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Abstract

Applying the toals of algorithmic information theoty, we compare
several candidates for an asymptotically machine-independent. absolute
measure of the infonnational or “cognitive” distance between discrete ob-
jecis roand yo The marvnum of the condidonal Kolimogorov complexi-
ties max{ K{ylr), K(r|yl}, is shown to be optimal, in the sense of being
minimal within an additive constant among semmicomputable, symmetric,
positive senidefinite functions of £ and y satisfying a reasonavle nor.
malization condition and abeying the triangle intequality. The optimal
metric, in turn, differs by at most an addiuve lngarithmic term from the
size of the smallest program for a universad reverssble computer to trans-
form r into y, This program functions in a “catalytic™ capacity, heing
retained in the computer before, during, and after the computation. Sim.
darly, the sum of the conditional complexities, Kiylr) + K{r{y). in shown
1o be equad within a logarithumie teem ta the mimmal amount of infor-
mation fowing out and in during a reverable computation in which the
program is not retained. Finally, using the physical theory of reversible
computation, it is shown that the gmple difference Kor) — K(y) is an
appropriate e nniversal, antisymmetrie, and trasitive) measure of the
amonnt of thermodynamic work required to teansform atring r into string
4 by the moat ethivient process,

1 Introduction

The algorithmic entropy, or Kolmoporov complexity, K(r) of a string 1 may
be defined as the size in bits of & minimal vized program to compute r on an
optimal binioy nniversal computer. Tatuitively, K(r) represents the unonnt
of wlormation required to genetate v by an effective process. The conditional
alyaiithmie entropy Kiylo), of yoelative ta romay be defined similarly as the
wze of s mmiaal sized propram to compute gt oo furnishie D ags an anxal
ray mput to the compatation. lutmtively Kyl r) eepresents the amonnt of



formation required to generate y from r by an effective process, The fune-
tions Ay and A'f). though defined in terms of a particudar machine wmodel, are
wmachine independent np ta an additive constant, and acgiire an asymptotically
universal and absolute character through Church®™s thesis, from the ability of
universal machines to simulate one another and execnte any etfective process,

It wonld be good to have a sumilarly universal measure of the informational
=listance” between two strings, e the minimal quantity of information suf-
firient to translate between 5 oand yo generanng either string effectively from
the other. The conditional entropy K (y]r) itself is of course unsuitable for this
purpose because it is unsyounetries KtAlr), where A is the cpty string, is
stiadl for ail r. yet intuitively o long random string - is not close to the empty
string.

This isyv.metry can be remedied by dehung the algorithmie informational
distanee hetween roand y to be the sum of the relative entropies[17]:

Riylry+ Kirly).

The resulting metric will overestimate the iuformation required to translate
between roand yaf there s some redundancy between the information reguired
to get from r to g and the information requiced to get from y to r.

We therefors inquire to what extent the information requiesd to compute
¢ froms g can be made to overlap with that required to compnte y from r. In
some simple cases, complete overlap can be achieved, so that the same minimal
program suflices to commpute 5 from y as to compute y from ro For example
if © oand yoare independent random binary strings of the sane length notup to
aclditive contants A (rfy) -2 K(yle) - n), then their bitwise exclusive or £ by
serves awoa minnnal progeam for both compntations, Similacly, if ¢ - wr and
y o rwowhere w, roand woare independent randong strings of Jie <iune length,
then i bow isaominimal prograan to compuote either steing from the other.

Now suppose that more infortation in required for one of these computations
than for the other, say,

Kiylr) - Nirjy).

Then the minimd programs cannot be uade wente ad because they must he
of different sizes, Nevertheless, i stinple cases, the overlap can till be made
complete, in the senne that the larger propgrun (for g piven r) can be made to
contain all the information i the stiadler program, as well as some additionad
information. Thisis ao when roand y o idependent random stompeof wneguald
length, for example woand e above, Then u e serves anaonnnnal peopgran
for u foom ew, and (e werves aqone log e from u

A prnvypal result of thin paper s that, up to loganthimic eoror terma, the
mhormation requited to franslate hetween two dringesc can alwayy he tepredentedg
m thes axnually overlapping way, b Noanely, et

Pom the cther oo b the programs o goang, between i spendent caeloan s oand g can o



kyk = Ki(rlyy,
ka Kiy|r).
I = ky—ky.

Then there is astriag o of length ky + O(log k) and a string q of length [+ log
such that d serves as the minimal program both from rq to y and from y to
rq. This means that the information required to pass from £ to y is always
maximally corcelated with the information cequiced to get from y to r. It s
therefore never the case that a large amoeunt of information iy required to get
from r to y and a large but andrpendent amount of information is required
to get fiom y to ro (It iy very important here that the time of computation
s completeiy ignored: this is why this result does not contradict the idea of
oue-way functions.)

The situation is avalogous to the inverse function theorem of maltidimen-
sional analysis. This theorem sayy that under certain conditions, if we awe
a vector function f(r.d) then it has an inverse g(y.d) such that in a certain
domain, f{d, r) == y holds if and only if g{y.d) = r. Tu the functior going from
v to r, the paruneter J cemains the same as in the fnetion gomg from r to y,

The process nf going from r to y wiy may be broken into two stapeq Fiest,
add the string ¢; wecovd, use the difference program o between gr and yo In
the reverse direction, st use o to go from gy to gr: second, erase ¢ Thus the
computation from £ to y needs both o and g, while the computation from y to
£ ueeds only o as program.

The foregoing is true of ordinary computations, hut if one insists that the
computiation be periormed reoersibly, that is by a machine whose tiangition
function is 11 (14, 4, then the fll program p o= dy is veeded 1o pecform the
cotuputadion in either direction. Thiy i3 because reversible computers cannot
pet rid of nnwianted information simply by erasing it as ordinary ireversible
computers do, If they are to get rid of unwanted information at all, they must
canecel it againgt sgquivalent information already present elsewhere in the com-
puter. Reversible computations are disenssed further in section .

Section 4 developt an axionatic theory of information distance and acgues
that the function

Lhory) max{Kir|y). Ky}

is the modat natural way of formalizing the notion of the minbmal algonthmie
informatioaal distance between ¢ oand yo Ths fanction s symmetrie, obeys
the triangle inequality to within an additive constant, and i maninad anong

ane winhen, beotmade completely independent Por example nae y W ogo iom v to gy oand 1o
pofrom gy to v We auspect this may bBe toae, in general, at leaat o within leganthon tenne



a clims of fnetions satisfying a normalization constraint appropriately hmiting
the number of distinct strings y within a given distance of any r.

Section 3 defines a reversible Jdistance Ea representing the amonnt of -
formation required to program a reversible computation from r to y. Fhe Fa
distanee is equal within an additive constant to the length of the conversion
program p = dy considiied above, and so is at most logarithmically greater
than the optimal distanee £ The reversible program functions in a catalytic
capacity in the sense that it remains wnchanged thronghoat the conrputation.

Section G instead cousiders reversible computations in which additional in-
formation r besides roin consmned, and additional information s besides y is
generated 10 the course of the computation. The sum of these amounts of infor-
mation s shown to be equal to within alogarithmic teon to Zarek’s sum metrie
Kyja) + Ririy). which is typically lareer than our proposed optunal metrie
Lecause of the redndaney between roand ¢ Section 7 compares the topologieal
properties of the aprimal aned sum metries,

Fitally Section 8 cansiders the problem of defining a thermodynamic cost of
transforining £ into g, awd argues that it eught 1o be an antisymetric. tran-
sitive fatction, i contrast to the informatienal metrnes which are svmmetrie,
Landaner’s principle connecting logical and phystieal icreversibility is invoked to
argue in favor of Aggy Rty) as the ideal thetmodyrauice cost of transformine
Iinto y,

2 Known properties of algorithmic entropy

Let Up) denote the length of the hinary <tiing po Let £5 depote the number of
clements of set S,

The following definitiony and theorems spell ont some basic proap=riies of
Nir .

Ihe notion of emicamputable functions wis introdueed into algoritlmie
information thearyyin [1910 Fhat paper cian also serve asa rood introduction
to the vibject, We day thal a real valned function fr.y) over strings is upper
semcomputable if the set of triples

{(roy. dy: forou) - ol o vational }

v recuraively enomerable. A function f v lower semicomputable off s
upper setmn ompntable,

A prefix set in acset of stenps such that no member is a pretic ol any other
member A partial peeurave finetnion Fip, b as called a preflx interproter
i for cack 0 othe set {p Ao Fpory s prefico wet The capmnent pois
called o self-delinndting program tor y frtom o, becire, ewing to the prelix
propety. no punctidon o teqred to tell the interpreter how el of poto



We detine the conditional algorithmic entropy of y with condition r.
with respect Lo the interpreter Foas

Kegiylry= min lip.
F.op.ri=y

(2.1) Theorem There is a prefix interpreter I7 with the property that for all
other pretix interpreters & and for all por there (2 an additive constant ep sach
that

Keplr) S Kglp.r) + cp .

n}
Suech a protix interpreter will be called optimal. We fix such an U and write
Kirly) = Keirly) .

We will call K(rly) the algorithmic entropy of r with vespect to y.
From now og. we will denote by < an inequality to within an additive con-

+ .-
stant. and by = the sitnation when both < and > hold.

(2.2) Theorem

(a) Kirly) 18 an upper semicomputable function with  the property
Z ) Kiry < 1.
v <

(b} If f(r.y)is an upper semicomputable fancetion with 2!12 [tr9) < | then

Kiylr) : flr. v,

The proof of the following theorem can be fonnd eg in [10] and [7].

(2.3) Theorem

Kiroy) ' Kiryy Kiylr Kor)

Let (e, r) be the set of atrings y such that Koyle) o

(2.4) Theorem  We liave

g By "0 K(gr



3 Conversion programs

(3.1) Difference Theorem With the notation of the Introdneticn. suppose
ki < ka. Then there is a string p of length k2 + O(log k+» such that

UpOn =y Ulp lyy=1r.

This is equivalent to asserting rhat there is a stiing o of length kg such that
both K(y|rq.d) and K(rqly.d) are bounded by Otlog k). We call this theorem
the Difference Theorem since it asserts the existence of a difference string p
that converts both ways between £ and y and at least one of these conversions
is optimad. If ky = kg then the conversion is optimal in both directions.

Proof Let § be the set of all binary strings. Let XU Y be two disjoint sets
whose elements are in a one-to one correspondence with the clements of $: owe
couldeg st X = {(s0):s€StandY = {(s.1):s€ §}. LetG = (XUY. E)
be the following infinite bipartite graph over X UY with set of edges of E where

E={(r.y): Kirly) <k, Klylr) <k;}.

By definition. the maximum degree of the nodes in X 18 at most 28+ and in
¥ ois at most 28041

Two edges are adjacent if they have common endpoints, A matching is a
set of nonadjacent edges. We can partition £ into at most 26*? matchings
My Mz If we can do this constructively we have a program p of length
k2 + Oflog ka) that takes Or into y and ly into £, Indeed, for a pair (r.y) € E.
the number v of the matching M, contuining (£, y) bas lengih at most ky +O(1),
Knowing ¢ and r gives y while knowing + and y gives r,

Let us do the partitioning constructively, in the most simple-minded way.
Dy its detinition, the set £ can be enumerated into a sequence eyeg, .. of
edpes, Tnostep £oa new edge e 13 given. We will put it into one of the nonempty
matchings created o far (it does not matter into which oned if this is possible:;
itis not we create a new madching, For elarity, here is a formal definition. We
Aefine, recursively, a function nt for each ¢ oanch that M, = { e :n(0) 0}
et
MY e, ntu) - -t}

Then ngt) is the et csnch that oy isonot adjaeent to any edie of M

Let un show that the munher of nonenpty matchings i indeed at most 26007,
Let M, bea nonempty matehiag: then there s actaoch that - (1), The edpe
ey it adjacent to some edge i each matching M, for p <00 But the number of
edpes that an edpe can be adpacent to s at nost the sam of the degrees of the
endpoints actually, 2 tess than that, Henee, o -1 260020

More explicitly, we desoribe the prograim poach thed Uipohr) yaf b0
amd Epchyy il h LI continmec the tollowing, parts,



The wumbers ka and i,

Procedure to generate the sequence ey, ea, .. ..

Procednre to simultaneonsly generate the matchines My, Ma.. ..
Procedure to generate M.

Procedute to find y using r. M, if b =C and to tind £ using y. M, if b = 1.
[ |

(3.2) Excess Theorem Let ns use the above notation, with [ = ky ~ k).
There is a binary string g of length { + Oflog 1) snch that

Klylqr)
Kiqrly)

ki 4+ Otlog ky) .
ki + Otlogky).

a

Proof Similarly to the above proof, let the graph G = (X UY. E') be now such
that
E={(ry: Kirly)<k}.

Its edges are enumerated again as . eg... .. Now the degree of the nodes in Y
is still € 280+ Lot us define a new graph G = (X' U Y. E') such that in it,
the degree of the degree of nodes in X' is also bounded by 2%, To do this, we
will simply split the nodes © X i woon as their degree would rise above 21,
For each node r € X, let (royr). (roy2).... be the natural enumeration (in the
order of the edgey ey ea, .. ) of the set of edges {{r.y):(r.y) € E}. Let

min) = [n/'.!k‘] .

We aplit each node rinto a sequence of nodes (£, z2(r). ... We have
X' = {:ntnire Xom=1,2....}),
E' = {(eun(fhyire Xoa a2 12000 ).

Thua, at node r. the fiest gronp of 250 edpes (1, g, will be attached to the new
node 2y (). the second group to za(r), ete,

Now the binary string ¢ v a sell-delimiting progran for the number mosuch
that (zalr).y) € B By definition, meo« 207 therefore L) = 14 Ol ).
The pair rom determines the node =, (r). Since the maximam degree of the
praph ¢ 1w ab most 25 we have the desiced upper bonneds on the conditional
algorithimie enfropies, |



4 Distance axioms

Let us identify digitized black-and-white pictures with binary <strings. There are
many distances defined for binary strings. For eximple, the Hamming disiance
and the Euclidean distance. Such distances are sometimes appropriate. For
instance. if we take a binary picture. and change a few bits on rhat picture.
then the rhanged and unchanged pictures have small Hamming or Euclidean
distance. and they ‘lo look similar. However. thiy 13 not always the case. The
positive and negative prints of a photo have the largest possible Hamming and
Euclidean distance. yet they look similar in our eyes, Also. if we shift a picture
one bit to the right, again the Hamming distance may increase by a lot. but
the two pictures remain similar. Many approackes to pattern recognition try to
define picture <imilarity. Let na show that the distanee Ey defined above is, in
a sense. minimal among all reasonable similarity measures.

A distance measure must be nonnegative for all r # y. symmetric, and
satisly the triangle inequality. This is not sufficient since a distanre measure
like Dér.y) = 1 for all r # y must be excluded. For each r and 4. we want
only finitely many elerients y at a distance d from y. Exactly how fast we want
the distances of the strings y from r to go to x is not important: it is only a
matter of sealing, For convenienee, we will require the fullowing norialization

property:
o2 Pevicy,
v

We consider only distances that are computable in some broad sense. This
condition will not be seen as unduly restrictive. As a watter of fact, only
upper semicomputability of D{r.y) will be required. This is reasonable: asg
we have more and more time to process roand y we may discover new and
new sinilarities among them, and thus may revise our upper bound on their
distance, The npper semicomputability means exactly that Dir.y) is the limit
of a computable sequence of such upper honnds,

A perinissible distance. D(r.y). is a total nonpegative function on the
pairs r.y of binary strings that is O only if r = y. is saymmetric, satisfies the
triangle inequality. is semicomputable and normalized,

The bllowing theorem shows that K| s, in some sense. the optimal peruns
sible distance. We find it reniarkable that this distanee happens to also have a
“physical™ interpretation as the approximate length of the conversion program
of theorem 31, and, as shown in the next section, of the smallest prograun tht
transforms r into y on a reversible machine



(4.1) Theorem For an appropriate constant ¢, let E(r.y) = Ei(r.y) + ¢ if
r = y and O otherwise. Then Eir.y) is a permissible distance function that
is minimal in the sense that for every permissible distanee function Dir.y) we
liave

E(r.y) -z Dir y).

Proof The nonnegativity and sytnmetry properties are immediate from def-
inition. The addition theorem 2.3 implies that there is a nonnegative integer
constant ¢ such that

E1(J‘.Z) < En:.y)+E1(y.:)+c-.

Let this ¢ be the one used in the statenient of the theorem, then E(z.y) satisfies
the triangle inequality withont an additive vonstant.

The normalization property as well as the minimaiity follow from Theorem
22. 0

5 Reversible Computations

Reversible models of computation. in which the transition function is 1:1. have
been explored especially in connection with the question of the thermodynamic
limits of computation. Reversibie Turing machines were introduced by Lecerf[14)
and independent'y but nuch later by Bennett [4]: further results concering them
can be found in {5)(3][15].

Reversibility of a Turing michine’s transition fnetion can be guaranteed
by requiring disjointuess of the ranges of the quintuples, just as determinism
15 guaranteed by requiring disjointness of theie domains, To assure that the
machiue’s global input:output relation is also 1:1. it 18 necessary to impose a
standard format on the inmtial and final instantancons deseriptions, in particnlar
requiring that all working storage other than that used for the input and output
strings be blank at the beginning and end of the compntation. Let {¢,} be
the partial recursive function computed by the th suoh reversible Turing
machine. As usual. we It {p,} denote the partial recursive function commted
by the v'th ordinary (in general icreversible) Turing, machine. Among the more
important properties of reversible Turing wachines are the following:

There “ o auniversal reverdable machine, ves an index o sueb that for all & andld
routkta) ok tad (Here At denotes i self delimiting representation
of the index k).



Two irreversible algorithms. one for computing g from r and the other or
computing r from y, can be etliciently combuned to obtain a reversil 1
algorith 1 for computine y from r. Mare formially. for any two indices ¢
and ) one ¢an effectively obtain an tndex k surh that. for any strings 1
and y. if o, (r) =y and o,(y) = r. then v = y.

From any index 1 one may obrain an index & such that ¢ has the same domain
as @, and. for every r. vetxr) = (r.9r)). In other words. an arbitrary
Turing machine can be simulated by a reversible one which saves a copy
of the irreversible machine’s input in order to assure a global 1:1 mapping.

The above simulation can be perfurmed rather efticiently. In particular. for
auy ¢ > 8 oue can find a reversibile sinmlating machine which runs in time
OIT %) and space () Nlog T) compared to the time T and space § of the
i reversible machine being stmwated,

From any inlex 1 one may effectively obtain an index k such that if ¢, is 1:1,
then yu = ¢,. The reversible Turing machines {¢}. therefore, provide a
Gdidel-nnmbering of all 1:1 partial recursive funetions.

The connection with thermodynamics comes from the fact that in principle
the only thermodynamically costiy computer operations are those that are logi-
cally irreversible, i.e. operations that map several distinet logical states of rhe
computer onte a common suceessor, thereby throwing away information about
the computer’s previous state [12] [4].(9](5]. The thermodynamies of computa.
tion iy discussed further in section 8. Here we show that the minimal program
size for a reversible computer to transform input r into output y is equal within
an vlditive constant to the size of the minimal conversion string p of theorem
J.1

The theory of reversible minimal program size is conveniently developed
using it reversible anadog of the universid prefix interpreter U defined in Section
)

A partial recursive function Fip,r) ix called o reversible prefix inter-
proter if

For vivch p, F(por)in 11 as o function of r;
for each r the set {p: HylF(por) =y} is a prelix «et; and
for cach g the set { p: AR Fip.r) s y ) is a prefix set,

Suchan F may be thonght of as the function computed by apeversible Taring
ntwhine which performsa 1 mappinggon 1 « oy under the cantrol of a propriam
p whieh remains on the prograan tape thionphout - e computation, Any other
wark Capes eed duting the congptation are supplied in blank condition at
the Lepinning of the comnputation acd must be left blank o the epd of the



computation. The program tape’s head begins and ends scauning the leftmost
square of the program. which is self-delimiting both for forward computations
from each input r as well as for backward compnrations from each output y.

A universal reversible prefix interpreter 'R, whose program size is
minimal to within an additive constant, can readily be shown to exist. and rhe
reversible algorithmic entropy AR{y|r) defined as wmin{l(p) : L'Rip. r
vt

In the Section 3. it was shown that for any strines r and y there exists a
conversion program p. of length at most logarithmically greater than Ey(r.y) =
max{ K{ylri. K{rjy)}. such that U(p.0r) = y and U(p. ly) = . Here we show
that the length of this minimal conversion prograin is equal within a constant
to the length of the minimal reversible program for transforming r into y.

(5.1) Theorem

KR(y'ry = min{l(p): Uip.0z) =y and U(p.ly)=r}.

0

Proof This proof is an example of the general technigue for combining two
itteversible prograuns, for g from roand for £ from y, into a single reversible
program for y from r. In this caxe the two irreversible programs are almost the
same, sinee by theorem 3.1 the minimal conversion program pis both a program
for y given Or and a program for r given 1y, The computation proceeds by
aeveria) stiges as shown in Table 1. To ilustrate motions of the head on the self-
delimiting program tape. the progrim pis represented by the string “prog”in
the table, with the head position indicatesd by a caret,

Eacluof the stages can he accomplished without asiug any many-to-one op.
erations. For example, appending a zero to the hepiuning of £ in stage 1 is can
bhe nudone by changing the zero to a blank. In stage 2, the computation of
from r. which might otherwise suvolve icreversible steps, i rendered peversible
by saving a history, on pr-vieusly blank tape, of all the information that would
have heen thrown away. In stige 30 naking an extra copy of the ontput onto
blank tape i1 an intrinstealiy reversible process i therefore can bhe done with
out writing anything further in the nistory, Stame 1 exactly nadoes the work of
stage 2.0 which is possible becaanae of the history penerated inostape 20 Pechaps
the most cntical stave is stagze 70 which s computed from y for the -ale
purpose of yenerating a bistory of that compntation, Then, after the extra copy
of r s reversibly disposed of in step 8 by cancellation (the inverse of copyine
onto blak tape) stage ) nndoes stiyre 7 thereby disposing of the history aml
the tentaining copy of 2o while producing only the deaiced outpat g,

Notonly ate all i operitions reversibie, hat the computations from r to
m st 2 andd from g tarm stapge 7 take place in sach amanuer as to sadisfy the
teduitements for acpeversshle prefix interpreter Henee the annivaal frreversible



Stage and Action Program Tape Work Tape

(). Initial vonfignration prog r

1. Appena O to beginning of r prog Or

2. Compute y. saving history prog y tylr)-history

3. Copy y to blank region prog y (y|o)-history g
4. Undo comp. of y from z prog Or y
5. Remove 0, swap £ and y prog y r
6. Append 1 toy prog ly I
7. Compute r, saving history prog r (r|y)-history
8. Cancel extra r prog £ (riy)-history

9. Undo comp. of r from y prog ly

10. Rewove 1 from y jrog y

Table 11 Cembining irreversible computations of y from r and £ from y to
achieve a reversible computation of y from r.

conversion program p. with constant modification, can be nsed as a reversible
program for UR to compute y from r.

Conversely, the minimal reversible program for y from r, with constant
modification. serves as a program for y from £ for the ordinary irreversible prefix
interpreter {7, hecause reversible prefix interpreters are a subset of ordinary
prefix interpreters. This establizhes the theorem,

We define the reversible distance between r and y as
Eslr.y) = KR(yjr) = min{lip): UR(p.r)y=y}.

Ax just proved, this v within an additive constant of the size of the minimal
conversien program of theorem 3.1 Althongh it may be logarithimically greater
than the Hptimal distance Ky, it has the intaitive advantapge of heing the actual
length of a concrete program for passiag i either direction between ¢ and y.
The optimal distavee £ on the other hand is detined only as the greater of two
ONE-WAY PIOFIANL SIZeY, and may not l'lll'rl‘.‘il)ﬂll'l Lo the length of any two-way
trannlation proyrim,

E; may indeed be legitinately called o distance hecanse it s symmetrie
and obeyy the triangle inequality to within an sdditive constant (which can
be removed by the additive renormalization teehnigue deseribed at the end of
Section ).

(%.2) Theorem

atr. . Fatroy) v Faty, o)



Stage and Action Program tape Work Tape
0. Initial configuration pprogqprog =
l. Compute {y|x). transcribing pprog. pprogaprog ¥y pprog
2. Space forward to start of qprog. pprogdprog y  pprog
3. Compute (z|y). pprogqprog z  pprog
4. Cancel extra pprog as head returnas. pprogaprog z

Table 2: Reversible execution of conratenated programs for (ylr) and (zy) to
transform r into 2,

Proof We will show that. given reversible UR programs p and ¢, for comput.
ing 1ylr) and (z]y) respectively. a program of the form spg. where s iy a constant
supervisory routine, serves to compute & from r reversibly. Because the pro-
grams are self-delimiting, no punctuation is needed between them, If this were
an ordinary irreversible U computation, the concatenated program apy could
be executed in an entirely straightforward manner, first using p to go from r to
L. then using q to go from y to &, However, with ceversible IR progrima, after
executing p. the head will be located at the beginning of the program tape, and
so will not be rewdy to begin reading ¢, It is therefore necessary to remember
the length of the first program sevment p temporarily, to enable the program
hiead to space forward to the beginning of g, bhut then cancel this information
reversibly when it is no longer needed. A scheme for doing this is shown in Table
2, where the program tape’s head position i indicated by a caret. To emphasize
that the programs p and ¢ are strings concatenated without any putictuation
between them, they are tepresented respeetively in the table by the expressions
“pprog” and “qprog”, and their concatenation pg by “pproggprog”.

6 The information flux distance

The reversible distance Es defined in the previous section, is equal to the length
ol a ~catalvtie™ program. which allows the intereouverson of ¢ and y while
remaining unchanged itself. 1Tere we consuler noneatalytic reversible computa
tions which consume some information p bedides roand produce some infornia-
tion g henides y. Lven thangh convaming; and producing information may seem
1o be operations of apposite sign, we can define a distanee based on the notion
of information How s the minimal sum o amonntoof extra information fowing
into and ont of the computer in the conrse of the compuatation transformy -
info y
For a fund ion ¢ computed an a reversible Turing, macline, let

Featrog)  wminf{ltpy y ligy: vi{r.phy - () }.



(6.1) Lemma There iy a universal (non-self-delimiting) reversible Turing ma-
chine ¥, such that for all functions ¥ computed on a reversible Turing machine,
we have

Eo (r.y) < Eplr.y)+cy

for all £ and y. where ey i3 a constant which depen:ls on ¢ but not on r or y.
a

Proof This is a cousequence of the existence of universal reversible Turing
machines{cf. section 5)[14](4). B

We define the sum distance as

Ey(r.y) = Ey (r.y).
(6.2) Theorem

Ei(r.y) = K(zly) + K(ylr) + Olog Es(r.y)).

a

Proof Let us show first the lower bound
Es(r.y) 2 K(ylr) + K(rly).

To compute y from r we must be given a progrivu p to do so to start out with.
By definition,

K(ylr) < 1(p) + Otlog(p)).

The Jast term reflects the fact that pis externally delimited, while the wini-
mal program used to define K ois self-delimiting aid may therefore need to he
logarithmically longer, 2

Assimme the compntation from rop ends np with g, Sinee the computa:
tion in reversible we can compute ¢ from y.q. Consequently, K(rly) < lq) +
Oog(g)). Let uy turn to the upper bound and assume &y = K(rly) < kq =
Kiglryvithl = kg -k Aceording to Thearem 3.2, there is a string g of length
I+ OQog ) such that K(qs|y) - &y + Otlog k) and K(ylsr) = &y + Otlog ky)
We cun even sesume g to be self-delimiting: the price of this can be inelnded
into the Qlogd) term. Aceording to Theorem 3.1 and Theorem 5.1 there s a
progeam p of lenpth ky 4 OQlog ky ) going reversibly between gr and yo Therefore
with a constant extra program s, *he aniversal reverdaible machine will go from
(py.r}to (poyi, Aad by the above estinates

Wpg) ¢ UpYy = 2k v L v Otlogky) Ky ko 8 O(lop ky)
11 have vetarned the organal defontion of Fyoom oo of aon sel{ delimiting programa,

bee ttme iy aupgentrd altornative defimition i terae of ' machines vaed catalytie tather
than mbamation fow programa. and wan thus antan the spint of thie secion CHBD

1



Note that all bits supplied in the beginning to the computation, apart from
input r. as well ax all bits erased at the end of the computation, are random
bits. This is because we supply and delete only shortest programs, and a shortest
progriam p satisfies K (p) > l(p). that is, it is mwaximally randowm,

The metrics we have considered can be arranged in increasing order, Here,

the relation l0<“ means inequality to within an additive Otlog), and s means l:‘<‘
and h;.
Eir.y) = max{K(y|r). K(riy}}
' Ex(r.y) = KR(ylr) = min{lip): U(p.0r) = y and Ulp.ly) = 1 }
fog

< K(rly)+ K(yl.r)h-l." Ea(r.y)
¢ 2E(r.y).

The sum distance Ky, in other words, can be anywhere between the optimnm
distance Ey and twice the optimal distance, The former occurs if one of the con-
ditional entropies K (y|r) and K(r|y) is is zero, the Latter if tae two conditional
entropies are enqual,

7 Dimensional properties

[ adiserete space with some distanee function, the rate of growth of the number
of elements in balls of size of can be considered az a kind of “dimension™ of the
space, The space with distance £y (roy) - max{ K (r{y), K (yls )} behaves rather
dimply from a dimensional point of view.

For a bmary string rolet By, o) Lo the set of wirings y with Ey(roy) < ol

(7.1) Theorem  We have

d Ky g flhdory s d o K|,

Fhe same hoands apply to Byoloryondy gy e} 1l

Proof The upper honnd icimmediate fram Theorem 2.4, For the lower houned,
et o« 240 KD ag b the cth binany steng of feagth ((r). Let us consader
all stringxy,  robopy where @ omeans bitwise mod 2 addition. The nunber of
ach wtrings py i 20 KOO W ety have

e,y N K1) . .
|

[ wmteresting that woamba dimension velation obda adao tor the uape
dstance Fyrow) Kiplry v Kiein)



(7.2) Theorem Let r be a binary striug. There is a positive constant ¢ such
that for all sutficiently lacge . the number of binary striugs y with Ex(r.y) < d
is at most 29/d and at least 24742, O

Proof The upper bound follows from the previons theorem since Ey > E,.
For the lower bound, cousider strings y of the form pr where pis a o lf-delimiting

program. For all such programs, &' (rly) < 0. sinee r can be revor ered from v
Therefore Ey(r.y) = K(y|r) = K(plx). Now just as in the arguinent of the

previous proof. we obtain the lower bound 24/d? for the number of such strings

pwith Kiplry<sd. B

For the distance Ej. for the number of strings of length n near a random
string r of length n, (e, astring with K(r) near n) the pictureis alittle different
from that of distance Ey. In this distance, “tough guys have few neighbors™. In
particular, a tandom string r of length n has ouly about 247 «nings of length
n within distance «. The following theorem describes a more general situation.

(7.3) Theorem  Let the hinary strings o,y have length n. For ecach r the
number of y's such that Ey(r.y) < o is 2% with

o = ’_', +_'.l;~[.\.‘_r) t O(logn).

while n — K(r) < d. Forn - K(r) > d we have a = d £ Ologn), Q

Proof Let K{r) =n - &(n), In the remainder of the proof all (imequalities
wvolving algorithmic entropies hold up to an Otlog n) additional term,

(=) We Liow that there are at loast 200040002 Glagegrs y el that Br, y)
! holds, Lety = etz with I{z) - An)oand et r7 be the tivst program for r
which we tind by dovetailing all computations on prograns of length less than n,
We can rettieve @ from g using at most O(log i) bite, Theee are 2 ditfeeent
el gy For each such y we have Rirlyl - O} sinee 1 oean be retoeved
ftom y nwsiny, r° Now suppose we further divide v uwwe with {iwy 172 for
an appropiiate {and choose v arbitrary Thenu, the total nunher of such y's
increanes tg 20T

Theswe choiees of y nmat watisly Fyeoy) < o Cleatly, Kiy'r)h o by 1/

Moteaver, Riosly) © /2 since we can reineve v by providing {72 it Therefare,
Kirlyb v Kigle) - U224 Sy o 12

Siee Che beft oo sade s vadue at most value o the lapest L we can choose
e np to the appressed additional tena Oglap ), piven by 8 d Moy

Phiv pmte the numeher ot o anch that Eeoyy -0 d ot et
gtAur P togeg )



(€) Assume. to the coutrary. that there aie at least 209801 24¢ elanunty y
such that Ki(r.y) € d holds, with ¢ some large constant. Then. for some y,

(7.4) Kyls) > 5;‘"’

By assuwmption
Kir)=n-4n). Kiy) < n.

By the addition theorem 2.3 we tind

{- 4
n+ «___2(n) +e<n+ K(rly).
But this means that
. d = d(n)
(7.5) K(rly) > —— te.

which. by Equations (7.4) and (7.5), contradicts K(rly) + K(y|lr) <d. B

It foltows from our estimates ont that in every set of low algorithmic entropy
alwost all elements are far away frem each other in terms of the distance E;.
Here, the algorithmic entropy K(8) of a set is the length of the shortest binary
program that cuumerates S and then halts,

(7.6) Theorem  For a constant ¢, let S he a set with #8 = 2% and K(S) =
clogd. Almost all pairs of elements vy € 8 have distance Eyj{r.y) > d, up to
an additive loganthmic term. Q

The proof of this theorem ix easy, A similar statement can be proved for the
distanee of astring r (possibly ontside 8) to the majority of elements y in S,
I R(r) = nothen for almost all y ¢ 8 we have Eilroy) > noed - Ologdn).

8 A thermodynamic potential

Thermaodyuamics, among other things, deals with the amounts of heat and work
ideally required, by the most eflicient process. to convert one form of matter to
another. For exnmple, at 0 C' and atmospheric presure, it takes 86 calories of
heat and no work to convert a e of iceanta water at the same temperature
and pressure. From an atomic point of view, the conversion of jee to water at
0Cina reversible process, in which each melting wister moleenle pains abont
I bits of entvopy (representing the approximately 27 fold inerensed freedom
obinotion it hiw in the liguid sate), winle the envitonment loses 3.8 bats, During,
thecideal melting process, the entropy of the nmvero eemains constant, beeiuse
the enttopy gain by the ice is compensated by an equad entropy loss by the
cnvironient, Perfect compensation takecphive ouly i the imit of sdow melting,
with i atinteamal temperature hitference hetween the we and the water



Rapid melting. e.g. when ice is dropped into hot water, is thermodynamically
irreversible and inethicient, with the environment (the hot water) losing less
entropy than the ice gains, resulting in a net and irredeemable entropy increase
for the nmiverse as a whole.

Turning again to ideal reversible processes. the entropy change in going from
state X to state Y is an antisymmetric function of X and Y7; thus, when water
freezes at 0 C by the most efficient process, it gives up 1.8 bits of eutropy per
molecile to the environment. When more than two states are involved, the
entrop, changes are transitive: thus the entropy change per molecule of going
from ice to water vapor at 0 C (+32.6 bits) plus that for going from vapor to
liquid water (—28.8 bits) sum to the entropy change for going from ice to water
direetly, Becanse of this antisymmetry and transitivity, entropy can be regarded
as a thermodynamic potential or state function. each state has an entropy, and
the entropy change in going from state X to state Y by the most efficient process
1s simply the entropy difference between states X and Y,

Thermodynamic ideas were first successfully applied to computation by Lan-
dauer. According to Landauer’s principle [12. 5. 17, 18, 6] an operation which
mapy 1 states outo a comimon successor state must be accompanied by an en-
tropy increase of log, nobite in other. non-information-bhearing degrees of freedom
in the computer or its envirorment. At room temperature, this 8 equivalent
to the production of kU2 (about 7107 22) calories of waste heat per bit of
information discarded,

Landaner's priniciple follows from the fact that such a logically irreversible
aperation would otherwise be able to decrease the thermodynamic entropy of
the computer’s data without a compensating entropy inerease elsewhere in the
universe, thereby violating the second law of thermodynamices,

Converse to Landaner’s principle is the fact that when a computer takes a
physical randomizing step, such as tossing, & coin, in which a single logical state
passes stochastically into one of nequiprebable sneeessors, that step can, if prop-
erly harnessed, b awed to remove logg i bite of entropy from the computer's
environment, Modely have been constructed, obeying the usual conventions of
lassical. quantum, and thermodynamie thonght experiments (12]{11] (1] [5] 9]
(V3] [16] [1]) (8] [2] <howing both the ability in principle to perform logically
reversible computations in a theemodynamically ceversibile fashion (1e with ar
bitrarily little entropy production), and the abiity to harness entropy increases
due to data randomization within a computer to veduce correspandingely the
eatropy of ity environment.,

In view of the above conmderadions, it seems veasonahle to asaipen each string,
roan lective thetnwdynamie entrapy equal ot alporithmic entropy K (e}, A
computation that «raescan n it random random string woald then peduee 1y
entiopy by n bits, requiting an entropy lerease in the enviconment of . east
o bntc i apreement with Landaner s prineiple.

Conversely, acorandomyzing, compntation that staets with a «tnag ol n 2etoq
aned produces nrandom bitchas, aeote tvpneal resdt, an alporithme a'ly random

1N



n-bit string r, t.e. one for which Kir) = n. By the converse of Landaner’s
principle, this randomizing computation 15 capable of removing np to n bits of
entropy from the environment, again in agreement with the identification of the
thermodynamic and algorithmic entropy.

What about computations that start with one random string r and end
with another y? By the transitivity of entropy changes one is led to say that
the thermodynamic cost, i.e. the minimal entropy increase in the environment,
of a transformation of r into y, should be

Clylp) = K(r) - Kiy).

because the transformation of r into y could be thought of as a two-step process
in which one first erases r. then allews p to be produced by randomization.
By the elementary properties of self delimiting programs, Lthis cost measure is
transitive within an additive constant. Cly|r) s well as a similar antisymmetric
measure of the thermodynamic cost of data transformations,

C'(ylr) = Kirly) = Kiyr)

were both considered by Zurek [17]. who has also pointed out that they are
nearly equal (that is. that they differ by at most a logarith.mic additive terms),
Here we note that (“{y|r) is slightly non-transitive. For example, there exist
strnes(10] rsuch that Korlr) = KK, where £7 i3 the minimal program for
1. According to the (7 measure, erasing such an £ via the intermediate r° would
penerate R (r) less entropy than enwing it directly, while for the ¢ measure the
two costs would be equal within an additive constant. Indeed, erasing in two
steps wonld costonly K(r|r5) K(ror) 4 K0y - K(Olr*) = K(r) - K(5°|r)
while erasing in one step wonld cost K(r|)) - K(0jrj = K(r),

Subtle differences v the one hetween C and 7 pointed out abaove (and
resulting in aslight nontrinsitivity of € depend on detaled assumptions which
tist be, ultimately, motivated by physies. For instance, iff one were to follow
Chaitin lT] and define conditional imfornation Kiyglr) in tenms of the size of
self delimiting program to produce y from r° {rather than ry, joint information
would he p!iVl‘lI '“l‘l'(‘ll_v lIV

Kiroyy Kinvy Kiy|ry,
rather than by Theorem 2.3 abiove, and
Ciulry o Clyle)

would hold without logarithune correetiona, This alternative v worth con
siderimg capecially because the pealting, aleonthmie joint and conditional en
tropres it isfy equaditien which alqo obtam for the stanstnal entropy (e Gibiba
Shannon entrapy definesdin tens of probabilities) withoul lopa ithinie corgee
tons Fhemakes it a closer analow of the thenmodynamie entropy Mareovey

A deenseed by Zurek [T8)0m aeyelic process of ahypothetioal Macowell demon
operated enpine involving, swequisttion ot information thoough measnrerient,
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expansion. and subsequent erasures of the records compressed by reversible
computation the optimal efficiecacy of the cycle could be assured only by as-
suming that the relevant minimal programs are already availzble

These remarks lead one to consider a more general issue of entropy changes
in nonideal computations. Bennett[5] and especially Zurek[18] have considered
the thermodynamics of an intelligent demon or engine which has some capacity
to analyze and transform data £ before erasing ic. If the demon erases a random-
looking string. such as the Jdigits of v, without taking the trouble to understana
it, it will commut a thermodynamically irreversible act, in which the entropy of
the data is decreased very little, while the entropy of the environment increases
by a full n bits. On the other hand, if the demon recognizes the redundancy in «,
it can transfortn r to an smpty string by a reversible computation. and thereby
accomplish the erasure at very little thermmodynamic cost, More generally. given
nmulimited time, a demon could approximate the semicomputable function K(r)
and 80 compresd a satring £ to size K(r) before erasiug it. But in limited time,
the demon will not he able to compress r so minch, and will have te generate
more entropy to get rid of it. This tradeotl between speed and thermodynamic
efficiency is superficially similar to the tradeofl hetween speed and etticiency for
physical processes such as meluing, but the functional form of the tradeoff is
very different. For typical physical state changes such ay melting, the exeess
eutropy produced per molecule goes to zero inversely in the tane ¢ allowed for
melting to oceur. But the tine-bonnded algorithmic entropy Kyir), se. the size
of the amallest program to compute r in titne < £, in generial approaches Kr)
only with nneomputable slowness as a function of ¢ and r.
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