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An information-theoretic analysis of worst-case

redundancy in database design

SOLMAZ KOLAHI

University of British Columbia

and

LEONID LIBKIN

University of Edinburgh

Normal forms that guide the process of database schema design have several key goals such as elim-
ination of redundancies and preservation of integrity constraints, such as functional dependencies.
It has long been known that complete elimination of redundancies and complete preservation
of constraints cannot be achieved simultaneously. In this paper, we use a recently-introduced
information-theoretic framework, and provide a quantitative analysis of the redundancy/integrity
preservation tradeoff, and give techniques for comparing different schema designs in terms of the
amount of redundancy they carry.

The main notion of the information-theoretic framework is that of an information content of
each datum in an instance (which is a number in [0, 1]): the closer to 1, the less redundancy it
carries. We start by providing a combinatorial criterion that lets us calculate, for a relational

schema with functional dependencies, the lowest information content in its instances. This indi-
cates how good the schema design is in terms of allowing redundant information. We then study
the normal form 3NF, which tolerates some redundancy to guarantee preservation of functional
dependencies. The main result provides a formal justification for normal form 3NF by showing
that this normal form pays the smallest possible price, in terms of redundancy, for achieving de-
pendency preservation. We also give techniques for quantitative comparison of different normal
forms based on the redundancy they tolerate.

Categories and Subject Descriptors: H.2.1 [Database Management]: Logical Design—normal
forms; schema and subschema; H.1.1 [Models and Principles]: Systems and Information The-
ory—information theory ; value of information

General Terms: Design, Management, Theory

Additional Key Words and Phrases: Database design, functional dependency, redundancy, Third
Normal Form (3NF)

1. INTRODUCTION

One of the most important factors in maintaining the integrity or correctness of
a database is controlling the redundancy of data. Normal forms have long been
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2 · S. Kolahi and L. Libkin

studied as a means of reducing redundancies caused by data dependencies, such
as functional and multivalued dependencies, in the process of schema design. In
traditional normalization theory, a database is characterized as either redundant
or non-redundant. However, between two databases that carry redundancy, one
may be significantly worse than the other. Moreover, normalizing a database into a
perfectly non-redundant design usually comes with a cost of slower query answering.
Our goal in this paper is to provide richer guidelines that help a database designer
have a better understanding of the amount of redundancy carried by data and make
design decisions accordingly.

We use a recently introduced information-theoretic tool [Arenas and Libkin 2005]
that actually measures the amount of redundancy in a database. Given a database
instance I of a schema S with integrity constraints Σ, the information-theoretic
measure, called relative information content, assigns a number RicI(p | Σ) to every
position p in the instance that contains a data value, where a position is specified
by a tuple in the instance and an attribute name. This number ranges between
0 and 1 and shows how much redundancy is carried by position p. Intuitively, if
RicI(p | Σ) = 1, then p carries the maximum possible amount of information:
nothing about it can be inferred from the rest of the instance. Smaller values
of RicI(p | Σ) show that positions carry some amount of redundancy, as some
information about them can be inferred. A well-designed schema is the one that
guarantees maximum information content for data values in every instance.

Using this framework, normal forms, such as BCNF and 4NF, that completely
eliminate the possibility of redundancies were justified by showing that these nor-
mal forms always ensure well-designed schemas. Perfectly non-redundant designs,
however, are not always the best choice for a number of reasons. First, it may not
be possible to normalize a database into a perfect normal form without losing some
of the integrity constraints. For instance, normalizing a relation schema into BCNF
may not be possible without losing some of the functional dependencies. Second, a
normalization that completely eliminates redundancies may lead to producing too
many relations, which will slow down the queries by requiring more joins. These are
the reasons that a more forgiving normal form such as 3NF is more popular in prac-
tice. In fact, practical database design tips (e.g., in books [Greenwald et al. 2007;
Stephens and Plew 2002; Dewson 2006]) usually refer to a “normalized” database
schema as a schema that satisfies 3NF.

Our goal is to provide guidelines on how to choose the least-redundant design in
case a non-redundant one is not achievable. This could be an important choice in
the process of schema design, because the more redundant a database is, the more it
is prone to anomalies and inconsistencies after a series of insertions or updates. The
following example illustrates a situation, in which a precise redundancy analysis of
schemas could be helpful in making a better design decision.

Example 1.1. Consider a relation schema R(A, B, C, D, E) with functional de-
pendencies Σ = {AB → C, C → B, D → E}. One can easily think of instances of
this schema that store redundant values in columns B, C, and E. To remove or
lower these redundancies, any of the following designs could be considered, all of
which ensure a lossless join and preserve the functional dependencies:

(1) R1(A, B, C, D), R2(D, E);

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.



Worst-case redundancy in database design · 3

(2) R1(A, B, C), R2(A, B, D, E);

(3) R1(A, B, C), R2(A, B, D), R3(D, E).

Observe that here a perfectly non-redundant BCNF design that also preserves the
functional dependencies does not exist. Furthermore, having more relations would
impose the cost of additional joins for query answering. To choose any of these
three designs or the original design with a single relation, the designer could use a
quantitative analysis of the redundancy caused by functional dependencies in the
instances of these schemas. A natural approach is thinking of a way to measure the
highest or worst possible redundancy in all valid instances of these schemas.

We introduce a measure of worst redundancy for database schemas and normal
forms to be able to compare database designs with redundancy. The guaranteed
information content of a schema with integrity constraints is the lowest informa-
tion content ever found in the instances of the schema, and indicates how much
redundancy the schema allows in the worst-case scenario. We give a combinatorial
criterion that lets us calculate the guaranteed information content and thus show
how good a schema is redundancy-wise. This could be a useful indicator of whether
the schema needs to be further normalized in case the instances are potentially too
redundant. We also study the complexity of calculating the guaranteed information
content.

Guaranteed information content can also be defined for a normal form as the low-
est information content ever found in instances of schemas that satisfy the normal
form, and indicates how much redundancy the normal form tolerates. An applica-
tion of such an analysis provides a justification for third normal form (3NF). The
main property possessed by 3NF, but not by BCNF, is dependency preservation: for
every schema, there always exists a lossless decomposition into 3NF that preserves
all the functional dependencies. That is, the set of functional dependencies on the
original schema is equivalent to the set of projected functional dependencies on the
decomposed schemas. This is a very important property for integrity enforcement,
as DBMSs provide a variety of mechanisms to ensure that integrity constraints are
enforced during updates. Keeping all the constraints in the form of functional de-
pendencies makes the integrity enforcement much faster since enforcing functional
dependencies does not require joins across different relations.

Notice that it is not always possible to do a dependency-preserving BCNF nor-
malization to achieve a well-designed schema (the smallest example is the 3NF
schema R(A, B, C) with FDs Σ = {AB → C, C → B}, which does not admit a
lossless dependency-preserving BCNF decomposition). Consequently, to guarantee
the integrity of the database, some redundancy must be tolerated. A natural ques-
tion is then whether 3NF is the right choice of a dependency-preserving normal
form. To be more precise, consider every possible normal form, defined as a set
of restrictive conditions on FDs, such that every schema admits an FD-preserving
decomposition that satisfies the normal form (clearly, BCNF would not be among
these normal forms). Now if we apply the information-theoretic approach to mea-
sure the amount of redundancy introduced by these normal forms, will 3NF be the
one with the least amount of redundancy? Our second main result gives a positive
answer to this question.

Our last goal is to provide quantitative techniques for comparing different normal
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4 · S. Kolahi and L. Libkin

forms. The motivation comes from the following question: if we know that in BCNF
designs, the value of RicI(p | Σ) is always 1, can we find a constant c < 1 so that
RicI(p | Σ) > c for all 3NF designs? A strong negative answer was given by
[Kolahi 2007] which showed that or every ε > 0, one can find a 3NF schema with
a set Σ of functional dependencies, an instance of that schema, and a position p
such that RicI(p | Σ) < ε. However, this is not particularly surprising: it has
long been known [Ling et al. 1981; Zaniolo 1982; Biskup and Meyer 1987] that for
some schemas already in 3NF, better 3NF designs can be produced by the standard
synthesis algorithm. Hence, an arbitrary 3NF schema may have quite a bit of extra
redundancy.

This gives rise to the following question: what can be said about arbitrary 3NF
schemas, not only the good ones that ensure the minimum price of dependency
preservation? Can they be as bad as arbitrary schemas? How do they compare
to “good” 3NF designs? To answer these questions, we compare dependency-
preserving normal forms based on their guaranteed information content or the max-
imum redundancy that they tolerate in the instances of schemas that satisfy those
normal forms. Our next main result formally confirms that some 3NF schemas may
have more redundancy than others, but it also shows that arbitrary 3NF schemas
have at least twice the information content compared to unnormalized schemas.

The rest of the paper is organized as follows: in Section 2, we summarize necessary
background information on relational normalization, information theory, and the
definition and known applications of the information content measure. In Section 3,
we give the definition of guaranteed information content for a schema and show how
we can calculate it. We define and calculate guaranteed information content for
normal forms and provide a justification for 3NF in Section 4. We give concluding
remarks in Section 5.

Remark Some of the results of Section 4 have previously appeared in a conference
proceedings version [Kolahi and Libkin 2006]. Specifically, in [Kolahi and Libkin
2006], we presented results about the notion of guaranteed information content.
The results about the analogous notion based on the average information content,
as well as results in Section 3 are new and have not been previously published.

2. BACKGROUND

2.1 Relational databases and normal forms

A relation schema consists of a relation name R and a set U = {A1, . . . , Am} of
attribute names. We sometimes write R(A1, . . . , Am) and refer to U as sort(R). A
database schema is a set of relation schemas S = {R1, . . . , Rℓ}. In this paper, we
assume that elements of database instances come from a countably-infinite domain;
to be concrete, we assume it to be N+, the set of positive integers. Therefore, an
instance I of a database schema S assigns to each m-attribute relation R in S a
finite set I(R) of tuples, where a tuple is a function t : sort(R) → N+ (equivalently,
it is an element of N+m

). We let adom(I) stand for the active domain of I: the
set of all elements of N+ that occur in I. The size of I(R) is defined as ‖I(R)‖ =
|sort(R)| · |I(R)|, and the size of I is ‖I‖ =

∑

R∈S ‖I(R)‖.
Given an instance I, a position in I is a triple (R, t, A), where R is a relation

name in S, t is a tuple in I(R), and A is an attribute of sort(R). With each position

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.



Worst-case redundancy in database design · 5

we associate a value stored there, that is, t[A], when t is viewed as a finite function.
The set of all positions is denoted by Pos(I). Note that ‖I‖ equals the cardinality
of Pos(I).

Schemas may contain integrity constraints, in which case we refer to schemas
(S, Σ), where S is a set of relation names and Σ is a set of constraints. We usually
write (R, Σ) instead of the more formal ({R}, Σ) in case of one relation. In this
paper, we are only interested in functional dependencies (FDs) on a relation R,
which are expressions of the form X → Y , where both X and Y are nonempty
subsets of sort(R). An instance I(R) satisfies X → Y , written as I(R) |= X → Y ,
if for every two tuples t1, t2 ∈ I(R), t1[X ] = t2[X ] implies t1[Y ] = t2[Y ]. We let
inst(S, Σ) stand for the set of all instances of S satisfying Σ and instk(S, Σ) for the
set of instances I ∈ inst(S, Σ) with adom(I) ⊆ [1, k].

We say that a functional dependency X → Y is trivial if Y ⊆ X . A key depen-
dency is a functional dependency of the form X → sort(R). Then we say that X
is a superkey for the relation. If there is no superkey Y such that Y ( X then we
say that X is a candidate key or just a key. If Σ is a set of FDs, then Σ+ denotes
the set of all FDs X → Y implied by it (Σ |= X → Y ). Given a set of attributes
X ⊆ sort(R), the closure of X , written as X+, is defined as the set of attributes
{A | Σ |= X → A}.

We now review the most basic definitions of relational normalization theory, and
refer the reader to surveys [Beeri et al. 1978; Kanellakis 1990; Biskup 1995] and
texts [Abiteboul et al. 1995; Kifer et al. 2006; Levene et al. 1999] for additional
information.

A schema (R, Σ) is in BCNF if for every nontrivial functional dependency X →
Y ∈ Σ+, X is a superkey. A database schema S is in BCNF if every relation in S is
in BCNF. We say that an attribute A ∈ sort(R) is prime if it is an element of some
key of R. A schema (R, Σ) is in 3NF if for every nontrivial functional dependency
X → A ∈ Σ+, X is a superkey or A is prime. We say that a database schema S is
in 3NF if every relation schema in S is in 3NF.

Given a database schema S = (R, Σ) and some normal form NF , an NF-
decomposition is another schema S′ = {(R1, Σ1), . . . , (Rℓ, Σℓ)} such that for every
i ∈ [1, ℓ], (Ri[Ui], Σi) satisfies normal form NF . The decomposition is lossless [Aho
et al. 1979] if for every instance I of S there is an instance I ′ of S′ such that for
every i ∈ [1, ℓ], I ′(Ri) = πsort(Ri)(I), and I = I ′(R1) 1 . . . 1 I ′(Rℓ). This property
ensures that any instance of the original schema can be reconstructed by joining
the instances of the decomposed schema. We say that S′ is a dependency-preserving

decomposition of S if
(
⋃ℓ

i=1 Σi

)+
= Σ+. That is,

⋃ℓ
i=1 Σi and Σ are equivalent.

This property ensures that the constraints remain in the form of functional de-
pendencies after the decomposition, which makes the integrity enforcement more
efficient since enforcing FDs does not require joins across different relations.

It is known that every schema can be decomposed into lossless BCNF and 3NF
schemas. However, only 3NF decompositions are guaranteed to be dependency-
preserving. That is, for some schemas no lossless BCNF decomposition exists that
is also dependency-preserving. The smallest example of such schemas is R(A, B, C)
and Σ = {AB → C, C → B}.

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.



6 · S. Kolahi and L. Libkin

2.2 Information theory

Entropy is a fundamental concept in information theory that is defined to measure
the amount of information provided by a certain event. Assume that an event can
have n different outcomes s1, . . . , sn, each with probability pi, i ∈ [1, n], Then the
entropy of the probability distribution A = ({s1, . . . , sn}, PA) is defined as

H(A) =

n
∑

i=1

PA(si) log
1

PA(si)
,

which shows how much information is gained on average by knowing that one of
the s1, . . . , sn outcomes has occurred. For probabilities that are zero, we adopt
the convention that 0 log 1

0 = 0, since we have limx→0 x log 1
x = 0. It is known

that 0 ≤ H(A) ≤ log n, with H(A) = log n only for the uniform distribution
PA(si) = 1/n [Cover and Thomas 1991].

For two probability spaces A = ({s1, . . . , sn}, PA), B = ({s′1, . . . , s
′
m}, PB), and

probabilities P (s′j , si) of all the events (s′j , si) (PA and PB may not be independent),
the conditional entropy of B given A, denoted by H(B | A), gives the average
amount of information provided by B if A is known [Cover and Thomas 1991]. If
P (s′j | si) = P (s′j , si)/PA(si) are conditional probabilities, then

H(B | A) =

n
∑

i=1

(

PA(si)

m
∑

j=1

P (s′j | si) log
1

P (s′j | si)

)

.

2.3 Information theory and normalization

An information-theoretic framework was recently proposed [Arenas and Libkin
2005] to justify relational normal forms and to provide a test of “goodness” of
normal forms for other data models. This framework is completely independent of
the notions of update or query languages, and is based on the intrinsic properties
of the data. Unlike previously proposed information-theoretic measures [Lee 1987;
Cavallo and Pittarelli 1987; Dalkilic and Robertson 2000; Levene and Loizou 2003],
this measure takes into account both data and schema constraints.

Given a database schema S, a set of constraints Σ, and an instance I of (S, Σ),
the information-theoretic measure assigns a number to every position p in the in-
stance that contains a data value, by calculating a conditional entropy of a certain
probability distribution and then normalizing to the interval [0, 1]. This number,
which is called relative information content with respect to constraints Σ and is
written as RicI(p | Σ), ranges between 0 and 1 and shows how much redundancy is
carried by position p. Intuitively, if RicI(p | Σ) = 1, then p carries the maximum
possible amount of information: nothing about it can be inferred from the rest of
the instance. Smaller values of RicI(p | Σ) show that positions carry some amount
of redundancy, as some information about them can be inferred. Next we give a
formal definition of this measure.

Relative Information Content. We now present the formal definition of the infor-
mation content measure as defined in [Arenas and Libkin 2005]. Fix a schema S and
a set Σ of constraints, and let I ∈ inst(S, Σ) with ‖I‖ = n. Recall that the set of
positions in I, denoted by Pos(I), is defined as the set {(R, t, A) | R ∈ S, t ∈ I(R),
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Worst-case redundancy in database design · 7

and A ∈ sort(R)}. We now want to define RicI(p | Σ), the relative information
content of a position p ∈ Pos(I) with respect to the set of constraints Σ, and we
want this value to be normalized to the interval [0, 1]. We shall first define, for
all k, a measure Rick

I (p | Σ) that works when instances are taken from the set
instk(S, Σ). Since the maximum value of entropy for a discrete distribution on k

elements is log k, we then take the limit of the ratio
Rick

I (p|Σ)
log k as k → ∞ to get a

number in [0, 1] that does not depend on k.
This is a measure of the amount of redundancy, so intuitively, we want to measure

how much, on average, the value of position p is determined by any set of positions
in I. For that, we take a set X ⊆ Pos(I) − {p}, and assume that the values in
those positions X are lost, and then someone restores them from [1, k]. Then, we
measure how much information about the value in p is provided by this restoration
by calculating the entropy of a suitably chosen distribution of all distinct instances
that could be obtained as an outcome of the restoration. The average such measure
over all sets X ⊆ Pos(I) − {p} is defined as Rick

I (p | Σ).
We now define this formally. Fix an instance I. The reference to the instance

I will be removed from probabilities calculated below to reduce the clutter. We
(arbitrarily) assign position numbers 1, . . . , n to the positions of I (where n = ‖I‖ =
|Pos(I)|) and fix an n-element set of variables {vi | 1 ≤ i ≤ n}. Now fix a position
p ∈ Pos(I), and let Ω(I, p) be the set of all 2n−1 vectors (a1, . . . , ap−1, ap+1, . . . ,
an) such that for every i ∈ [1, n] − {p}, ai is either vi or the value in the i-th
position of I. We make this into a probability space A(I, p) = (Ω(I, p), Pu) with
the uniform distribution Pu(ā) = 21−n.

We next define conditional probabilities Pk(a | ā), for a ∈ [1, k], that show how
likely a is to occur in position p, if values are removed from I according to the tuple
ā ∈ Ω(I, p). Let I(a,ā) be obtained from I by putting a in position p, and ai in
position i 6= p. A substitution is a map σ : ā → [1, k] that assigns a value to each ai

which is a variable, and leaves other ai’s intact. We let SATk
Σ(I(a,ā)) be the set of

all substitutions σ such that σ(I(a,ā)) |= Σ and |σ(I(a,ā))| = |I| (the latter ensures
that no two tuples collapse as the result of applying σ). Then Pk(a | ā) is defined
as:

Pk(a | ā) =
|SATk

Σ(I(a,ā))|
∑

b∈[1,k] |SATk
Σ(I(b,ā))|

.

With this, we define Rick
I (p | Σ) as

∑

ā∈Ω(I,p)

(

1

2n−1

∑

a∈[1,k]

Pk(a | ā) log
1

Pk(a | ā)

)

.

Since
∑

a∈[1,k] Pk(a | ā) log 1
Pk(a|ā) measures the amount of information in p, given

constraints Σ and some missing values in I, represented by the variables in ā, the
measure Rick

I (p | Σ) is the average such amount over all ā ∈ Ω(I, p).
To see that Rick

I (p | Σ) is a conditional entropy, we define a probability distri-
bution on [1, k] as follows:

P ′
k(a) =

1

2n−1

∑

ā∈Ω(I,p)

Pk(a | ā) .

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.



8 · S. Kolahi and L. Libkin

I1
A B C D

1 2 3 4

1 2 3 5

RicI1 (p1 | Σ1) = 0.875
RicI1 (p1 | Σ2) = 0.781

I2
A B C D

1 2 3 4

1 2 3 5

1 2 3 6

RicI2(p2 | Σ1) = 0.781
RicI2(p2 | Σ2) = 0.629

I3
A B C D

1 2 3 4

1 2 3 5

1 2 3 6

1 2 3 7

RicI3 (p3 | Σ1) = 0.711
RicI3 (p3 | Σ2) = 0.522

Fig. 1. Information content vs. redundancy, where Σ1 = {A → C} and Σ2 = {A → C, B → C}.

Intuitively, this probability shows how likely an element from [1, k] is to satisfy
Σ when put in position p, given all possible interactions between p and sets of
positions in I. If Bk

Σ(I, p) is the probability space ([1, k], P ′
k), then Rick

I (p | Σ) is
the conditional entropy:

Rick
I (p | Σ) = H(Bk

Σ(I, p) | A(I, p)).

Since the domain of Bk
Σ(I, p) is [1, k], we have 0 ≤ Rick

I (p | Σ) ≤ log k. To
normalize this, we consider the ratio Rick

I (p | Σ)/ log k. Note that when k, the
domain size, increases, the values Pk(a | ā) and Rick

I (p | Σ) would change as
the number of valid substitutions in SATk

Σ(I(a,ā)) would increase. It was however
shown [Arenas and Libkin 2005] that for most reasonable constraints Σ (certainly
for all constraints definable in first-order logic, such as functional, multi-valued, and
join dependencies), the sequence of ratios Rick

I (p | Σ)/ log k converges as k → ∞,
and we thus define

RicI(p | Σ) = lim
k→∞

Rick
I (p | Σ)

log k
.

If RicI(p | Σ) = 1, the information carried by position p is at a maximum, and
there is no redundancy in position p. If the data in position p is redundant, and the
value in this position can be inferred from the rest of the instance and constraints,
then RicI(p | Σ) gets a value in [0, 1) to show how redundant the value in position
p is.

Example 2.1. Consider relation R(A, B, C, D), two sets of FDs Σ1 = {A → C}
and Σ2 = {A → C, B → C}, and three instances I1, I2, and I3 in Fig. 1 that
are in both inst(R, Σ1) and inst(R, Σ2). Let p1, p2, p3 denote the position of the
gray cells in the instances. We observe that the information content of the gray
cell decreases as it becomes more redundant by adding tuples that could determine
the value of attribute C in that position. We also see how the information content
changes when we have an additional constraint B → C that makes the gray cell
even more redundant. This example intuitively shows how the value of information
content varies between 1 and 0 as a decreasing function of redundancy.

Justifying Perfect Normal Forms. Ideally, we want databases in which every posi-
tion carries the maximum amount of information. The notion of being well-designed
is accordingly defined as follows [Arenas and Libkin 2005]:

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.



Worst-case redundancy in database design · 9

Definition 2.2. A database schema S with a set of constraints Σ is well-designed
if for every instance I ∈ inst(S, Σ) and every position p ∈ Pos(I), RicI(p | Σ) = 1.

In other words, well-designed databases are the ones that allow absolutely no re-
dundancy in any position. It is known [Arenas and Libkin 2005] that this definition
corresponds exactly to the definition of having no redundancy by Vincent [Vincent
1999], which calls a data value v in instance I redundant if replacing v with any
other value would violate the constraints. Using the notion of being well-designed,
well-known normal forms, such as BCNF and 4NF, have been justified, and the
corresponding normalization algorithms have been proved to always produce a well-
designed database.

Although some of these normal forms were previously justified by showing that
they eliminate the possibility of redundancy or update anomalies [Bernstein and
Goodman 1980; LeDoux and Parker 1982; Fagin 1979; 1981; Vincent 1999; Levene
and Vincent 2000], the information-theoretic technique provided the first justi-
fication for each step of the normalization algorithms [Arenas and Libkin 2005]
by showing that these steps never decrease the amount of information content in
any position of an instance. Furthermore, since the information-theoretic frame-
work enables us to measure the amount of redundancy in databases that are not
well-designed, it can be used to justify normal forms, such as 3NF, that do not
completely eliminate redundancies, as we will see in Section 4.3. The next theorem
summarizes some of the most important results. For more details, the reader is
referred to [Arenas and Libkin 2005].

Theorem 2.3. [Arenas and Libkin 2005] Let Σ be a set of integrity con-
straints over a database schema S.

(1 ) If Σ contains only functional and multivalued dependencies, then (S, Σ) is well-
designed if and only if it is in 4NF.

(2 ) If Σ contains only functional dependencies, then (S, Σ) is well-designed if and
only if it is in BCNF.

3. QUALITY MEASURE FOR REDUNDANCY OF SCHEMAS

There is always a tradeoff between having a less redundant database and the effi-
ciency of query answering: while doing a good normalization guarantees the least
amount of redundancy, it may shred the original relation into too many relations,
and this may affect the performance of query answering by requiring many joins.
In order to find out if we really want to pay this price, we first need to know how
bad an arbitrary schema is in terms of redundancy, and then decide whether a
normalization is necessary in case the schema is allowing too much redundancy.

In traditional normalization theory, however, there is a yes or no answer to the
question of whether a schema is good in terms of allowing redundant data. In this
section, we show that there is a spectrum of redundancy ranging from too redundant
to well-designed. In fact, we introduce a quality measure for a given relation schema
with functional dependencies that calculates the minimum information content,
or the maximum redundancy, for instances of that schema. This number could
help a database designer decide whether further normalization is necessary in case
database instances of the schema have the potential to carry too much redundancy.
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Functional dependencies are one of the most popular integrity constraints that
are taken into account in practical database design. However, there are other
important integrity constraints, such as inclusion dependencies, that could affect the
redundancy of data values. An inclusion dependency (IND), expressed as Ri[X ] ⊆
Rj [Y ], states that for every database instance I and every tuple t ∈ I(Ri), there
should be a tuple in t′ ∈ I(Rj) such that t[X ] = t′[Y ]. Not only these constraints
could introduce new causes of redundancy, but also new functional dependencies
could be implied as a result of interacting FDs and INDs. This issue has been
studied before, and it is known that interacting FDs and INDs are not desirable
in a database design [Levene and Vincent 2000] for two reasons: a database design
may be normalized with respect to the set of FDs, but not normalized with respect
to the FDs implied by the set of FDs and INDs considered together. Moreover, the
joint implication problem for FDs and INDs is undecidable.

Obviously, for a complete comparison of two different designs for a database,
each consisting of multiple relations, one needs to consider inclusion dependencies.
Our goal is this paper is, however, to study the redundancy introduced by FDs
and the redundancy tolerated by FD-based normal forms. We, therefore, assume
that schemas do not have inclusion or any other inter-relational dependencies, and
then, without loss of generality, we can focus our attention to database schemas
with only one relation.

The results of this section and Section 4 are mainly due to a fundamental
lemma (Lemma 3.4), which basically shows that the calculation of the information-
theoretic measure of redundancy for schemas that only contain functional depen-
dencies reduces to a purely combinatorial analysis. This leads to an interesting
observation: while we may need the full power of the information content measure
to quantify redundancies caused by different kinds of integrity constraints, we do
not need to deal with the complicated information-theoretic definition of this mea-
sure when analyzing the redundancy of schemas and normal forms in presense of
only FDs, which is what mostly happens in practice.

3.1 Guaranteed information content of schemas

We now introduce a measure called guaranteed information content of a schema
for a given attribute that shows how redundant the instances of a schema can
potentially be for that attribute. This measure finds the information content of the
most redundant position for an attribute by looking at the column corresponding
to the attribute in all instances of the schema. We want to guarantee a certain
amount of information content even for the most redundant instances of a schema,
in which there are arbitrarily many distinct tuples showing a redundant fact due
to a functional dependency. To be able to produce such instances, we assume that
the domain of all attributes is an infinite set, e.g., the set of positive integers N+.

Definition 3.1. Let R be a relation schema and Σ be a set of functional depen-
dencies defined over the attributes of R. For an attribute A ∈ sort(R), we define
the set of possible values of RicI(p | Σ) for positions p = (R, t, A) in instances
I ∈ inst(R, Σ):

POSSR
Σ(A) = {RicI(p | Σ) |I is an instance of (R, Σ),

p = (R, t, A) is in Pos(I)}.
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Then the guaranteed information content of schema (R, Σ) for attribute A, GICR
Σ(A),

is the infimum inf POSSR
Σ(A).

In other words, GICR
Σ(A) is the least amount of information content that may be

found in A-columns of instances of R that satisfy FDs in Σ, and it can represent
the worst-case of redundancy in column A over all possible instances.

The definition of GICR
Σ(A) itself does not even suggest that this value is com-

putable. Our goal now is to present a purely combinatorial description of GICR
Σ(A)

that immediately leads to an algorithm for calculating this value, and study the
complexity of the problem of calculating it.

First we note that GICR
Σ(A) = 1 for every attribute A that is not implied by

any non-key set of attributes (i.e., X → A only if X is a superkey). The value of
such an attribute in any instance can be replaced by an arbitrary constant without
violating a functional dependency, and hence the information content is always 1
as there is absolutely no redundancy for that attribute.

So we need to show how to calculate GICR
Σ(A) when A can be implied by a

non-key. It turns out that the structure of minimal non-key sets of attributes that
imply A determines this value.

Recall that a hypergraph is a pair H = (U,F), where U is a set and F is a family
of subsets of U . A hitting set of H is a set V ⊆ U such that V ∩ X 6= ∅ for all
X ∈ F . We use the notation #HS(H) for the number of hitting sets of H.

The calculation of the value of GICR
Σ(A) is based on computing the number of

hitting sets of an implication hypergraph of Σ and A, which is a dual concept of a
well-studied notion of generating sets for functional dependencies (see, e.g., [Beeri
et al. 1984; Mannila and Räihä 1986]; those were primarily studied in connec-
tion with constructing Armstrong relations for families of constraints). The notion
of ‘dual’ is the same as duality between keys and antikeys in relational schemas
[Demetrovics and Thi 1987].

Definition 3.2. Given a set Σ of FDs over sort(R) and an attribute A, the im-
plication hypergraph of Σ and A is a hypergraph H = (U,F) where

— F = {X | X is a minimal non-key subset of sort(R) such that X → A ∈ Σ+

and A 6∈ X}, and

— U =
⋃

{X | X ∈ F}.

We refer to this hypergraph as Imp(Σ, A), or, if Σ is clear from the context, as
Imp(A).

For instance, for schema R1(A, B, C, D, E) with FDs Σ = {AB → E, D → E},
the implication hypergraph of Σ and E is Imp(Σ, E) = (U,F), where U = {A, B, D}
and F = {AB, D}. Moreover, we have #HS(Imp(Σ, E)) = |{AD, BD, ABD}| = 3.

Theorem 3.3. Given a set Σ of FDs over sort(R) and an attribute A, let
Imp(Σ, A) = (U,F) be the implication hypergraph of Σ and A. Then

GICR
Σ(A) =

#HS(Imp(Σ, A))

2|U|
.

In other words, GICR
Σ(A) is the ratio of hitting sets in the implication hypergraph

(which is thus guaranteed to be in the [0, 1] range).
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We need a lemma to prove this theorem. Let Σ be a set of FDs over a relation
schema R, I ∈ inst(R, Σ), p ∈ Pos(I). We say that ā ∈ Ω(I, p) determines p if
there exists k0 > 0 such that for every k > k0, we have P (a | ā) = 1 for some
a ∈ adom(I), and P (b | ā) = 0 for every b ∈ [1, k] − {a}. In other words, ā
determines p if one can specify a single value for p, given the values present in ā
and constraints Σ. We write Ω0(I, p) for the set of all ā ∈ Ω(I, p) that determine p,
and Ω1(I, p) for the set of all ā ∈ Ω(I, p) that do not determine p. Let n = |Pos(I)|.
Then:

Lemma 3.4. RicI(p | Σ) = |Ω1(I, p)|/2n−1.

Proof. We show that the value of

lim
k→∞

1

log k

∑

a∈[1,k]

Pk(a | ā) log
1

Pk(a | ā)

is 0 if ā ∈ Ω0(I, p) and it is 1 if ā ∈ Ω1(I, p). Assume that ā determines p.
By definition, there is a k0 > 0 such that for every k > k0, it is the case that
Pk(a | ā) = 1 for some a ∈ adom(I), and Pk(b | ā) = 0 for all b ∈ [1, k]−{a}. Hence
for all k > k0 we have:

∑

a∈[1,k]

Pk(a | ā) log
1

Pk(a | ā)
= 0.

Note that Pk(a | ā) log 1
Pk(a|ā) = 0 when Pk(a | ā) = 0, by definition. Then

lim
k→∞

1

log k

∑

a∈[1,k]

Pk(a | ā) log
1

Pk(a | ā)
= 0.

Conversely, suppose ā does not determine p. Then for every k0 there is k > k0

such that either Pk(a | ā) = 0 for all a, or Pk(a1 | ā), Pk(a2 | ā) > 0 for at least two
different values a1 and a2. Since I |= Σ, we have |SATk

Σ(I(a,ā))| > 0 for at least
one a ∈ adom(I), ruling out the first possibility. Since Σ contains only FDs, we
conclude that |SATk

Σ(I(b,ā))| = |SATk
Σ(I(b′,ā))| > 0 for all b, b′ 6∈ adom(I). Hence

Pk(b | ā) ≤ 1/(k − n).
Next, expand ā to ā′ by putting in a value for every position that is determined by

ā (which excludes p). Let r be the number of variables in ā′. Then for each c ∈ [1, k]
we have |SATk

Σ(I(c,ā))| ≤ kr. Furthermore, for each b 6∈ adom(I), any substitution
σ that assigns to the r variables different values in [1, k] − (adom(I) ∪ {b}) will be
in SATk

Σ(I(b,ā)); hence, we have |SATk
Σ(I(b,ā))| ≥ (k − n − r)r. We thus have

Pk(b | ā) ≥
(k − n − r)r

k · kr
=

1

k

(

1 −
n + r

k

)r
.

Let πi = Pk(ai | ā) for each ai ∈ adom(I). Then

1
log k

∑

a∈[1,k] Pk(a | ā) log 1
Pk(a|ā) ≥

1
log k

(

∑

ai∈adom(I)

πi log 1
πi

+ (k − n) · log(k−n)
k ·

(

1 − n+r
k

)r
)

.

Since n and r are fixed, this implies that limk→∞
1

log k

∑

a∈[1,k] Pk(a | ā) log 1
Pk(a|ā) 6=

0. By a known result [Arenas and Libkin 2005], this limit always exists, and if it is
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not 0, then it must be equal to 1, so we have

RicI(p | Σ) = limk→∞
1

log k

∑

ā∈Ω(I,p)

1
2n−1

∑

a∈[1,k]

P (a | ā) log 1
P (a|ā)

= 1
2n−1

∑

ā∈Ω1(I,p)

limk→∞
1

log k

∑

a∈[1,k]

P (a | ā) log 1
P (a|ā)

= |Ω1(I, p)|/2n−1,

which concludes the proof of Lemma 3.4.

Proof of Theorem 3.3. Let Imp(A) = (U,F) be the implication hypergraph
of A, X1, . . . , Xk denote the sets in F , and S contain all the hitting sets of the
family F , i.e.,

S = {Y | Y ⊆ X1 ∪ . . . ∪ Xk, Y ∩ Xi 6= ∅ for all i ∈ [1, k]}.

We denote the cardinality of the universe of Imp(A) (that is,
⋃

i Xi) by l. Then
the proof consists of two parts. We prove that:

(a). for every ε > 0, there exists an instance I ∈ inst(R, Σ) and a position
p = (R, t, A) in Pos(I), such that RicI(p | Σ) < |S| · 2−l + ε;

(b). for every instance I ∈ inst(R, Σ) and every position p = (R, t, A) in Pos(I),
we have RicI(p | Σ) ≥ |S| · 2−l.

(a) We construct instance I of R consisting of tuples t0, . . . , tq, where q = kr, as
follows:

—for all attributes B ∈ sort(R), t0[B] = 1;

—for a tuple ti, i ∈ [1, q], ti[B] = 1 for all B ∈ X+
j , where j = ⌈i/r⌉, and for all

other attributes C 6∈ X+
j , ti[C] = v, where v is a fresh value not used so far.

This instance consists of k groups, each having r tuples that agree with each other
and also with tuple t0 only on one of the sets of attributes X+

j . Now consider
position p = (R, t0, A).

Claim 3.5. For the information content of position p we have

RicI(p | Σ) ≤ |S| · 2−l +
2−l − |S|

2l
· (

2m − 1

2m
)r,

where m = |sort(R)|.

Proof. Let ā be an arbitrary vector in Ω(I, p). Let ā[t0] denote the subtuple in
ā corresponding to tuple t0 ∈ I. If for all attributes in one of the sets Y in S, ā[t0]

contains variables, then ā does not determine p no matter what the other positions
in ā contain. This is because none of the FDs implying attribute A could enforce a
value for position p since Y contains at least one element from each Xj , j ∈ [1, k].
There are |S| · 2n−l−1 of such ā’s.

If for all attributes of some Xj , j ∈ [1, k], subtuple ā[t0] contains constants, which

can happen for (2l − |S|) · 2m−l−1 subtuples, then ā does not determine p only if
for any subtuple ā[ti] corresponding to a tuple ti, i ∈ ((j − 1)r, jr], ā[ti] does not
contain a constant for at least one attribute in XjA. Therefore, ā[ti] can have at
most 2m − 1 shapes. The other q − r subtuples in ā can have at most 2m shapes.
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Putting everything together, |Ω1(I, p)|, or the total number of different ā’s in
Ω(I, p) that do not determine p is at most

|S| · 2n−l−1 + (2l − |S|) · (2m − 1)r · (2m)q−r · 2m−l−1,

and n = m(q + 1). Then by Lemma 3.4,

RicI(p | Σ) ≤
|S| · 2n−l−1

2n−1
+

(2l − |S|) · (2m − 1)r · (2m)q−r · 2m−l−1

2n−1

= |S| · 2−l +
2l − |S|

2l
· (

2m − 1

2m
)r,

which proves the claim. By taking r > log 2m

2m
−1

( 2l

2l−|S|
)(1

ε ) we will have RicI(p |

Σ) < |S| · 2−l + ε.
(b) Let I be an arbitrary instance in inst(R, Σ), p = (R, t0, A) ∈ Pos(I), and ā ∈
Ω(I, p). Let ā[t0] denote the subtuple of ā corresponding to t0. If for all attributes
in one of the sets Y in S, ā[t0] contains variables, then ā does not determine p no

matter what the other positions in ā contain. There are |S| · 2n−l−1 of such ā’s.
Therefore, |Ω1(I, p)| is at least |S| · 2n−l−1, and thus RicI(p | Σ) ≥ |S| · 2−l, which
completes the proof of Theorem 3.3.

The following example shows how the measure can be applied to a relation
schema with functional dependency to determine the worst-case redundancy of
the instances.

Example 3.6. Consider a schema R1(A, B, C, D, E) with FDs:

Σ1 = { AB → E,
D → E }

and a schema R2(A, B, C, D, E) with FDs:

Σ2 = { A → B,
AC → E,
BD → E }

Just by looking at these two sets of FDs, it may not be immediately obvious which
one of the designs (R1, Σ1) or (R2, Σ2) allows more redundancy in column E.
Now using our combinatorial criterion, we can calculate and compare the values
of GICR1

Σ1
(E) and GICR2

Σ2
(E).

First we use Theorem 3.3 to calculate the minimum information content, or the
maximum redundancy, allowed in column E of instances of R1 satisfying Σ1:

Imp(Σ1, E) = ({A, B, D}, {AB, D})
#HS(Imp(Σ1, E)) = |{AD, BD, ABD}| = 3

GICR1

Σ1
(E) = 3 · 2−3 = 3

8

Now similar calculations for Σ2 show:

Imp(Σ2, E) = ({A, B, C, D}, {AC, BD, AD})
#HS(Imp(Σ2, E)) = |{AD, AB, CD, ABC, ABD, ACD, BCD, ABCD}| = 8

GICR2

Σ2
(E) = 8 · 2−4 = 1

2
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Hence, the first schema has a higher potential for storing redundant values in column
E since it guarantees a lower information content for this attribute.

3.2 Complexity of computing guaranteed information content

The following result shows that computing the worst-case redundancy for a schema
with functional dependencies is computationally expensive. However, the complex-
ity is with respect to the size of the schema and FDs, and has nothing to do with
the size of database instances. Therefore, the guaranteed information content mea-
sure can still be useful in analyzing redundancy of schemas if we are dealing with
schemas with reasonable sizes.

Theorem 3.7. Computing guaranteed information content of a schema is #P-
hard.

Proof. We reduce from the #P-complete problem #MONOTONE 2-SAT [Valiant
1979], which is the problem of finding the number of satisfying assignments of a
CNF formula, in which every clause is a disjunction of two positive literals. Let
C = C1∧. . .∧Ck be such a CNF formula, where for every Ci, i ∈ [1, k], Ci = xi1∨xi2

for two variables xi1, xi2 ∈ X (we assume that every variable in X appears in at
least one clause). We create relation schema R with attributes sort(R) = X∪{y, z}
and a set of FDs Σ that contains an FD of the form xi1xi2 → y for every clause
Ci = xi1∨xi2 in C. Guaranteed information content of schema (R, Σ) for attribute
y, GICR

Σ(y), can be computed by finding #HS(Imp(y)), which is exactly the num-
ber of satisfying assignments of C. More precisely, GICR

Σ(y) = N ·2−|X| if and only
if the number of satisfying assignments of C is N .

4. QUALITY MEASURE FOR REDUNDANCY OF NORMAL FORMS

The information content measure was recently used [Arenas and Libkin 2005] to
justify perfect normal forms like BCNF that completely eliminate redundancies. In
practice, however, one usually settles for 3NF which, unlike BCNF, may not per-
fectly eliminate all redundancies but always guarantees dependency preservation.

Our goal in this section is to provide an information-theoretic measure that eval-
uates non-perfect normal forms: the ones that tolerate some redundancy. Our
measure, called guaranteed information content of normal forms, is based on the
highest amount of redundancy or, equivalently, the lowest amount of information
content that normal forms allow in a single position of a database as well as in the
entire database on average.

The main result of this section provides a formal justification for one of the
most popular and commonly-used normal forms, 3NF. The main property possessed
by 3NF, but not by BCNF, is dependency preservation: for every schema, there
always exists a lossless decomposition into 3NF that preserves all the functional
dependencies. To guarantee dependency preservation, 3NF has to pay a price by
tolerating some redundancy. We will compute the minimum price, in terms of
redundancy, that is needed for a normal form to guarantee dependency preservation
and show that a “good” 3NF normalization achieves this minimum redundancy.
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4.1 Guaranteed information content of normal forms

To be able to compare normal forms with respect to the lowest amount of informa-
tion content that they allow, we again shall use the notion of guaranteed information
content (see Definition 3.1). This time, it needs to be specified for a condition C
(i.e., it is the smallest number g ∈ [0, 1] that can be found as the information con-
tent of some position in instances that satisfy C). Furthermore, as we are using
this notion to compare different conditions, we do not want the minimum over all
instances satisfying C, but rather instances with the same number of attributes.
As explained earlier, even for conditions such as 3NF, the values of RicI(p | Σ)
can be arbitrarily low [Kolahi 2007], but the cause of this is relations with many
attributes. Hence we do not want to compare values of RicI(p | Σ) in relations over
different sets of attributes. Thus, we shall use a modified definition of guaranteed
information content, specialized to instances of m-attribute relations that satisfy
C.

Definition 4.1. Let C be a condition on relation schemas with functional depen-
dencies. We define the set of possible values of RicI(p | Σ) for m-attribute instances
I of schemas satisfying C:

POSSC(m) = {RicI(p | Σ) |I is an instance of (R, Σ),
R has m attributes,
(R, Σ) satisfies C}.

Then the guaranteed information content, GICC(m), is inf POSSC(m).

For instance, we know that BCNF corresponds exactly to maximum information
content for all positions in all instances [Arenas and Libkin 2005]. We can now
formulate this fact as GICBCNF(m) = 1, for all m > 0.

Guaranteed information content of a normal form measures the redundancy of
the most redundant position across all instances of schemas that satisfy the normal
form. Next, we introduce another measure that looks for instances that have the
highest average redundancy over all instances of schemas satisfying a normal form.

4.2 Guaranteed average information content of normal forms

To compare normal forms with respect to the lowest average information content
that they allow for an instance, we define a measure called guaranteed average
information content for a condition C as the smallest number g ∈ [0, 1] that can
be found as the average information content of some instance that satisfies C. We
are particularly interested in the lowest average information content of instances of
m-attribute relations that satisfy C.

Definition 4.2. Let C be a condition on relation schemas with functional depen-
dencies. Let AVG(I | Σ) denote the average of the numbers in {RicI(p | Σ) |
p ∈ Pos(I)}. We define the set of possible values of AVG(I | Σ) for m-attribute
instances I of schemas satisfying C:

POSSAC(m) = {AVG(I | Σ) |I is an instance of (R, Σ),
R has m attributes,
(R, Σ) satisfies C}.

Then the guaranteed average information content, GAVGC(m), is inf POSSAC(m).
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Again, we can clearly say that GAVGBCNF(m) = 1, for all m > 0.
Next we will use the measures that we introduced to evaluate normal forms by

the amount of redundancy they tolerate.

4.3 Price of dependency preservation: justifying 3NF

We say that a normal form NF is dependency-preserving if every relation schema
admits a dependency-preserving NF -decomposition. That is, for every relation
schema (R, Σ), where Σ is a set of FDs, there is a lossless decomposition of (R, Σ)
into schemas (R1, Σ1), . . . , (Rℓ, Σℓ), ℓ ≥ 1, such that each (Ri, Σi) satisfies NF and
(
⋃l

i=1 Σi

)+
= Σ+.

For a dependency-preserving normal form NF , we look at the set G(NF) of
values c ∈ [0, 1] such that for an arbitrary schema we can always guarantee an
NF -decomposition in which the information content in all positions is at least
c. Again, to be able to produce highly-redundant instances, we assume that the
domain of all attributes is an infinite set, e.g., the set of positive integers N+.
Formally, G(NF) is the set

{c ∈ [0, 1] | ∀ (R, Σ), ∀ I ∈ inst(R, Σ),
∃ NF -decomposition {(Rj , Σj)}ℓ

j=1 s.t.
∀j ≤ ℓ ∀p ∈ Pos(Ij), RicIj (p | Σj) ≥ c},

where Ij refers to πsort(Rj)(I). Using this, we define the price of dependency preser-
vation for NF as the smallest amount of information content that is necessarily lost
due to redundancies: that is, the smallest amount of redundancy one has to tolerate
in order to have dependency preservation.

Definition 4.3. For every dependency-preserving normal form NF , the price of
dependency preservation Price(NF) is defined as 1 − supG(NF).

Clearly, Price(NF) ≤ 1. Since the FD-based normal form that achieves the
maximum value 1 of RicI(p | Σ) in all relations is BCNF [Arenas and Libkin
2005], and BCNF does not ensure dependency preservation, Price(NF) > 0 for
any dependency-preserving normal form NF .

Now we are ready to present the main result of this section. Intuitively, it shows
that each normal form needs to pay at least half of the maximum redundancy to
achieve dependency preservation, and this is exactly what 3NF pays.

Theorem 4.4. Price(3NF)=1/2. Furthermore, if NF is a dependency-preserving
normal form, then Price(NF)≥1/2.

In the rest of this section we prove this theorem. We say that a schema (R, Σ)
is indecomposable if it has no lossless dependency-preserving decomposition into
smaller relations. That is, there is no NF -decomposition {(R1, Σ1), . . . , (Rℓ, Σℓ)},
with |sort(Rj)| < |sort(R)| for every j ∈ [1, ℓ], that is both lossless and dependency-
preserving. We are only interested in indecomposable schemas that are not in BCNF
since BCNF already guarantees zero redundancy. The proof of Theorem 4.4 relies
on two properties of indecomposable schemas presented in propositions below. We
say that a candidate key X is elementary [Zaniolo 1982] if there is an attribute
A 6∈ X such that X ′ → A 6∈ Σ+ for all X ′ ( X .
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Input: A relation schema (R[U ], Σ), where Σ is a set of functional dependencies.
Output: A database schema S in 3NF.
find a minimal cover Σ′ of Σ;
for each X → A in Σ′ do

include the relation schema (Ri[XA], {X → A}) in the output schema:
S := S ∪ (Ri[XA], {X → A}), where Ri is a fresh relation name;

if there is no (Ri[Ui],Σ
′

i) such that Ui is a superkey for R[U ] then

choose a key X of R[U ];
S := S ∪ {(Rj [X], ∅)};

return S.

Fig. 2. An algorithm for synthesizing 3NF schemas.

Proposition 4.5. Let R be a relation schema with attributes {A1, . . . , Am}, and
let Σ be a non-empty set of FDs over R. Then (R, Σ) is indecomposable if and only
if it has an (m − 1)-attribute elementary key.

Proof. If (R, Σ) contains an (m − 1)-attribute elementary candidate key, then
every decomposition of it would lose this key; hence, it is indecomposable. Con-
versely, suppose (R, Σ) is indecomposable, and there is no elementary candidate key
with m− 1 attributes. Let Σc be an arbitrary minimal cover for Σ. Then for every
FD X → A ∈ Σc, we have X ∪ {A} ( sort(R). Hence, the standard 3NF synthesis
algorithm (see [Abiteboul et al. 1995]) shown in Fig. 2 will produce a dependency-
preserving decomposition of (R, Σ), and this contradicts the assumption that (R, Σ)
is indecomposable.

Notice that the schemas produced by the synthesis algorithm in Fig. 2 (taken
from [Abiteboul et al. 1995]) are indecomposable. The only difference between this
algorithm and the 3NF synthesis algorithm, originally proposed by Bernstein [Bern-
stein 1976] and later extended [Biskup et al. 1979] to ensure the lossless decomposi-
tion property, is that this one does not group the functional dependencies according
to their left-hand sides before synthesizing, and therefore produces smaller schemas,
which are indecomposable.

Let ID denote the property of being indecomposable. Recall that GICID(m) is
the infimum of the set POSSID(m) of possible values of RicI(p | Σ) for m-attribute
instances of indecomposable schemas (R, Σ). The following proposition shows that
the information content in instances of indecomposable schemas can go arbitrarily
close to 1/2 but not less than that.

Proposition 4.6. GICID(m) = 1/2 for all m > 2.

Proof. The proof consists of two parts. We prove that:

(a). for every m > 2 and ε > 0, there exists a schema (R, Σ), an instance
I ∈ inst(R, Σ), and a position p ∈ Pos(I), such that |sort(R)| = m, (R, Σ) is
indecomposable, and RicI(p | Σ) < 1/2 + ε;

(b). for every indecomposable schema (R, Σ), every instance I ∈ inst(R, Σ), and
every position p ∈ Pos(I), we have RicI(p | Σ) ≥ 1/2.

(a) Consider the relation schema R(A1, . . . , Am) with FDs Σ = {A1A2 . . . Am−1 →
Am, Am → A1} and the instance I of this schema shown in Fig. 3. By Proposi-
tion 4.5, (R, Σ) is indecomposable. Let t0 denote the first tuple depicted in Fig. 3,
and let p denote the position of the gray cell.
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A1 A2 A3 . . . Am

1 1 1 . . . 1

1 2 1 . . . 1

1 3 1 . . . 1

.

.

.

.

.

.

.

.

.

.

.

.

1 k 1 . . . 1

Fig. 3. A database instance for the proofs of Propositions 4.6 and 4.10.

Claim 4.7. The information content of position p is

RicI(p | Σ) =
1

2
+

1

2

(3

4

)k−1

.

Proof. Let ā be an arbitrary vector in Ω(I, p). Let ā[t0] denote the subtuple in
ā corresponding to tuple t0 ∈ I and ā[t1] denote the subtuple in ā corresponding
to an arbitrary tuple t1 ∈ I. Each position in these subtuples contains either a
variable (representing a missing value) or a constant, which equals the value that
I has for that position.

Then ā does not determine p if and only if

(1) the subtuple ā[t0] has a variable in the position corresponding to attribute Am;
or

(2) the subtuple ā[t0] has a constant in the position corresponding to attribute Am,
and for an arbitrary subtuple ā[t1] in ā, t1 6= t0:

2.1. the subtuple ā[t1] has a variable in the position corresponding to attribute
Am; or

2.2. the subtuple ā[t0] has a constant in the position corresponding to attribute
Am but a variable in the position corresponding to attribute A1.

In Case 1, ā can have either a variable or a constant in all other n − 2 positions.
Therefore, we can have 2n−2 such ā’s. In Case 2, ā[t0] can have either a constant or a
variable in the positions corresponding to A2, . . . , Am−1. Furthermore, in Case 2.1,
every such subtuple ā[t1] can have either a constant or a variable in the positions
corresponding to attributes A1, . . . , Am−1, and in Case 2.2, it can have either a
constant or a variable in the positions corresponding to A2, . . . , Am−1. Therefore,
the total number of ā’s satisfying conditions of Case 2 is 2m−2(2m−1 + 2m−2)k−1

since we have k − 1 tuples other than t0 in the instance.
Then |Ω1(I, p)|, or the total number of different ā’s in Ω(I, p) that do not deter-

mine p is

2n−2 + 2m−2(2m−1 + 2m−2)k−1.

By Lemma 3.4, RicI(p | Σ) can be obtained by dividing this number by 2n−1 =
2mk−1:

RicI(p | Σ) =
2mk−2 + 2m−2(2m−1 + 2m−2)k−1

2mk−1

=
1

2
+

1

2

(3

4

)k−1

,
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which proves the claim.

Thus for any ε > 0, there is an instance of the form shown in Fig. 3 and a position
p in it such that the information content of p is less than 1/2 + ε: one needs to
choose k > 1 + log4/3(1/(2ε)) and apply Claim 4.7.

(b) We need an easy observation (that will also be used in the proofs of the next
section). For a key X , an attribute A 6∈ X such that A does not occur in the
right-hand side of any nontrivial FD, we have RicI(p | Σ) = 1 for any instance
I of (R, Σ) and any position p corresponding to attribute A. Indeed, in this case
|SATk

Σ(I(a,ā))| = |SATk
Σ(I(b,ā))| for arbitrary a, b ∈ [1, k] and hence P (a | ā) = 1/k,

and thus Rick
I (p | Σ) = log k, and RicI(p | Σ) = limk→∞ Rick

I (p | Σ)/ log k = 1.

Now let Σ be an arbitrary non-empty set of FDs over R(A1, . . . , Am) such that
(R, Σ) is indecomposable, and A1, . . . , Am−1 → Am ∈ Σ be the FD of the form
described in Proposition 4.5: that is, A1 . . . Am−1 is an elementary candidate key.
For any instance I of (R, Σ) and any position p = (R, t, Am) ∈ Pos(I) corresponding
to attribute Am, we have RicI(p | Σ) = 1 since p cannot have any redundancy due
to a non-key FD.

Let I ∈ inst(R, Σ), p = (R, t0, Ai) ∈ Pos(I), for some i ∈ [1, m − 1], and
ā ∈ Ω(I, p). Let ā[t0] denote the subtuple of ā corresponding to t0. It is easy to
see that if ā[t0] has a variable in the position corresponding to attribute Am, then
ā does not determine p, no matter what the other positions in ā contain. This is
because there is no nontrivial FD X → Ai ∈ Σ+ such that X ⊆ {A2, . . . , Am−1}.
All other n− 2 positions in ā can therefore contain either a constant or a variable,
so there are at least 2n−2 ā’s that do not determine p. Then using Lemma 3.4,

we conclude that the information content of p is at least 2n−2

2n−1 = 1/2. This proves
Proposition 4.6.

Proof of Theorem 4.4. The second part of the proof follows from Proposi-
tion 4.6: the information content of a position in an indecomposable instance can be
arbitrarily close to 1/2. Therefore, for every dependency-preserving normal form
NF (which cannot further decompose an indecomposable instance), supG(NF)
cannot exceed 1/2. Therefore, Price(NF) ≥ 1/2.

To prove the first part, we notice that, by Proposition 4.5 and basic properties
of 3NF, every indecomposable (R, Σ) is in 3NF. Furthermore, if (R, Σ) is decom-
posable, then the 3NF synthesis algorithm of Fig. 2 will decompose (R, Σ) into
indecomposable schemas. Therefore, for every (R, Σ) and every I ∈ inst(R, Σ),
one can find a 3NF-decomposition in which the information content of every po-
sition is at least 1/2 and sometimes exactly 1/2. That is, supG(3NF) = 1/2, and
Price(3NF) = 1/2. This concludes the proof.

Notice that the proof of Theorem 4.4 implies that the guaranteed information
content 1/2 (which witnesses Price(3NF) = 1/2) occurs in decompositions pro-
duced by the standard synthesis algorithm [Abiteboul et al. 1995], shown in Fig. 2,
that generates a 3NF design from a minimal cover for Σ. Hence, our result not
only justifies 3NF as the best dependency-preserving normal form, but also shows
which 3NF decomposition algorithm guarantees the highest information content.
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4.4 Comparing normal forms

In Section 4.3, we calculated the price of dependency preservation for normal forms
and proved that one can always guarantee a 3NF decomposition whose price would
be less than or equal to the price of other normal form decompositions. This
good price can be achieved for schemas produced by the standard 3NF synthesis
algorithm, as shown in Fig. 2. However, not every 3NF normalization would be
of the same quality in terms of redundancy. It was noticed long ago that 3NF
normalization algorithms can differ significantly [Ling et al. 1981; Zaniolo 1982;
Biskup and Meyer 1987] in other aspects, such as the size of schemas they produce or
the ability to remove redundant attributes. In this section, we use the information-
theoretic framework to compare different dependency-preserving normal forms in
terms of the amount of redundancy they allow in data.

The measure for this comparison is the gain of normalization function defined as

GainNF1/NF2
(m) =

GICNF1
(m)

GICNF2
(m)

,

where GICNF1
(m), GICNF2

(m) are the smallest value of RicI(p | Σ), as (R, Σ)
ranges over schemas with m attributes satisfying normal forms NF1 and NF1 re-
spectively (see Definition 4.1) .

We will substitute parameters NF1 or NF2 with All representing all schemas
with no particular constraint, 3NF representing all schemas that satisfy the general
definition of third normal form, and 3NF+ representing the indecomposable schemas
generated by the synthesis algorithm shown in Fig. 2.

We now prove that any 3NF schema, not necessarily indecomposable, is at least
twice as good as some unnormalized schema. More precisely, the gain function for
3NF is the constant 2 for all m > 2 (the case of m ≤ 2 is special, as any nontrivial
FD over two attributes is a key, and hence all schemas are in BCNF). We also show
that 3NF+ schemas could be significantly better than arbitrary 3NF schemas. That
is,

Theorem 4.8. For every m > 2:

— Gain3NF/All(m) = 2;
— Gain3NF+/3NF(m) = 2m−3;

— Gain3NF+/All(m) = 2m−2.

In the proof of Theorem 4.4, we showed that GIC3NF+(m) = GICID(m) = 1/2.
Hence, the result will follow from these two propositions.

Proposition 4.9. GICAll(m) = 21−m for all m > 2.

Proposition 4.10. GIC3NF(m)=22−m for all m > 2.

Proof of Proposition 4.9. We need to show that:

(a). for every m > 2 and ε > 0, there exists a schema (R, Σ) with |sort(R)| = m,
an instance I ∈ inst(R, Σ), and a position p ∈ Pos(I) such that RicI(p | Σ) <
21−m + ε;

(b). for every (R, Σ) with |sort(R)| = m, every instance I ∈ inst(R, Σ), and
every position p ∈ Pos(I), we have RicI(p | Σ) ≥ 21−m.
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A1 A2 A3 . . . Am

1 1 1 . . . 1

1 2 1 . . . 1

1 1 2 . . . 1

.

.

.

.

.

.

.

.

.

.

.

.

1 1 1 . . . 2

1 3 1 . . . 1

1 1 3 . . . 1

.

.

.
.
.
.

.

.

.
.
.
.

1 1 1 . . . 3

.

.

.
.
.
.

.

.

.
.
.
.

1 k 1 . . . 1

1 1 k . . . 1

.

.

.

.

.

.

.

.

.

.

.

.

1 1 1 . . . k

Fig. 4. A database instance for the proof of Proposition 4.9.

(a) Consider R(A1, . . . , Am) and Σ = {A2 → A1, A3 → A1, . . . , Am → A1}. Con-
sider the instance I ∈ inst(R, Σ) shown in Fig. 4. Let t0 denote the first tuple
depicted in this figure, and p = (R, t0, A1) denote the position of the gray cell. Let
t be the number of tuples minus 1, that is, (m − 1)(k − 1).

Claim 4.11. The information content of position p is

RicI(p | Σ) =
1

2m+t−1

m−1
∑

i=0

(

m − 1

i

)

(1 + 2−i)t.

Proof. Let ā be an arbitrary vector in Ω(I, p). Let ā[t0] denote the subtuple of
ā corresponding to t0, and suppose ā[t0] has constants in positions corresponding
to i attributes, and it has variables in the positions corresponding to the remaining
m − 1 − i attributes. Then ā does not determine p if and only if for any arbitrary
subtuple ā[t1] of ā corresponding to a tuple t1 ∈ I, t1 6= t0, we have:

(1) the subtuple ā[t1] has a variable in the position corresponding to A1; or

(2) the subtuple ā[t1] has a constant in the position corresponding to A1 but vari-
ables in the positions corresponding to the same i attributes for which ā[t0] has
constants.

In Case 1, ā[t1] can have either a constant or a variable in every position correspond-
ing to the other attributes A2, . . . , Am, and therefore there are 2m−1 possibilities
for such subtuples. In Case 2, ā[t1] can have either a constant or a variable in every
position corresponding to the other m − 1 − i attributes, and therefore there are
2m−1−i such subtuples. There are t tuples in I other than t0, and i can range over
[0, m − 1]. Therefore, |Ω1(I, p)| or the total number of different ā’s in Ω(I, p) that
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do not determine p is

m−1
∑

i=0

(

m − 1

i

)

(2m−1 + 2m−1−i)t.

The information content of p is then obtained by dividing this number by 2n−1 =
2m(t+1)−1, which proves Claim 4.11:

RicI(p | Σ) =
1

2m(t+1)−1

m−1
∑

i=0

(

m − 1

i

)

(2m−1 + 2m−1−i)t

=
1

2m+t−1

m−1
∑

i=0

(

m − 1

i

)

(1 + 2−i)t.

The following shows that as long as t > log4/3(1/ε) (i.e., k > (1+log4/3(1/ε))/(m−
1)), for the instance in Fig. 4 and position p of the gray cell the information content
is less than 21−m + ε:

RicI(p | Σ) =
1

2m+t−1

m−1
∑

i=0

(

m − 1

i

)

(1 + 2−i)t

=
1

2m+t−1

(

2t +

m−1
∑

i=1

(

m − 1

i

)

(1 + 2−i)t

)

< 21−m +
1

2m+t−1

m−1
∑

i=0

(

m − 1

i

)

(1 + 2−1)t

= 21−m +
1

2m+t−1

(

2m−1(
3

2
)t

)

= 21−m +
(3

4

)t

< 21−m + ε.

(b) Let Σ be an arbitrary set of FDs over a relational schema R, I ∈ inst(R, Σ),
p = (R, t0, A1) ∈ Pos(I), and ā ∈ Ω(I, p). Let ā[t0] denote the subtuple in ā
corresponding to t0. It is easy to see that if ā[t0] has variables in all positions
corresponding to attributes A2, . . . , Am, then ā does not determine p, no matter
what the other positions in ā contain. All the other n − m positions in ā can
therefore contain either a constant or a variable, so the number of ā’s that do not
determine p is at least 2n−m; that is, |Ω1(I, p)| ≥ 2n−m. Thus, using Lemma 3.4, the

information content of p is at least 2n−m

2n−1 = 21−m. This proves Proposition 4.9.

Proof of Proposition 4.10. We need to show that:

(a). for an arbitrary ε > 0 and every m > 2, there exists a 3NF schema (R, Σ)
with |sort(R)| = m, an instance I ∈ inst(R, Σ), and a position p ∈ Pos(I) such
that RicI(p | Σ) < 22−m + ε.

(b). for every (R, Σ) in 3NF with |sort(R)| = m, every instance I ∈ inst(R, Σ),
and every position p ∈ Pos(I), we have RicI(p | Σ) ≥ 22−m.
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(a) Consider R(A1, . . . , Am) and Σ = {A1A2 → A3 . . . Am, A3 → A1, . . . , Am →
A1}. Clearly (R, Σ) is in 3NF. Consider the instance I ∈ inst(R, Σ) shown in Fig. 3.
Let t0 denote the first tuple depicted in this figure, and p = (R, t0, A1) denote the
position of the gray cell.

Claim 4.12. The information content of position p is

RicI(p | Σ) =
1

2m+k−3

m−2
∑

i=0

(

m − 2

i

)

(1 + 2−i)k−1.

Proof. Let ā be an arbitrary vector in Ω(I, p). Let ā[t0] denote the subtuple
in ā corresponding to t0, and suppose that ā[t0] has constants in the positions
corresponding to i attributes among A3, . . . Am, and it has variables in the positions
corresponding to the remaining m− 2− i attributes. Then ā does not determine p
if and only if for any arbitrary subtuple ā[t1] in ā corresponding to a tuple t1 ∈ I,
t1 6= t0, either

(1) the subtuple ā[t1] has a variable in the position corresponding to A1; or

(2) the subtuple ā[t1] has a constant in the position corresponding to A1 but vari-
ables in the positions corresponding to the same i attributes for which ā[t0] has
constants.

In Case 1, ā[t1] can have either a constant or a variable in every position corre-
sponding to attributes A2, . . . , Am, and hence there could be 2m−1 such subtuples
for every t1 6= t0. In Case 2, ā[t1] can have either a constant or a variable in every
position corresponding to the m− 1 − i attributes, and therefore there are 2m−1−i

possible such subtuples. There are k − 1 subtuples like ā[t1] , and i can range over
[0, m−2]. So far we have not said anything about values corresponding to A2 in t0,
but since A1A2 is a candidate key, in both cases, ā[t0] can have either a constant or
a variable in that position. Putting it all together, we see that |Ω1(I, p)|, the total
number of different ā’s in Ω(I, p) that do not determine p is

2 ·
m−2
∑

i=0

(

m − 2

i

)

(2m−1 + 2m−1−i)k−1.

The information content of p can be obtained by dividing this number by 2n−1 =
2mk−1:

RicI(p | Σ) =
1

2mk−2

m−2
∑

i=0

(

m − 2

i

)

(2m−1 + 2m−1−i)k−1

=
1

2m+k−3

m−2
∑

i=0

(

m − 2

i

)

(1 + 2−i)k−1.

This proves Claim 4.12.
Now we need to show that for any ε > 0 there is an instance of the form shown in

Fig. 3 and a position p in it corresponding to the gray cell such that the information
content of p is less than 22−m + ε. Taking p to be the position used in Claim 4.12
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we have

RicI(p | Σ) =
1

2m+k−3

m−2
∑

i=0

(

m − 2

i

)

(1 + 2−i)k−1

=
1

2m+k−3

(

2k−1 +

m−2
∑

i=1

(

m − 2

i

)

(1 + 2−i)k−1

)

< 22−m +
1

2m+k−3

m−2
∑

i=0

(

m − 2

i

)

(1 + 2−1)k−1

= 22−m +
(3

4

)k−1

< 22−m + ε,

as long as k > 1 + log4/3(1/ε).
(b) Let (R, Σ) be in 3NF, I ∈ inst(R, Σ), p = (R, t0, A1) ∈ Pos(I), and ā ∈ Ω(I, p).
Let ā[t0] denote the subtuple in ā corresponding to t0. We assume that A1 is a prime
attribute, but not a key itself, because otherwise RicI(p | Σ) = 1 since p would not
have any redundancy due to a non-key FD.

It is easy to see that if ā[t0] has variables in all positions corresponding to at-
tributes A2, . . . , Am, then ā does not determine p, no matter what the other posi-
tions in ā contain. All the other n − m positions in ā can therefore contain either
a constant or a variable, so there are at least 2n−m ā’s that do not determine p.
Since A1 is prime and not a key by itself, there is at least another attribute Ak

such that A1, Ak belong to a candidate key. If ā[t0] has a constant in the position
corresponding to Ak and variables in all positions corresponding to the other at-
tributes, then ā does not determine p since the FD Ak → A1 6∈ Σ+ . Thus, there
are at least another 2n−m ā’s that do not determine p. Then using Lemma 3.4, the

information content of p is at least 2n−m+2n−m

2n−1 = 22−m, which completes the proof
of Proposition 4.10 and thus of Theorem 4.8.

Combining the results of Theorem 4.8 with fact that GICBCNF(m) = 1, for all
m > 0, we obtain the following comparisons of BCNF and 3NF:

Corollary 4.13. For every m > 2:

—GainBCNF/3NF+(m) = 2;

—GainBCNF/3NF(m) = 2m−2;
—GainBCNF/All(m) = 2m−1.

We have so far compared normal forms based on the amount of information
content that they guarantee for each position in an instance, and concluded that
a 3NF+ normalization is the best according to this measure. Now we would like
to extend this result, and show that doing a 3NF+ normalization can also have a
significant effect on the average information content of instances.

This time we compare normal forms based on average gain of normalization
function defined as

GainAvgNF1/NF2
(m) =

GAVGNF1
(m)

GAVGNF2
(m)

,
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where GAVGNF1
(m), GAVGNF2

(m) are the smallest value of average information
content of instances as (R, Σ) ranges over schemas with m attributes satisfying
normal forms NF1 and NF1 respectively (see Definition 4.2) .

The following theorem shows how the lowest average information content changes
when we go from an ordinary 3NF normalization to a 3NF+ one.

Theorem 4.14. For every m > 4:

GainAvg3NF+/3NF(m) > 2
m
2
−2.

The proof of this theorem follows from the following two propositions.

Proposition 4.15. GAVG3NF+(m) ≥ 1/2 + 1/(2m) for all m > 2.

Proposition 4.16. GAVG3NF(m) ≤ 21−m
2 for all m > 4.

Proof of Proposition 4.15. We need to show that for every (R, Σ) with
|sort(R)| = m and every instance I ∈ inst(R, Σ), we have AVG(I | Σ) ≥ 1/2 +
1/(2m). Let Σ be an arbitrary non-empty set of FDs over R(A1, . . . , Am) such
that (R, Σ) is indecomposable, and A1, . . . , Am−1 → Am ∈ Σ be the FD of the
form described in Proposition 4.5. For an instance I ∈ inst(R, Σ) and any po-
sition p = (R, t, Am) ∈ Pos(I), we have RicI(p | Σ) = 1. If k is the total
number of tuples in I, then there is k of these positions. For all other positions
p = (R, t, Ai), i ∈ [1, m − 1] corresponding to any of the attributes A1, . . . , Am−1,
we have RicI(p | Σ) ≥ 1/2, by Proposition 4.6, and there is k · (m − 1) of these
positions. If n denotes ‖I‖, then

AVG(I | Σ) ≥
k + k · (m − 1) · 1

2

n

=
1

2
+

1

2m
,

which proves the proposition.

Proof of Proposition 4.16. We show that for every m > 4 and ε > 0, there
exists a schema (R, Σ) with |sort(R)| = m and an instance I ∈ inst(R, Σ), such
that (R, Σ) is in 3NF, and AVG(I | Σ) < 21−m/2 + ε. Consider R(A1, . . . , Am),
where m is an even integer and

Σ = {A1 → A3, A3 → A5, . . . , Am−3 → Am−1, Am−1 → A1,

A2 → A4, A4 → A6, . . . , Am−2 → Am, Am → A2}.

Consider the instance I ∈ inst(R, Σ) shown in Fig. 5. Let t0 denote the first tuple
depicted in this figure, and p = (R, t0, A1) denote the position of the gray cell.

Claim 4.17. The information content of position p is

RicI(p | Σ) =
1

2
m
2

+k−2

m
2
−1
∑

i=0

(m
2 − 1

i

)

(1 + 2−i)k−1.

Proof. Let ā be an arbitrary vector in Ω(I, p). Let ā[t0] denote the subtuple
in ā corresponding to t0, and suppose that ā[t0] has constants in the positions
corresponding to i attributes among A3, A5, . . . Am−1, and it has variables in the
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A1 A2 A3 A4 . . . Am−1 Am

1 1 1 1 . . . 1 1

1 2 1 2 . . . 1 2

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

1 k 1 k . . . 1 k

2 1 2 1 . . . 2 1

2 2 2 2 . . . 2 2

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

2 k 2 k . . . 2 k

.

.

.

k 1 k 1 . . . k 1

k 2 k 2 . . . k 2

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

k k k k . . . k k

Fig. 5. A database instance for the proof of Proposition 4.16.

positions corresponding to the remaining m/2 − i attributes with odd subscripts.
Then ā does not determine p if and only if for any arbitrary subtuple ā[t1] in ā
corresponding to a tuple t1 among the first k tuples in Fig. 5, t1 6= t0, either

(1) the subtuple ā[t1] has a variable in the position corresponding to A1; or

(2) the subtuple ā[t1] has a constant in the position corresponding to A1, but it
has variables in the positions corresponding to the same i attributes among
A3, A5, . . . Am−1 for which ā[t0] has constants.

In Case 1, ā[t1] can have either a constant or a variable in every position corre-
sponding to attributes A2, . . . , Am, and hence there could be 2m−1 such subtuples
for every t1 6= t0. In Case 2, ā[t1] can have either a constant or a variable in every
position corresponding to the m− 1 − i attributes, and therefore there are 2m−1−i

possible such subtuples. There are k − 1 subtuples like ā[t1] , and i can range over
[0, m/2 − 1]. So far we have not said anything about positions corresponding to
attributes A2, A4, . . . , Am in t0 (m/2 positions) and all positions in tuples that are
not among the first k tuples in Fig. 5 (mk(k − 1) positions). Since these positions
do not have anything to do with the value in position p, ā can have either a con-
stant or a variable for those positions and still do not determine p. Putting it all
together, we see that |Ω1(I, p)|, the total number of different ā’s in Ω(I, p) that do
not determine p is

2
m
2 · 2mk(k−1) ·

m
2
−1
∑

i=0

(m
2 − 1

i

)

(2m−1 + 2m−1−i)k−1.

The information content of p can be obtained by dividing this number by 2n−1 =
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2mk2−1:

RicI(p | Σ) =
2

m
2 · 2mk(k−1)

2mk2−1

m
2
−1
∑

i=0

(m
2 − 1

i

)

(2m−1 + 2m−1−i)k−1

=
1

2
m
2

+k−2

m
2
−1
∑

i=0

(m
2 − 1

i

)

(1 + 2−i)k−1.

This proves Claim 4.17.
Now we proceed with the proof of Proposition 4.16. It can be easily observed that

instance I ∈ inst(R, Σ) shown in Fig. 5 is symmetric with respect to all positions,
and therefore the information content of all positions is the same as the value that
we calculated in Claim 4.17 since the FDs are also symmetric. Then we have

AVG(I | Σ) =
1

2
m
2

+k−2

m
2
−1
∑

i=0

(m
2 − 1

i

)

(1 + 2−i)k−1

=
1

2
m
2

+k−2



2k−1 +

m
2
−1
∑

i=1

(m
2 − 1

i

)

(1 + 2−i)k−1





< 21−m
2 + 22−m

2
−k ·

m
2
−1
∑

i=1

(m
2 − 1

i

)

(1 + 2−1)k−1

= 21−m
2 + 21−m

2 · (
m

2
− 1) · (

3

4
)k−1

< 21−m
2 + ε

if we take k > 1 + log4/3(
m/2−1

ε·2m/2−1 ), which completes the proof of Proposition 4.16
and hence that of Theorem 4.14.

5. CONCLUSIONS

Using the information-theoretic framework of [Arenas and Libkin 2005], we pre-
sented a measure for analyzing database designs based on how much redundant
data the database can potentially store. For a relation schema with functional de-
pendencies, guaranteed information content of the schema represents the highest
redundancy, or equivalently the lowest information content, allowed by that schema
for instances. We showed how this measure can be calculated for a given schema,
which can be used to decide whether normalizing or decomposing the schema into
smaller relations is necessary. We were motivated by two facts: first, normaliz-
ing a database that does not contain much redundancy is a poor design decision
that leads to inefficient query answering; and second, a database with too much
redundancy is highly prone to update anomalies and inconsistencies.

Our next result concerns the normalization of relational databases with func-
tional dependencies. We showed that when preserving functional dependencies is
critical, a minimum amount of redundancy must be tolerated, which we call the
price of dependency preservation. To achieve this minimum redundancy, one has
to normalize the database into a 3NF+ design, which is the name we used for good
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3NF designs produced by the main 3NF synthesis algorithm in [Abiteboul et al.
1995]. Doing an arbitrary 3NF normalization can also reduce the redundancy, how-
ever, by a small factor. In this analysis, normal forms were compared based on their
guaranteed information content, which represents the highest redundancy allowed
by the normal form for a data value. The results were extended for guaranteed
average information content that represents the highest redundancy allowed by a
normal form for values in a database on average.

We would like to extend these results in several ways. First, we would like to use
the information-theoretic approach to see whether we can find a natural analog of
3NF for hierarchical databases such as XML. Such a normal form should guarantee a
reasonable information content for XML documents satisfying the normal form, and
all non-satisfying XML documents should be decomposable into this normal form
in a dependency preserving manner. The challenge is that we do not yet have an
adequate understanding of the notion of dependency preserving normalization for
XML documents. The complicated structure of XML documents makes it nontrivial
to define such a concept. The good news is that functional dependencies can be
defined for XML in a natural way [Arenas and Libkin 2004], and the information-
theoretic framework is applicable to normal forms defined for XML [Arenas and
Libkin 2005].

Besides functional dependencies, there are other constraints, such as multivalued
or inclusion dependencies, that can make a data value redundant. The information-
theoretic framework is capable of representing the redundancy of data with respect
to these constraints as well [Arenas and Libkin 2005]. It would be interesting
to ask whether we can extend the notion of guaranteed information content for
dependencies beyond FDs, and if we can calculate the potential redundancy of
instances of a schema with inclusion or multivalued dependencies.
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