Check for
Updates

Multiple Matching of Rectangular Patterns
(Extended Abstract)

Ramana M. Idury *
Rice University

Abstract

We describe the first .efficient algorithm for simultane-
ously matching multiple rectangular patterns of varying
sizes and aspect ratios in a rectangular text. Efficient
means significantly better asymptotically than known
algorithms that handle one height, width, or aspect ra-
tio at a time. Qur algorithm features an interesting
use of multidimensional range searching, as well as new
adaptations of several known techniques for two dimen-
sional string matching. We also extend our algorithm to
a dynamic setting where the set of patterns can change
over time.

1 Introduction

Searching for a fixed pattern in a text is one of the most
basic problems in string matching. We define this prob-
lem as:

¢ Fixed Pattern Matching (FPM): Given a fized
pattern P over an alphabet X, preprocess it so as

to be able to find all its occurrences in a query text
T.

There are several solutions (e.g., [23, 13]) that prepro-
cess the pattern in time O(p), where p is the pattern
length, and search a text of length ¢ in time O(2).

*Department of Clomputer Science, Rice University, Houston,
TX 77251-1892. idury@cs.rice.edu; Partially supported by a grant
from the W. M. Keck Foundation.

tDepartment of Computer Science, Rice University, Houston,
TX 77251-1892. schaffer@cs.rice.edu; Partially supported by NSF
grant CCR-9010534.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association for Computing
Magchinery. To copy othsrwise, or to republish, requires a fee
and/or specific permission.

25th ACM STOC '93-5/93/CA,USA

© 1993 ACM 0-89791-591-7/93/0005/0081...$1.50

81

Alejandro A. Schiffer
Rice University

In this paper we study two important extensions to
the basic FPM problem: multiple patterns and two di-
mensional rectangular strings (both as text and as pat-
terns). Qur main result is the first efficient algorithm
for matching multiple rectangular patterns in a rectan-
gular text. In particular, our algorithm handles patterns
of arbitrary sizes and aspect ratios. Our result addresses
a longstanding open problem posed by T. P. Baker in
1978 [10].

The natural extension of FPM to multiple one dimen-
sional patterns is defined as:

e Multiple Pattern Matching (MPM): Given a
fized set of patterns Pj,..., P, over an alphabet
Y, preprocess it so as to be able to search for all
occurrences of all the patterns in a query text T
The set of patterns is also called a dictionary.

Aho and Corasick, or AC for short, solved MPM [1].
The salient feature of their algorithm is the extension
of the Knuth-Morris-Pratt [23] (henceforth KMP) algo-
rithm for FPM to multiple patterns. The AC algorithm
preprocesses the patterns in time O(d log o) and searches
a text in time O(t log o + tocc), where d is the total size
of all patterns, o is the number of characters that oc-
cur in some pattern, and toce is the total number of
pattern occurrences. The AC algorithm can be trivially
modified to report just the longest pattern that matches
(ending) at each position of the text in timne O(tlogo).

To extend FPM to two dimensions we make both the
text and the pattern rectangular arrays. Define:

¢ Two Dimensional Fixed Pattern Matching
(TFPM): Given a fized rectangular pattern P, pre-
process it so as to be able to find all its occurrences
in a rectangular query text T'.

The TFPM problem was originally solved by Bird {12]
and independently by Baker [10]. The basic idea in their
algorithms is to linearize the pattern by treating each
column as a single character in a new derived alpha-
bet. Bird and Baker use the AC algorithm as a sub-
routine to transform the columns of pattern and text

http://crossmark.crossref.org/dialog/?doi=10.1145%2F167088.167116&domain=pdf&date_stamp=1993-06-01

into these special characters and then run the KMP al-
gorithm to search the modified text. The preprocess-
ing time is O(plogo) and the search time is O(tlog o),
where p and t are the area of the pattern and text. Other
algorithms that seem to perform better on random pat-
terns have been described in [29, 9]. Recent papers give
new algorithms whose running times are linear without
depending on the alphabet size [2, 17].

Since he used an algorithm for MPM to solve the
TFPM problem, it is not surprising that Baker [10] ob-
served that it is natural to combine the two paradigms.
Define:

e Two Dimensional Multiple Pattern Match-
ing (TMPM): Given a fized set of rectangular pat-
terns Pi,..., P, over an alphabet X, preprocess it
so as to be able to search for all occurrences of all
the patterns in a rectangular query text T'. The set
of patterns is also called a dictionary.

Template-based computer vision is one natural motiva-
tion for TMPM. We can think of a seeing being as having
a mental dictionary of known templates (patterns) that
are quickly matched against a new scene (text). For
other applications of two-dimensional matching and a
general survey with lots of references see Section 7.3.2
of [21]. Much of that section focuses on a “dual” prob-
lem where there are multiple texts to be preprocessed
and one query pattern; Giancarlo [18] has some recent
improvements to those results.

If all the patterns in an instance of TMPM are of
fixed height, then Baker [10] noted that his algorithm
can be adapted to solve TMPM by replacing the use of
the KMP algorithm with a use of the AC algorithm. The
search time for one height or width becomes O(t log(n +
o)+toce). When the number of different heights, widths,
and aspect ratios is large, we would like an algorithm
whose performance depends as little as possible on the
number of different pattern sizes. Baker explicitly left
open this question of how to solve TMPM efliciently
when the patterns have varying heights and widths {10].

Amir and Farach [3] found an efficient algorithm for
TMPM in the special case where all the patterns are
square; a similar algorithm was given by Giancarlo [19].
Square patterns have the special property that they can
be aligned at a corner. Amir and Farach used this fact to
linearize the text down the diagonals (instead of across
rows or down columns, as Bird and Baker did) and apply
a generalization of the AC algorithm to the linearized
text.

We use a different approach from [3, 19] to solve
TMPM for rectangular patterns. Rectangular patterns
of different heights, widths, and aspect ratios cannot be
aligned at a corner. There is no natural way to define

82

the “biggest suffix” of the text that matches a “prefix”
of some pattern.

The most interesting feature of our algorithm is a con-
nection between two dimensional pattern matching and
some multidimensional range searching problems. Our
TMPM algorithm also includes new adaptations of three
techniques from algorithms for other two dimensional
string matching problems: splitting patterns into two
overlapping pieces of fixed height [20], focusing on text
columns that are (numbered) 0 mod ¢ for some appro-
priate ¢ (see [8, 9]), and the smaller matching with tree
partial order paradigm, which was defined and studied
in [5]. For other, different uses of computational geom-
etry in string matching see [25, 8].

The time and space of our TMPM algorithm depend
on the distribution of patterns among the different sizes
because this affects which known range searching algo-
rithm is best to use. Following the general trend in
string matching, we restrict ourselves to variations of
our algorithm that use linear, i.e. O(d), space, and get
the best time possible using linear space.

Define the linear size b(P) of a rectangular pattern
P to be the smaller of its height and width. Let B
be the biggest linear size of any pattern. To express
the possible running times of our algorithm we give one
definition.

Definition 1.1 We call a dictionary size-dwerse if for
some fized k > 1, the number of paiterns of any fizred
linear size b > logd is O(b).

For size-diverse dictionaries our algorithm achieves the
following time bounds using linear space:

Dictionary Preprocessing Time: O(dlog(n + 0))
Text Scanning Time: O(tlogdlog(B+n+ o)+ toce)

There are many dictionaries that are not size-diverse
for which the above time bounds still hold. For any
dictionary, we can achieve the combination:

Dictionary Preprocessing Time: O(dlog(n + o))
Text Scanning Time: O(tlog? dlog(B+n+0)-+toce)

It is surprising that our algorithm may achieve better
times for size-diverse dictionaries because this looks like
the hardest case from the perspective of the Bird-Baker
algorithm.

The rest of this paper is organized as follows. In Sec-
tion 2 we give basic definitions and an overview of our
method. In Section 3 we present the connection be-
tween pattern matching and computational geometry,
showing how to preprocess the patterns and do the final
stage of matching against the text. In Section 4 we give

more details of the text scanning algorithm and prove
the resource bounds. In Section 5, we sketch how our
algorithm can be extended to a dynamic setting where
the set of patterns can change over time.

2 Definitions and Algorithm Overview

In this section we give some basic definitions, introduce
some auxiliary data structures, and give an overview of
the text scanning algorithm. The algorithm begins by
making two classifications into cases. First, we assume
that all patterns have height < width; the opposite case
can be handled symmetrically. Second, we partition the
set of patterns into {log B| sets Py, Py, ... such that:

Definition 2.1 The patterns in set Py have a height h
in the range 29 < h < 29+1,

For each g, we search the text for just the patterns in
P, in one phase. Since there are at most |log B| sets
of patterns, this contributes a multiplicative factor of
O(log B) to the text scanning time, but does not change
the asymptotic preprocessing time or space.

From now on we focus on one specific P, and assume
we are just interested in the patterns in that set. We use
the following example to illustrate various definitions.

Example 2.2 Consitder a dictronary of two 3 X 4 pat-
terns. Here, g =1 and h = 3.

b ¢ a b ¢ a b
a a b a a b ¢
b b b b b

Our first key idea is to divide each pattern into two
pieces, such that each piece has height 29 and full width.
For a pattern of height h, the top piece includes rows
1,...,29 and the bottom piece includes rows h — 29 +
1,...,h. The two pieces share 297! — h rows and will
overlap unless h = 2911,

Definition 2.3 We call the paitern preces half patierns;
the top pieces are called upper half patterns, and the boi-
tom pieces are called lower half patterns.

In Example 2.2, the upper half patterns are:

a b ¢ a b ¢ a b
c a a b a a b ¢

And the lower half patterns are:

¢c a a b a a b ¢
b b a b b a b

Definition 2.4 Let (C be the set of texi columns that
occur in some half pattern.

As in the Bird-Baker algorithm, each column is
assigned a number (memory address) that we think
of as a character, and then we view each half pat-
tern as a one dimensional string of column charac-
ters. In Example 2.2, the set of text columns is (¢ =
{ab, ac,ba, bc, ca, cb}, where each column is written as
a string where left-to-right in the string corresponds to
top-to-bottom in the column. For convenience, we write
a two dimensional pattern as a one dimensional string of
columns, where each column is separated by a vertical
bar. With this notation, we can write the first pattern
of Example 2.2 as acalbab|cab|aba, its upper half pattern
as ac|ba|calab, and its lower half pattern as calablablba.

Since all half patterns are of the same height, we
could use the Bird-Baker algorithm to recognize all oc-
currences of half patterns. To do the efficient synthesis
of half patterns into full patterns, we need extra prepro-
cessing.

Definition 2.5 A prefiz (suffiz) of a rectangular pat-
tern 1s a prefiz (suffic) of its string-of-column-character
representation. The reverse of a rectangular pattern is
the reverse of its string-of-column-character representa-
twon (1.e, the pattern read right-to-left).

In Example 2.2, bab|cablaba is a prefix of the sec-
ond pattern and a suffix of the first pattern, whereas
beblabaleablbab is the reverse of the second pattern.

We maintain two extra dictionaries of upper half pat-
terns.

Definition 2.6 The dictionary H)% (H for half, f for
forward, u for upper) contains the 29 longest prefizes of
each upper half pattern. The dictionary H%* (b for back-
ward) contains the 29 smallest non-emply prefizes of the
reverse of each upper half pattern; in other words, H%¥
contains the last 29 non-empty suffizes of each upper half
pattern, with the prefizes stored wn reverse fashion. We
also maintain two similar dictionaries H'' and H® for
lower half patterns.

In Example 2.2, H/* = {ac|balcalab,aclbalca,
ba|calablbc, balcalab}, H' = {calablablba, ca|ablab,
ablablbalch, ablablba}, H*¥ = {ab,ab|ca, bc, be|ab}, and
H%' = {ba, balab, cb, cb|ba}.

The reason for storing the prefixes and reverse prefixes
is that our final scanning pass will look only in text
columns numbered 0 mod 29. Following [8], we call these
power columns. If there is a match spanning columns
[e1...¢c9] of the text, we will find it in the rightmost
power column ¢ < e3. The pattern occurrence must
include at least one power column because its width is
assumed to be at least as big as its height, which is at
least 29 + 1. The part of the match in text columns
ea,¢2 — 1,...,¢ (read from right to left) will have its

upper half in H%% and its lower half in H%?. The part
of the match in text columns ¢1,e; 4+ 1,.. ., ¢ (read from
left to right) will have its upper half in H/* and its
lower half in H7:.

Let P be a pattern of width w. Since we cannot pre-
dict where in P an occurrence will first intersect a power
column, we define:

Definition 2.7 An avatar' of pattern P 1s an ordered
pawr (P, Py) such that Py is a prefic of P of length at
least w — 29 + 1 and P, s the reverse of a suffiz of
P of length at most 29. The strings Py, Py overlap in
ezactly one column character. We say the Py 1s the
forward projection of the avatar, and Py 1s the backward
projection of the avatar.

Our intention is that a match of pattern P can be
viewed as that avatar, (Py, P5), where P; is the part
to the left of and including power column and P is
the part to the right of and including the power col-
umn. Each pattern has 29 avatars. In Example 2.2, the
avatars of the first pattern are (aca|bab|cab|aba, aba) and
{acalbab|cab, abalcabd). The avatars of the second pattern
are (bab|cablabalbeb, beb) and (bab|cab|aba, beb|aba).

For every h, 29 < h < 29*! we maintain two one
dimensional dictionaries on the avatars of all patterns

of height h.

Definition 2.8 The dictionary Fy, contains the forward
projections of the avatars of all the patterns. Similarly
By, contains all the backward projections of the avatars
of all the paiterns.

In Example 2.2, F3 = {aca|bablcablaba, acalbablcab,
bablcablabalbceb, bab|cablaba}, and Bz = {aba, aba|cab,
beb, beblaba}.

We extend the definitions of avatar and projections to
half patterns. We have set up the auxiliary dictionaries
so that the forward projection of any avatar of any upper
half pattern is in H %, the backward projection of any
avatar of any upper half pattern is in H%%, and similarly
for lower half patterns.

Our text scanning algorithm has two basic parts, a
text preprocessing step and a matching step. In the
preprocessing step, we find for text location T77,j] in
power column j, the widest elements of H/% and H//
that match when their upper right corner is placed at
T[i,7]. The answers are placed in the auxiliary arrays
FU, FL. Similarly, we seek the widest elements in Hb%
and H%' that match the text when their upper left cor-
ner is placed at T[¢, j]. These answers are stored in the
arrays BU, BL.

IThe word avatar comes from Sanskrit and originally means an
incarnation of a Hindu deity. In English, avatar also can mean a
variant phase of a continuing basic entity (Webster’s Dictionary).

84

In the text scanning phase, we ask for each power
column location T'i, j] and each height h € (29,29%1]:
are there any matches of patterns such that the top row
is 7, the rightmost power column is j, and the height of
the pattern matched is A7 We ask 29 queries at each
power column position, but there are at most [t/29]
power columns, so the total number of queries is O(t).

3 Preprocessing and Matching Patterns

In this section we investigate how to synthesize projec-
tions and subpattern matches into full pattern matches.
Our synthesis uses a geometric approach. We describe
how to build (preprocess) and use (search) our geometric
pattern representations.

The synthesis from projections and subpattern
matches to full pattern matches is carried out in three
steps as follows:

Step 1: For a text location T7i, j] on a power column
7, we compute wy[7, j] which is the widest forward
projection of a pattern of height h matching at
T[i,7]. For this we take the values FU[,j] and
FL[i + h— 29, 5], which are pointers into H* and
HJ! respectively, and transform them into wy[i, 5]
which is a pointer in F},.

Step 2: We do a similar procedure on BU[i,j] and
BL[i+ h — 29,4] and obtain the widest backward
projection wp[t, j] of a pattern of height s matching
at T, 7).

Step 3: We use wy[i, j] and w4, j] to report all match-
ing patterns at the subrow T7¢, j] through TTé, j +
29 — 1].

We now define a computational geometric problem and
one variant of it. We reduce each of the above steps to
the variants.

¢ Rectangle Enclosure Reporting (RER) [15]:
(Given aset V of rectangles in the plane and another
query rectangle), the rectangle enclosure reporting
problem asks for reporting all rectangles in V that
enclose Q).

e Nested Rectangle Enclosure Searching
(NRES): We guarantee that the set V is nested
which means that for vy,v9 € V, if v; and vy in-
tersect then one of them encloses the other. In this
case, we report the smallest rectangle v in V that
encloses . Since V is nested the choice of v is
unique.

The rectangle enclosure reporting problems can be
solved efficiently using multidimensional range search-
ing algorithms [24, 15, 16]. In the rest of the section, we

show the reductions from steps 1,2, 3 to RER or NRES.
To perform the reductions we define a dominance rela-
tion on strings as follows:

Definition 3.1 For any two strings uy and ug, us dom-
mates uy or uy s dominaled by ug, denoted uy <; ug,
if uy s a suffic of ug. We also exiend the definition of
dominance to a pair of strings as follows: (uy,vy) <,
(u2,v2) of up <o ua and vy < va.

For example, cbe <, abebe and bablcablaba <,
acalbablcablaba. Similarly (cbe,aba) <, (abcbe, beaba)
and (bab|cablaba, aba) <, (acalbab|cablaba, beblaba).

Definition 3.2 Let D be a one dimensional dictionary
automaton constructed using the AC algorithm [1]. For
any prefic u wn D, define fail(u) as the longest proper
suffizx v of u such that v 1s also a prefic in D. The fail
link of v pownis to v.

Fact 3.3 The fail links of a dictionary D form a iree

which we call the fail tree of the dictionary, denoted by
failtree(D).

We can conclude from Definition 3.2 and Fact 3.3 that:

Fact 3.4 [1, 5] If u; and uy are prefizes of some pat-
terns wn a dictionary D, then uy <; ug of and only of u;
is an ancestor of ug in failtree(D).

We use Fact 3.4 to transform each prefix of a pattern
in a one dimensional dictionary D with m prefixes to
a line interval on the real line as follows.
Euler tour of failtree(D) and use:

Perform an

Fact 3.5 [22, 7] When we perform an Euler lour of a
tree slarting at the root we visil each node twice, once in
the preorder and once in the postorder. If we replace the
first visit by a left parenthesis and the second visit by a
right parenthests we gel a list of balanced parentheses.

Each matching pair of parentheses corresponds to a node
in the tree which also corresponds to a prefix of some
pattern. If we do a bijective mapping of the list of 2m
parentheses to the integer points 0...2m -1 on the real
line in the same order, then each prefix of a pattern cor-
responds to an interval on the real line. It may be noted
that these intervals are nesting because the correspond-
ing parentheses are balanced. We call this scheme the
line-mapping of a dictionary D on to the real line.

Definition 3.6 For a pattern P € D, we use line(P)
to denote the interval to which P is mapped. More gen-
erally, if u is a prefiz of some patlern in D, then line(u)
denotes the interval to which u s mapped. Similarly we
use line(D) lo denole the set of intervals formed.

85

The following lemma follows from the above definition:

Lemma 3.7 Suppose u,v € D. Then u <, v if and
only of line(u) encloses line(v).

If u1,v; are prefixes in a dictionary Dy and us, vy are
prefixes in a dictionary [y, then (uq,us) <; (v, v2)
if and only if u; is ancestor of vy in failtree(D;) and
uy is an ancestor of vy in failtree(Dy). If we line-
map [); on z-axis and D on y-axis, then each pair
(u1,ug) is mapped to two intervals—{ine(u,) on z-axis
and line(ug) on y-axis—which induce a rectangle. We
call this scheme the rectangle-mapping of a pair of dic-
tionaries (D1, D3) on to the plane.

Definition 3.8 For a pair of patterns Py € D and
Py € Dy, we use rect(Py, Py) to denote the reclangle
to which (Py, P2) is mapped. More generally, if uy 1s a
prefic in Dy and uz is a prefiz in Dy then rect(uy, ug)
denotes the rectangle to which (u1,uz2) is mapped. Simi-
larly we use rect(Dy, D) to denote the set of rectangles
formed.

The following lemma follows from the above definition:

Lemma 3.9 Suppose uy,vy € Di and ug, vy € Da.
Then (uy,ug) <; (v1,v2) of and only if rect(u1, uz) en-
closes rect(vy, va).

We are now ready to show the reductions:

Theorem 3.10 We can reduce both Step 1 and Step
2 to NRES.

Proof: We first reduce Step 1 to NRES. For every
forward projection Py of a pattern of height h in Fj,
its upper half pattern P} is in H% and its lower half
pattern Pj is in H/'. Under the rectangle-mapping
of (HI, HIY, Py = (P“,P}) is transformed into a
rectangle in the plane. Let Vhf = {rect(P“,Pfl) |
Py € Fp} be the set of rectangles corresponding to
the patterns in F,. We want to set wy[i,j] to the
widest Py such that (Pf“,PfI) <s (FU[i,j], FLIi+ h -
29,4]). Since (FU[i,j}, FLlt+ h — 29, j]) is also trans-
formed into another rectangle in the plane, we have that
rect(P¥, Pfl) is the smallest rectangle in Vhf that encloses
rect(FU[i, j], FLi+h—29,j]) by Lemma 3.9. Since Fj,
itself is a one dimensional dictionary, the set of rectan-
gles rect(H %, H)') is nesting. Therefore the choice of
the widest pattern Py in Fj, or equivalently the smallest
rectangle rect(P}, Pfl) in Vhf is unique.

We can reduce Step 2 to NRES using a similar pro-
cedure to the above. We define V)! similarly. We set
wy[i, 5] to the widest P, = (P¥, P)) in By such that
(P#, P <5 (BU[i, j}, BLEi+h—29,5]). 1

Theorem 3.11 We can similarly reduce Step 3 to
RER.

We now express the time and space required to prepro-
cess patterns of height A in P, as a function of the time
and space needed for RER and NRES.

Lemma 3.12 Let ny be the number of patierns in Dj.
Sunalarly lei dy, be the lotal size of all patlerns in Dy.
Suppose the preprocessing lime and space bounds for
either RER or NRES with m rectangles are O(m -
Trect(m)) and O(m - Spece(m)) respectively. Gwen (),
we can bwild Fy,, By, Vhf, V,f’, Vi, tn time O(dp logny +h -
h Trect(h-ny)), and space O(dp +h-1p - Spece(h-ny)).

Proof: Consider a pattern P of height h in Dj. Let
(P}, PY, ..., (P#,P}) be the avatars of P, such that
P} = P. From the definition of an avatar, P; is a prefix
of Pf2~1 for 1 < ¢ < 29. Similarly Plf is a prefix of P,f“H
for I <7 < 29. Since any dictionary automaton contain-
ing a pattern P contains all the prefixes of P, there is
no penalty in terms of time and space to include a pre-
fix of P as a new pattern. Following this reasoning, the
avatars of P can be added in F}, or By, without any extra
cost. Therefore the resource bounds for building F and
By, are O(dylogny) time and O(dy) space respectively
which follow from the bounds of the AC algorithm. The
reason the time is O(dp logny) is that in AC goto tree,
each state can have only nj outgoing edges.

Let us bound the number of rectangles in Vhf, V), and
V. The number of avatars of P are 29. Since 29 < h, the
total number of avatars is bounded by the sum of heights
of the patterns in Dj which is h - ny. Since the size of
the image of any mapping is at most equal to the size of
the domain of the mapping, it follows that the number
of rectangles generated in any reduction is at most equal
to the number of avatars. The time and space bounds
to reduce each step to either RER or NRES follow. |

We are now ready to state the time and space bounds
for the preprocessing of patterns. Pseudocode for the
preprocessing of patterns is given in the Appendix.

Theorem 3.13 Let p, denote the total size of all pai-
terns in Py. Suppose the preprocessing time and space
for either RER or NRES with m rectangles are O(m -
Trect(m)) and O(m - Speci(m)) respectively. Let my =
Yon(h - np) be the total number of avatars generated
by patterns in Py,. We can preprocess P, in time
O(pg log(n + o) + 7y - Trect(my)), and space O(py + m, -
Srect(mg))-

Proof: Using analysis similar to that in the
previous proof, it follows that the dictionaries
C,HIM 7O HY H can be built in O(pg log(n + o))

86

time and O(p,) space using the AC algorithm. From
Lemma 3.12, steps 3-13 take time O3>, (h-ny - Trect(h-
ny))). From this we conclude that steps 1-13 take time
O(pg log(n+ o)+ 7y Trect(my)). Similarly we can prove
that steps 1-13 take space O(pg + 7y - Srect(my)). There-
fore the preprocessing time and space bounds follow.

4 Preprocessing and Searching the Text

In this section we give some more details of the scanning
algorithm outlined in the previous section, summarize
the scanning algorithm in pseudocode, and prove the
time bounds we claimed in Section 1.

The pseudocode for the scanning algorithm is given
in the Appendix. We discuss three details of it that are
not apparent from the description in Section 3.

First, our use of the AC algorithm to report all half-
pattern columns occurring in a text column is a little un-
usual. Normally, the AC algorithm records its matches
at the end of the match, where they are detected. In
our application, each half pattern column is of height
29. Thus there can be at most one match ending (start-
ing) at a given position in a text column and the length
of the match is known. Therefore, we can modify the AC
algorithm to record the column matches at the starting
(highest) position, by subtracting 29 — 1 from the row
number where the match ends.

Second, although it is possible to use our geometric
approach for any distribution of patterns, we get bet-
ter time bounds with linear space by using the Bird-
Baker algorithm for small pattern heights. Specifically,
we define a height b, such that for patterns of height
< hmin we use the Bird-Baker algorithm for each sepa-
rate height. This takes time O(hmin -t log(n+ o) +toce).
We choose suitable values of hyp,, later.

Third, from the description of the algorithm it may
appear that we use O(t) extra space to store the ar-
rays T., FU,F'L, BU, BL because they store one item
per text character. There is a standard trick to keep the
space to O(d), when d < t. Split the text into over-
lapping patches of size 2d x 2d and run the algorithm
separately on each patch. Each text position occurs in
at most 4 patches.

Example 4.1 We use the following section of a text T
to explain the scanning process. We use the dictionary
of Example 2.2 for the purpose. Later we show how we

match patterns for locations T3, 7] through T[i,j + 1].
Here 7 s a power column.

=3 j=2 j-1 j j+1
7 a b c a b
i+ 1 c a a b ¢
142 a b b a b

We now illustrate the scanning algorithm, under the
assumption that A, = 0, using Example 4.1. Since
g = | in this case, we are operating in the range 2 <
h < 4. We show how we find all the matching patterns
for the subrow T7¢, j] through T, + 1] with a single
query at location 777, j].

After step 5, we have FU[i, j] = aclba|calab, FL{i +
1,j] = calablablpa, BU[i,j] = belab, and BL[,j] =
cblba. At step 6, we deal with the case h = 3 since
the patterns in Example 2.2 are of height 3. At steps 8
and 9, we set w¢[7, j] = acalbablcablaba, and wy[i, j] =
beblaba. Finally at steps 10 and 11, we report the actual
matches as follows. The first pattern acalbablcablaba
is matched at location T7[i,j] since it has an avatar
(acalbab|cablaba, aba) dominated by (wyl, 7], wsi, 5]).
From Theorem 3.11, it follows that the rectangle of this
avatar 1s in M at step 10. Similarly the second pat-
tern bab|cablabalbch is matched at location T[i,j + 1]
since it has an avatar (bab|cablaba, beb|aba) dominated
by (weli, 7], wsz, 5]). Accordingly, its rectangle is also in
M at step 10.

The correctness of the algorithm follows from Sec-
tion 3. It remains to prove the running time bounds
and make sure that we use only O(d) space. We first
state two important results from previous papers.

Lemma 4.2 [24, 15] RER and NRES can be reduced
to 4-dimensional range searching problems.

Proof: Let each rectangle R have extreme =z
values (Zmin(R), Zmax(R)) and extreme y values
(Ymin(R), Ymax(r))- Then rectangle R encloses the
query rectangle @ if and only ift Zmin(R) < 2min(Q),
mmax(R) > mmax(Q)1 ymm(R) < ymin(Q)7 and
Ymax(R) > Ymax(Q). If we represent each rectangle by its
four extreme coordinates, we seek in the RER problem
to report all rectangles R that satisfy the four inequal-
ities above with respect to Q. To solve NRES we seek
the enclosing rectangle with maximum «min and Ymm.

In fact, the problems are equivalent in some sense [15].
Those readers familiar with range searching will notice
that in the above reduction the four constraint intervals
for @ are unbounded on one side. This enables us to
use a result of Gabow-Bentley-Tarjan [16] who already
noted its applicability to the counting variant of RER.

Lemma 4.3 [16] There 1s a data structure that enables
us lo store m points wn four dimensions with Syeer =
Trect = O(]og2 m) and answer RER queries in fume
O(log? m + nrect), where nrect is the number of rect-
angles reported. For the NRES problem, the addilive
term nrect s dropped.

We now give two results on time bounds:

87

Theorem 4.4 We can solve the TMPM problem using
O(d) space and times:

Preprocessing: O(dlog(n + o))
Text Scanning: O(t(log? dlog(B + n + 7)) + toce)

Proof: We analyze the algorithm scaN whose pseu-
docode description is given in the Appendix. One mul-
tiplicative factor of log B in the scanning time, when we
do not use the Bird-Baker algorithm, arises because we
call scAN once for each height range. Regardless of
whether the dictionary is size-diverse or not, steps 1-5H
take time (¢ logd) using the AC algorithm.

We take hpn = log2 d. This means that the use of
the Bird-Baker algorithm in step 0 (over all heights)
takes time O(tlog? dlog(n 4+ o) + tocc). Since there are
29 possible heights i and and [¢/29] power columns, the
number of instances of RER and NRES queries that we
need to solve in the loop at steps 6-111s O(t). Since each
query takes ()(log2 d) time by Lemma 4.3, the scanning
time bound follows.

We now prove the time and space bounds for the pre-
processing. Recall from Theorem 3.13 that the num-
ber of avatars inserted is my, which is also the num-
ber of points inserted in any geometric structure. From
Lemma 4.3, the space and time used by the Gabow-
Bentley-Tarjan structures is O(mlog®m) for m pat-
terns. To show that this amount is O(d), it suffices to
show that 7, = O(d/(log” d)). The key point is that we
do not use the avatars of short patterns with height be-
low hypyn. Thus i > i > log;2 d by our choice. There-
fore: 7, < Zhthm(h-nh) < (E:hthm(/12~nh))/h,mn =
d/(log? d).

From the above argument and Theorem 3.13, the time
and space bounds follow. I

Theorem 4.5 For size-diverse dictionaries we can tm-
prove the bounds to:

Preprocessing: O(dlog(n + o))
Tezxt Scanning: O(t(logdlog(B + n + o)) + toce)

Proof: In the case where the patterns are size di-
verse, we replace the Gabow-Bentley-Tarjan structure
for range searching with a data structure of Bentley and
Maurer [11] that achieves query time O(logm) at the
expense of having Sreet = Treet = O(m!T¢), for € > 0.
In the size diverse case we use A, = logd. The im-
proved scanning time bound follows as in the general
case. To prove the space and preprocessing time bounds,
it suffices to show that if the patterns are size-diverse,
7,7 = O(d).

We choose € small enough, so that the patterns are size
diverse with exponent k = (1 — ¢)/e. By the definition

of size-diverse, we have ny < h(1=9/¢ and n§ < Al-<.
Refining the above inequalities one more time, we get:
(m)1*e) < Lhzhmen (1 np)1+) < Dohhpn (B - 1 -
h'=¢np) = (Cpsh,.,. (B2 - n1)) = 0(d). 1

5 Dynamic Dictionary Matching of

Rectangular Patterns

One of the secondary themes of this paper is that com-
bining string matching paradigms (in particular, mul-
tiple matching and two-dimensional matching) can be
difficult. Thus, it is interesting to ask: to what extent
can our algorithm for multiple matching of rectangular
patterns be extended to encompass other paradigms? In
this section we briefly summarize how we can extend our
algorithm to further combine it with the dynamic dictio-
nary paradigm. The details are given in our full paper.
For one dimensional strings this paradigm is defined as
follows:

¢ Dynamic Dictionary Matching(DDM): Main-
tain a dictionary of patterns under the operations
insert a pattern, delefe a pattern, and search for all
occurrences of patterns currently in the dictionary
in a query text.

A semi-dynamic version of DDM, allowing only inser-
tions, was proposed by Meyer [26]. Amir and Farach [4]
introduced the full DDM problem and got the first inter-
esting bounds. The DDM problem for one dimensional
strings was studied further in [6, 22, 7]. The one dimen-
sional DDM algorithms were extended to handle two
dimensional square patterns in [7].

Our main result on dynamic dictionary matching for
rectangular patterns is:

Theorem 5.1 Dynamic dictionary matching of rectan-
gular patterns in a rectangular text can be solved in the
following time bounds:

Preprocessing: O(dlog*d);

Insertion/Deletion: O(plog* d), where p is the area of
the pattern;

Text Searching: O(t log* dlog B + tocc).

At a high level the pattern representation and the
searching algorithm for the dynamic case are similar to
the approach in Sections 3 and 4. We briefly summarize
the main new ideas. First, as one might expect, all our
one dimensional dictionaries of columns and avatars are
made dynamic. Second there are two other principal
changes in data structures. Third, we need to use a
dynamization technique in the spirit of [27] to keep the
space O(d), as d changes. The two other changes in data
structures are:

88

1. To dynamically maintain the Euler tour informa-
tion for the pattern trees, we use a list data struc-
ture of Dietz and Sleator [14], which we call a DS-
list.

2. To dynamize our range searching we use a data
structure of Willard and Lueker [28] instead of ei-
ther the Bentley-Maurer structure or the Gabow-
Bentley-Tarjan structure that were preferable for
the static case. The Bentley-Maurer structure can-
not be easily used because the validity of the as-
sumption that the dictionary is size-diverse may
change over time. The Gabow-Bentley-Tarjan
structure cannot be used because it relies on fast
processing of least-common-ancestor queries in a
static tree, and hence, appears hard to dynamize.

Acknowledgements We thank Amihood Amir for
suggesting this problem to us, Martin Farach and Raf-
faele Giancarlo for helpful discussions, and Gaston
Gonnet for sending us the transparencies of [20].

References

[1] A. V. Aho and M. J. Corasick. Efficient string
matching: An aid to bibliographic search. Comim.
ACM, 18:333-340, 1975.

[2] A. Amir, G. Benson, and M. Farach. Alphabet in-
dependent two-dimensional matching. Proc. of the
24th Ann. ACM Symp. on Theory of Computing,
pages 59-68, 1992.

[3] A. Amir and M. Farach. Two dimensional dictio-
nary matching. Information Processing Letters. To
appear.

[4] A. Amir and M. Farach. Adaptive dictionary
matching. Proc. of the 32nd IEEE Annual Symp.
on Foundation of Computer Science, pages 760—
766, 1991.

[5] A. Amir and M. Farach. Efficient 2-dimensional
approximate matching of non-rectangular figures.
Proc. of the Second Ann. ACM-SIAM Symp. on
Discrete Algorithms, pages 212-223, 1991.

[6] A. Amir, M. Farach, R. Giancarlo, Z. Galil,
and K. Park. Dynamic dictionary matching.
Manuscript, 1991.

[7] A. Amir, M. Farach, R. M. Idury, J. A. La Poutré,
and A. A. Schaffer. Improved dynamic dictio-
nary matching. Proc. of the Fourth Ann. ACM-
SIAM Symp. on Discrete Algorithms, pages 392—
401, 1993. Full version available as DIMACS Tech.
Report 92-33.

[8] A. Amir, G. M. Landau, and U. Vishkin. Efficient
pattern matching with scaling. J. Algorithms, 13:2~
32, 1992.

[9] R. Baeza-Yates and M. Régnier. Fast algorithms
for two dimensional and multiple pattern match-
ing. Proc. of the 2nd Scandinavian Workshop on
Algorithm Theory, Lecture Notes in Computer Sci-
ence 447, pages 332-347, 1990.

[10] T. P. Baker. A technique for extending rapid exact-
match string matching to arrays of more than one
dimension. SIAM J. Comp., 7:533-541, 1978.

[11] J. L. Bentley and H. A. Maurer. Efficient worst-case
data structures for range searching. Acta Informat-
ica, 13:155-168, 1980.

[12] R.S. Bird. Two dimensional pattern matching. In-
formation Processing Letters, 6:168-170, 1977.

[13] R.S. Boyer and J. S. Moore. A fast string searching
algorithm. Comm. ACM, 20:762-772, 1977.

[14] P. Dietz and D. D. Sleator. Two algorithms for
maintaining order in a list. In Proc. of the 19th
Ann. ACM Symp. on Theory of Computing, pages
365-372, 1987. To appear in J. Comp. Syst. Sci.

[15] H. Edelsbrunner and M. H. Overmars. On the
equivalence of some rectangle problems. Informa-
tion Processing Letters, 14:124-127, 1982.

[16] H. N. Gabow, J. L. Bentley, and R. E. Tarjan. Scal-
ing and related techniques for geometry problems.
Proc. of the 16th Ann. ACM Symp. on Theory of
Computing, pages 135-143, 1984.

[17] Z. Galil and K. Park. Truly alphabet-independent
two-dimensional pattern matching. Proc. of the
33rd IEEE Annual Symp. on Foundation of Com-
puter Science, pages 247-256, 1992.

[18] R. Giancarlo. Personal Communication, 1992.

[19] R. Giancarlo. The suffix tree of a square matrix
with applications. Proc. of the Fourth Ann. ACM-
SIAM Symp. on Discrete Algorithms, pages 402—
411, 1993.

[20] G. Gonnet. Efficient two-dimensional searching.
Proc. of the 8rd Scandinavian Workshop on Algo-
rithm Theory, Lecture Notes in Computer Science
621, page 317, 1992. Abstract of an invited talk.

[21] G. H. Gonnet and R. Baeza-Yates. Handbook of
Algorithms and Data Structures. Addison-Wesley,
2nd edition, 1991.

89

(22]

[23]

[24]

25]

[26]

[27]

[28]

(29)

R. M. Idury and A. A. Schaffer. Dynamic dictionary
matching with failure functions. In Proc. of the
Third Symp. on Combinatorial Pattern Matchinyg,
1992. Full version submitted to a journal.

D. E. Knuth, J. H. Morris, and V. R. Pratt. Fast
pattern matching in strings. SIAM J. Comp.,
6:323-350, 1977.

D.T. Lee and C. K. Wong. Finding intersections of
rectangles by range search. J. Algorithms, 2:337-
347, 1981,

U. Manber and R. Baeza-Yates. An algorithm for
string matching with a sequence of don’t cares. Inf.
Proc. Let., 37:133-136, 1991.

B. Meyer. Incremental string matching. Informa-
tion Processing Letters, 21, 1985.

M. H. Overmars. The Design of Dynamic Data
Structures. Springer-Verlag Lecture Notes in Com-
puter Science 156, 1983.

D. E. Willard and G. S. Lueker. Adding range re-
striction capabilities to dynamic data structures.
Journal of the ACM, 32:597-617, 1985.

R. F. Zhu and T. Takaoka. A technique for two-
dimensional pattern matching. Communications of
the ACM, 32:1110-1120, 1989.

A Pseudocode for Pattern Preprocessing and Text Scanning

Algorithm 1 Code for preprocessing patterns.

PREPROCESS(P,)

NOTE Vp € P,, height(p) < width(p) and 29 < height(p) < 291!
1 Build the dictionary C' of columns of height 27

2 Build HS¥ HI Hbu HbI

3 For each h, 29 < h < 2911

4 Build the dictionary of columns of height A

5 Let Dy C P, be the set of patterns with height h

6 Assume w.l.o.g. that Dy, is non-empty. Build Dj

7 For each pattern P € Dy,

8 For each avatar (Py, P;) of P

9 Add rect(P}, P}) to 174

10 Add rect(P}, P{) to V!

11 Add rect(Pf, Py) to Vy

12 Build the data structure needed to solve NRES on V;/ and V)
13 Build the data structure needed to solve RER on V;

Algorithm 2 Code for scanning a tezt with Py.

scAN(T)

0 Suppose g > hpyin. Otherwise run Bird-Baker algorithm directly

Scan each column of T top-to-bottom with C, giving T,

Scan each row of T' left-to-right with H/*, giving FU

Scan each row of T left-to-right with H/, giving FL

Scan each row of T right-to-left with H®¥ giving BU

Scan each row of T right-to-left with H®' giving BL

For each h, 29 < h < 291

For each power column j (i.e. j mod 29 = 0) of T

Set wy i, j] to the smallest rectangle in V,{ enclosing rect(FU[i, j], FL[i+ h — 29, j])
Set wy[i, 5] to the smallest rectangle in V} enclosing rect(BU[, j], BL[i + h — 29, j])
Let M € V;, be the set of rectangles enclosing rect(w;[s, j], ws[, j])
Report the corresponding patterns of M

WO OO ~NOT P WN =

—
- O

90

