests are founded on the critical as-

sumptions that the resource is instantaneously prcempt-

able, and that preemption incurs no cost. In realit y, task

sets on a CPU are implemented via an operating system,

and the operating system incurs cost to run scheduling

code, handle interrupts, and perform context switches.

Further, many operating systems are non-preemptable.

Harbour, Klein, and Lehoczky [11] developed a test for

fixed priority scheduling under non-preemptable condi-

tions. In previous work [1,2] we built upon [11] and [1O]

to develop generic scheduling models for different types

of operating system scheduler implementations. We will

briefly discuss this work to explain the costs of imple-

menting a real-time task set via an operating system

scheduler.

We defined two basic means of implementing a

scheduler: event driven and timer driven. An event

driven scheduler uses interrupts from some hardware

device that coincide with the start times of the periodic

tasks. Every time a task is to be initiated, an inter-

rupt arrives signaling this event. This implement ation

is most often found in signal processing environments,

or other data driven systems. Timer driven systems rely

on periodic timer interrupts to allow processing to be in-

terrupted so the scheduler can run. On every timer in-

terrupt, the scheduler updates the internal system time

and initiates tasks whose start times have passed. In ad-

dition, we differentiated systems by the preemptability

of the kernel. An ideal kernel would always provide ser-

vice at the priority level of the requesting task, so that if

a higher priority request arrived, it would immediately

be serviced. In this case, high priority tasks never have

to wait for lower priority tasks to execute. However, in

reality, many operating systems are non-preemptable,

and must complete a given service once it has begun.

This is done in practice to limit the complexity of the

internal kernel code and data structures.

The RT Mach operating system scheduler is a timer

driven, non-preemptable implementation. We will next

describe the details of a generic timer driven system,

from [1]. We assumed that there is a periodic timer that

interrupts processing every Tt;e seconds, allowing the

scheduler to be invoked. Costs are categorized as either

overhead or blocking. Overhead is cost that is directly

incurred by the task requiring service. Blocking is cost

required to service or execute a lower priority task, and

is commonly referred to as priority inversion [7],

We defined the following overhead and blocking

terms:

●

●

●

●

●

✌

C’$ime, is the time required to handle a clock in-

terrupt. The Ctime7 term is overhead that occurs

on every timer interrupt, and includes the time to

handle the interrupt, update the internal system

time, and call the scheduler,

Cpve empt is the time for scheduling and preemption

for one task, assuming that it is higher priority than

the active task. This is treated as overhead for

the preempting task and includes scheduling and a

context switch.

cn~pv e empt is the time for scheduling without pre-

emption for one task, assuming that it is lower pri-

ority than the active task. This term shows up as

blocking for higher priority tasks.

Ce=it is the time it takes for a task to exit when

it completes, which is considered overhead for that

task.

C.v,t,m is the longest non-preemptable segment of

the operating system, and is considered blocking

for every task in the set. We can assume for our

analysis that this segment is initiated by a non-real-

time, background task.

We restate a theorem from [12]:

Theorem 1 For a non-preemptable timer-driven

scheduler, a set of n tasks T1, . . . . Tn is schedulable for

all task phasings if the following conditions hold:
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Figure 1: Worst Case Scheduling in RT Mach

This theorem changes the Lehoczky, Sha, and Ding

criterion to a sufficient condition for scheduling by

adding in the costs of implementation to extend the

worst case response time of each task starting from a

critical instant. It is sufficient because the worst case

overhead and blocking costs may never occur in prac-

tice. The theorem adds in the overhead of preemp-

tion and exiting to each task’s execution time and adds

the overhead of the timer interrupt service. It also ex-

tends the response time of each task by adding in the

blocking due to every lower priority task that must be

scheduled, the blocking due to preemption limited by

the timer granularity, and the blocking due to the non-

preempt able system service, C. Y,tc~. We previously de-

fined Tt;c as the interval between timer interrupts. This

shows up in the scheduling equation as a blocking term,

because in the worst case a high priority task’s critical

instant will begin just after a timer interrupt arrives,

causing the response time to be delayed by one timer

interrupt interval. Figure 1 shows the worst case for

three real-time tasks.

In the next section we will apply this theorem to

Task1Active

Task2Active

Task3Active

Non-RTTask
Active

El
IN
Isi
IN

Cpreempt

Cexit

Ctimer

Csystem

the Real-Time Mach scheduler and show how the com-

ponents of RT Mach map into the terms defined above.

3 Real-Time Mach Scheduler

Model

In this section we will describe the Real-Time Mach

scheduler implementation and present a scheduling

model for the RT Mach scheduler. RT Mach [13] was

detieloped at Carnegie Mellon University as part of the

Advanced Real-Time (ART) project. It is based on

the Mach kernel [14, 15] but augments the structure of

the scheduling and interprocess communications (IPC)

functions to support real-time scheduling, synchroniza-

tion, and communications.

RT Mach is a microkernel operating system; it pro-

vides the core functions of an operating syst em. More

complex OS services, such as those found in monolithic

kernel structures, can be implemented via an OS server

on top of a microkernel. An overview of this structure is

pictured in Figure 2. The microkernel structure is ben-

eficial to the cause of real-time predictability, because

it allows us to easily isolate and measure the different

components of the operating system. Then, when these

underlying components are fully characterized, we will

be able to characterize higher level features such as file

management, database management, and window sys-

t ems.

RT Mach has thread and task abstractions, where
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Figure 2: Overview of the Real-Time Mach Microkerne]

a thread is a unit of execution and a task is a unit of

resource allocation. Only threads execute; they are re-

sources associated with a given task. In the following

analysis we will consider a real-time task set to consist

of multiple RT Mach threads within one RT Mach task.

Therefore, context switching always occurs within a sin-

gle address space. Context switching between RT Mach

tasks requires a far more expensive cross-address space

switch and is not considered here.

The RT Mach scheduler supports periodic, ape-

riodic, and non-real-time task scheduling and has a

queue structure that supports aperiodic and ncm-real-

time (background) processing. The queues we are con-

cerned with are the start queue, which holds threads

that are waiting for their start times to expire, and the

hard real-time (HRT) mn queue. There are actually 32

doubly linked run queues, but the rest are dedicated to

aperiodic and soft real-time tasks.

As we mentioned, RT Mach is entirely non-

preemptable. This means that in our worst case anal-

ysis, we have to consider the case where there ‘is a re-

quest for some RT Mach service immediately prior to

the critical instant. This request can come on behalf

of a non-real-time task. In the worst case, this time is

maximized when the service is the longest possible RT

Mach system service. For the purposes of this analysis,

we map the term C= Y=~e-, which is the longest possible

non-preemptable system service, to Ceait. Ultimately,

we hope to determine the longest possible system seg-

ment, and include that in our model.

The four components to be measured, Ctimer,

c pveempt, C’nmpreempt, and C’eZit, must be measured in

the worst case. If we set up the worst case properly,

then we can guarantee that if a task set is schedulable

under these worst case conditions, then it will always be

schedulable. Ct,m,r is constant; it is the time to only

handle timer interrupts, without any scheduling. The

other three components are all functions of the number

of t breads in the syst em. Specifically, CP~ ~~~ptmows

a single thread from head of the start queue to the run

queue and preempts the active task, which must then

be stored in the run queue. For our worst case analy-

sis, we have to assume that every other thread in the

system is in the run queue. The thread being scheduled

has the highest priority and gets inserted at the head

of the run queue. However, in the worst case we must

assume that the task being preempted is inserted at the

tail of the run queue, requiring a search of the entire

queue. In steady state, this case will seldom occur, but

we are trying to ensure timing correctness in the abso-

lute worst case. Similarly, for CnOnP.e,mPt, which moves

a lower priority thread from the start queue to the run

queue without a context switch, we assume that every

other thread is in the run queue and that the sched-

uled thread gets inserted at the tail of the run queue.

Finally, C,zit moves a completing thread into the start

queue and then selects the head of the run queue to

run. In the worst case, the exiting task will get inserted

at the tail of the start queue and every other thread in

the system will be in the start queue. Note again that

all components, except for Ctan,,, are a function of the

number of threads in the system.

These theoretic components, CpTe ,mpt, Cnonp.e empt,

Ce=it, and Ctzmer, correspond functionally to calls

to three RT Mach kernel primitives: clock-intemupt,

thTead-block, and th?’ea~ezzi. The interrupt handler

cloekintemupt is invoked on every timer interrupt. It

handles the actual interrupt, updates the system time,

and performs the scheduling functions of updating the

start and run queues. thTead-block handles context

switching. ih?’ead-exit is similar to thTea&block, except

for the destination of the exiting thread, which is stored

back on the start queue.

Each of these routines will be measured, along with

the associated low level interrupt handling and resump-

tion code, in the worst case scenarios described above.
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For CtimeT, the time to run the interrupt handler only,

we measure clock-interrupt with no threads in the start

queue, so that the primitive is invoked and then exits

without any queue manipulations. To measure C&. ,~Pt

for n threads, first the highest priority thread must be

at the head of the start queue, n – 2 lower priority

threads must be in the run queue, and the lowest pri-

ority thread in the system must be the active thread.

Then clock.interrupt and th?’eadbiock are invoked and

measured. Likewise, CnmPTeemPt corresponds to the

case where n — 2 threads, all of higher priority, are in

the run queue when clockinterrupt is invoked. Finally,

n – 1 threads with earlier start times than the exiting

thread must be in the start queue, when th?’eadezzt is

measured.

The following summarizes how the terms defined in

the RT Mach scheduler model correspond to the calls

to the RT Mach routines.

Cti~,~ : clock-interrupt with no threads on the start

queue, so that no scheduling is performed.

cpTe empt : clock-interrupt, but first sets up the

worst case scenario described above. For this mea-

surement, ciockinterrupt also calls thread, biock to

perform the context switch.

c nonpveempt : clockintemwpt, but first sets up the

worst case scenario described above, but no context

switch occurs.

C.cit : corresponds directly to ih?’eadexit with the

worst case scenario described above.

Again, these worst case scenarios may seldom occur

in practice. But we are trying to supply a solid sufficient

condition! such that a set of real-time threads said to

be schedulable will indeed always be schedulable when

implemented.

4

This

Characterization of the Sched-

uler

section will describe the methodology and results

of characterizing the RT Mach scheduling model. Char-

acterization is the measurement of the components of

the RT Mach scheduling equation in the worst case sce-

narios described above. The vendor benchmarks from

Table 1 supply measurements that can be accomplished

directly from user mode, but we are really interested

in measurements that require initial setup of the kernel

queues to reflect the worst case placement of the threads

in the system. This is very difficult, because setting up

the worst case scenarios requires direct access to the

kernel queues, which are privileged, and is not possible

with calls from user mode.

Our solution to this problem is to compile kernel

code as a user process and then measure the perfor-

mance of the components using pizie [4]. This approach

gives us the dual advantages of being able to initial-

ize the worst case scenarios correctly and then measure

kernel code very accurately without any additional over-

head. We will next describe this process in more detail.

The pixie tool adds code to user applications to

count such things as the number of times procedures

or basic blocks are run, and the number of cycles that

each takes. The user then runs this augmented code,

and uses the prof tool to generate profiling data based

on the output of the pixie code. For our measurements

these two tools are run, then we perform post process-

ing to extract the final cycle counts for the components

we wish to measure. This process is shown in Figure 3.

However, to compile these tools with kernel code in

user space, we must use special stub routines to simulate

privileged kernel code and to initialize kernel data struc-

tures, such as the scheduling queues. Privileged code is

required to perform machine-dependent work, such as

low level interrupt handlers, context switch code, or a

change in the processor interrupt mask. These routines

must be simulated with stub routines that emulate the

actual processing. Further, the number of cycles of the

privileged routines is manually counted; these numbers

are inserted in the post processing phase of the mea-

surement. The initialization stub routines are required

to set up the state of the kernel and the scenario. These

routines initialize the scheduling and IPC queues, create

threads, initialize other miscellaneous data structures,

and call the actual routines that get measured.

The initialization routines first set up the worst case

scenarios described in the previous section, then call the

kernel routines. These routines are measured in the post

processing phase, which adds in the cycles counted man-
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kernel code which must be stubbed out. pixie

supplies the cycle counts for all other code. The scenar-

ios, and measurements, were repeated with the number

oft breads varying from O to 20. The measurements were

performed on a DECstation 5000/200 25 MHz MIPS

R3000. The results were linear, and thus not repeated

beyond 20 threads in the system. Results for all four

components are shown in Figure 4. For example, for 10

threads, Ctime. = 7.92 psecs, C’P,.emPt = 38 psecs,

C’,zit = 36.2 psecs, and C’~~P.,,~Pt = 11.02 psecs.

These results correspond to the following, where n is

the number of threads in the system:

Ctime, = 7’.92 psecs

cpre errtpt = 0.79n + 30.1 psecs

C.=it = 0.74n -I- 28.8 psecs

c nunpT e empt = 0.39n + 7.12 psecs

We now have a scheduling model for the RT Mach

scheduler, with the components of that model measured

in the worst case on the target platform. The next step

is to use this model to make predictions for real-time

task sets’ timing performance. To do this we create

a set of synthetic threads on the target platform and

measure their timing performance. The next section

describes this process.
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Figure 4: Costs of Kernel Components

5 Validation of the Model

In this section we will show the methodology and re-

sults of validating the RT Mach scheduler model devel-

oped in Section 3 using the measurements described in

Section 4. We first describe the experimental validation

method, which involves creating synthetic task sets with

very tightly controlled timing requirements and gradu-

ally scaling their run times until a missed deadline is

detected. We also scaled each task set to their break-

down utilization using the RT Mach scheduling model.

Finally, the breakdown utilization measured experimen-

tally is compared to the analytical results found from

the RT Mach scheduling model and the worst case char-

act erizat ion.

Breakdown utilization [10] is found by uniformly

scaling all the execution times, Ci, while holding the

periods fixed, until the task set is just schedulable. It

is defined as U* = ~~=1 ~, where a is a scaling fac-.

tor that is applied uniformly to all the run times in a

task set, while the periods remain fixed. Specifically,

U* is the utilization at which all deadlines are met, but

any further increase in a will cause one or more tasks

to miss their deadlines. Breakdown utilization can be

thought of as a measure for the amount of tolerance to

low execution time estimates for a task set, or simply

as a measure of the maximum utilization possible for a

given task set.
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The experimental measurement of breakdown uti-

lization is accomplished by creating a task set on the

target system consisting of real-time threads which have

very tightly controlled execution times. The execution

times of these threads are then gradually scaled until

at least one of them misses a deadline. The threads

are run for a sufficient amount of time at each scaling

level to verify that the task set is schedulable. After

executing for a sufficient time, we scale the run times

of the threads up and re-run the task set. With this

scaling code we can exactly scale the task sets to their

breakdown utilization on the target system. The uti-

lization at the point where a thread misses a deadline

is recorded and compared to the analytical results. The

RT Mach kernel has a facility for detecting missed dead-

lines. When a thread is initiated, a timer is set for the

thread’s deadline. If the timer expires before the thread

exits, then the deadline has been missed and the ker-

nel sends a message to an error handling routine that is

specified by the user.

The synthetic threads that represent the task sets

are all identical and are created with known execution

times determined with pizie. The following periodic

thread body consumes CPU time as defined in a global

run-times array. The address reference in the body of

the loop ensures that the loop code is executed, and not

optimized away by the compiler. The loop is four cycles

long; we subtract the cost of the call to whickthread,

which returns the current thread id. The run_times

array is scaled to increase the execution time of the

threads. This code will ensure that the execution time

is exact.

1 periodic_ tlmead_i ( )

2 {

3 int i, *k, thread, count ;

4 /* get current thread id */

5 thread = whi-ch_thread(mach_thread_self ( ) ) ;

6 /* get loop count from run-time and loop */

7 count = ( (run_ times [thread] *25){+) ’50;

8 for (i=O; i<count; i++)

9 k = &i;

10 1

We will next describe several different task sets, the

analytical results derived for each, and compare those

results to the experimental measurements performed on

the target system. We executed each task set at each

scale level for the duration of the hyperperiod of the

task set. The hyperperiod is the least common multi-

ple of all the tasks’ periods; from any initial phasing it

is the point in time where the schedule is guaranteed

to repeat. Each measurement was repeated at least

five times and averaged. Generally, the results were

very consistent, with little variance, but differences are

noted below. Measurements were conducted on the tar-

get 25 MHz MIPS R3000 processor. Unfortunately, we

were unable to perform these measurements on a target

isolated from the local network. The target was con-

nected to an Ethernet network, and measurements were

repeated for both weekday (heavy) and weekend (light)

loading. Because of heavier network interference, the

maximum schedulable utilization was decreased roughly

two to four percent during weekday hours. All figures

shown use lightly loaded measurements.

For each task set, scaling was done over a range of

timer interrupt intervals, to examine the effect of the

timer interrupt rate on schedulability. We analytically

determined the breakdown utilization over a range of

timer interrupt values using the RT Mach schedding

model. We then measured the breakdown utilization on

the target platform for several different timer interrupt

intervals. RT Mach on the target platform allows the

timer interrupt interval to be configured, but only to

either 1, 2, 4, 8, or 16 msecs. Figure 5(a) shows these

results.

The avionics task set [16, 17] is representative of a

real-time system used for mission control on an airplane.

The avionics task set consists of 15 periodic tasks, with

periods ranging from 25 msecs to one second. The uti-

lization of the task set, without overhead or blocking

costs, is 83.0 lVO. We first analytically scaled the avion-

ics task set to its breakdown utilization using the mea-

sured characteristics from Section 4. The first impor-

tant point of this figure is the significant difference be-

t ween the ideal breakdown utilization, calculated using

the original Lehoczky, Sha, and Ding [10] scheduling

equation, and the RT Mach scheduling model break-

down utilization, calculated using the methods of this

paper with overhead and blocking. For example, att the

8 msec timer interrupt interval, there is an 1 l% differ-

ence between the ideal and analytical points of 92.2370

and 83,8470, respectively.

Second, we note that the measured results on the
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target system were within several percentage pc)ints of

the analytical results. The exception to this is at the

16 msec timer interrupt interval. There the measured

breakdown utilization was 82. 16yo and the breakdown

utilization predicted by the model was 72.61’Yo. There

are several reasons for this difference, most important of

which is a weakness in the current method of deadline

detection in RT Mach. Currently, the deadline detector

timer is bound to the periodic clock, the same clock that

generates timer interrupts. Ideally, the deadline detec-

tor would utilize a separate clock, which would always

be set to the next deadline of the active task follow-

ing a context switch. Otherwise, a problem occurs if

a deadline is between timer interrupts. Then a thread

can continue to execute past this deadline, and the miss

will go undetected as long as the thread completes be-

fore the next interrupt. If the deadline is immediately

after a timer interrupt, then the task could potentially

continue running for as much as a full timer interrupt in-

terval. Thus, our experimental method suffers because

we can potentially scale task sets beyond their actual

breakdown utilization, and it will not be noticed on the

target system. This problem is worsened for large timer

interrupt intervals, where the potential for scaling error

is greatest. Thus, the measured data point at 16 msecs

for the avionics task set is significantly above the ana-

lytical point predicted by the model. The reader will

note similar differences in the other figures.

Another cause for difference between the worst case

performance assumed by the analytical model and the

actual performance measured by the experiment is that

the analytical model assumes worst case numbers for

overhead and blocking terms. For the sufficient schedu-

Iabilit y condition we must use worst case numbers, how-

ever, these worst cases may never occur, or occur to a far

lesser extent, in the measured implementation. Thus,

the measured task sets may scale higher than the suf-

ficient bound bound if the worst case(s) do not occur.

For example, the model assumes that the critical instant

begins immediately after a timer interrupt, effectively

delaying the response time by a full timer interrupt pe-

riod and contributing a large blocking component. If

a critical instant does not occur precisely after a timer

interrupt, we would not maximize the blocking, and the

measured breakdown utihzation would be higher than

expected. As before, with a large timer interrupt period,

the blocking effect predicted by the analytical mc~del is

large, so the difference in blocking in the measured case

Execution Time I Period

1180 2500

~

4280 40000
10280 62500
20280 1000000
100280 1000000
25000 1250000

Utilization 88.40%

Table 2: INS Task Set

is correspondingly larger.

The experiment was repeated for the Inertial Navi-

gation System (INS) task set [18]. However, the highest

priority task in INS, shown in Table 2, has a period of

2.5 msecs. This means that the timer interrupt interval

must be less than 2.5 msecs for the task set to meet

its deadlines. We again analytically and experimentally

determined the breakdown utilization of the task set at

timer interrupt interval of 1 and 2 msecs. The results

are shown in Figure 5(b). The data point at 1 msec

is below the predicted worst case bound. We believe

this is because of the other activity on the target sys-

tem that was not eliminated, such as network or other

device interrupts. A number of these interrupts could

easily render the task set unschedulable, especially be-

cause it has such small periods. In fact, the INS task set

demonstrated a large variance in the measurements dur-

ing the weekday, heavily loaded hours. The variance was

less for the lightly loaded measurements. Additionally,

if the interrupts or other system threads in the system

required service from a large non-preemptable section of

the kernel outside of the scheduler, the the schedulable

utilization of the INS task set would be greatly dimin-

ished. Notice that the measured data point at 2 msecs

was well above the predicted worst case, which again is

explained by the limitations of the detection method.

We note that INS was not schedulable with timer inter-

rupt interval greater than 2.5 msecs, as was predicted

by the model.

We next created a new task set, called ins_big, which

scaled both the periods and execution times of the INS

set by ten times. This was done to establish another

set of data points similar to INS, but without the ef-

fect

and

of the small periods, The results of the analytical

experimental scaling are shown in Figure 5(c). The
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difference between the ideal and burdened breakdown

utilizations is small. This is because the periods of the

task set are very large, and the relative cost of the op-

erating system is small. As the timer interrupt period

gets large, though, there is a bigger difference because

of the detection mechanism.

Finally, we evaluated the costs of the operating sys-

tem scheduler using a synthetic task set called test I.set.

This task set was created to show the effect that the

timer interrupt interval can have on blocking. The pe-

riods of the threads are multiples of the timer interrupt

interval of 16 msecs. By offsetting the start time of every

thread to be just after a timer interrupt, we try to maxi-

mize blocking for every job of every thread. Figure 5(d)

shows the results of this experiment. The curve labeled

Breakdown Utilization with Overhead Only (No Block-

ing) was plotted by analytically computing the break-

down utilization without accounting for blocking. The

actual measured results lie between what was expected

from a system without blocking and the fully burdened

system. However, they track much better than the other

task sets. We believe that the weakness of the detection

method contributed to higher measured utilization.

Thus, the analytical model for the Real-Time Mach

scheduler proved a successful predictor of the actual per-

formance for the task set of real-time threads. However,

the measured performance did vary from what was pre-

dicted, for several reasons. First of all, the analytical

model provides only a sufficient condition, because of

worst case blocking and overhead assumptions. The

measured results can be expected to have higher schedu-

lability if the worst case does not occur.

Secondly, the detection mechanism contributed to

a large disparity in the measured results, especially for

large timer interrupt intervals. This can be seen consis-

tently from all figures. Finally, if there is other activity

in the target system, such as network interrupts or in-

terference from another device (disk, mouse), then other

parts of the operating system will be invoked, which

can introduce non-preemptable blocking segments. This

will degrade utilization, as was illustrated well by the

INS task set. This does point to an important facet

of real-time scheduling theory. The scheduling model

must account for every source of interference to provide

a proper bound. Otherwise, timing guarantees can not

truly be made. To verify our models better, we need to

improve the detection mechanism on the target system

and isolate it from the network and other interference.

However, to make our scheduling models better we need

to account for these effects as well.

6 Conclusions

In real-time computing, correctness depends not only

on the results of computation but also the time at

which outputs are produced. This paper strives to

close the gap between the theoretic foundations of real-

time systems design and the reality of implementation

through an operating system. The first step is to de-

velop scheduling models for operating system sched-

ulers. Even the implementation of the scheduler intro-

duces significant cost into the real-time system equation

that must be accounted for to guarantee timing correct-

ness.

In this paper we have developed a scheduling model

for the Real-Time Mach operating system scheduler.

We have developed a methodology for characterizing the

components of the scheduler. We have characterized the

RT Mach scheduler on the target platform using worst

case scenarios for the different components. We then

used that characterization to develop analytical models

for how task sets should perform on the target system.

We developed a method for measuring the performance

of real-time tasks on the target system using synthetic

t breads with tightly controlled timing characteristics.

Using these synthetic threads, we were able to verify

experimentally the predicted performance of the ana-

lytical model.

We would like to improve the characterization

method. The use of pixie to measure kernel code as

a user program is effective, but difficult. Ideally, the

measurements would be obtainable from a user pro-

gram without specially modifying the kernel. However,

the measurements differ from standard OS benchmarks,

in that they first require the worst case scenarios to

formed. This problem needs further study.

In addition to the improvements noted above, in

both experimental method and in our modeling work,

we are currently working to expand this theory in sev-

eral directions. We have a preliminary framework for

including aperiodic tasks (wit h aperiodic servers), syn-
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chroniriation, and IPC functions. The methods de-

scribed here have also been helpful in the continual de-

velopment of RT Mach, by allowing the designers the

luxury of being able to quantitatively explore the OS

design space.
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