
Mllltiple Matt:hing of Rectangular

(Extended Abstract)

l?amana M. Idury *

Rice lJniversity

Abstract

We describe the first .efiicient algorithm for simultane-

ously matching multiple rectangular patterns of varying

sizes and aspect, ratios in a rectangular text. Efficient

means significantly better asymptotically than known

al,qorithrns that handle one height, width, or aspect ra-

tio at a time. Our algorithm features an interesting

use of multidimensional range searching, as well as new

adaptations of several known techniques for two climen-

sional string matching. We also extend our algorithm to

a dynamic setting where the set of patterns can change

over time.

1 Introduction

Searching for a fixed pattern in a text is one of the most

basic problems in string matching. We define this prob-

lem

●

as:

Fixed Pat terl~ Mat cl~ing (FPM): Given a jized

pattern P over an alphabet Z, preprocess it so as

to be able to find all its occurrences in a rp.tery text

T.

There are several solutions (e.g., [23, 1S]) that prepro-

cess the pattern in time Cl(p), where p is the pattern

length, and search a text of length t in time O(t).

*Department of (~omputer Scieuce, Rice [Jni versit y, Houston,

TX 77251-1892. idury(~cs.rice. edu; Partially supported by a grant

from the W. M. Keck Foundation.
t ~ep=tlllellt of computer Scieuce, Rice I luiversity, HOustoll,

TX 77251-189”. scl,affer@cs.rice. edu; Partially supported by NSF

grant CCR.-9O1 05:34.

Permission to copy without fee all or part of this material is

granted provided that the copies are not made or distributed for

direct commercial advantage, the ACM copyright notice and the

title of the publication and its date appear, and notice is given

that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee

and/or specific permission.

25th ACM STOC ‘93-51931CA, USA

01993 ACM 0-89791 -591 -7/93 /0005 /0081 . ..$1 .50

Patterns

Alejandro A. ,Ycll$ffer

Rice University

t

In this paper we study two important extensions to

the basic FPM problem: multiple patterns and two di-

mensional rectangular strings (both as text and as pat-

terns). Our main result is the first efficient algorithm

for matching multiple rectangular patterns in a rectan-

gular text. In particular, our algorithm handles patterns

of arbitrary sizes and aspect ratios. our result addresses

a longstanding open problem posed by T. P. Baker in

1978 [10].

The natural extension of FPM to multiple one climen-

sional patterns is defined as:

● Multiple Pat t a-n Mat thing (MPM): Given a

jixed set of patterns PI, Pn over an alphabet

Z, preprocess it so as to be able to search for all

occurrences of all the patterns in a query text T.

The set of patterns k also called a dictionary.

Aho ancl Corasick, or AC for short, solved M PM [1].

The salient feature of their algorithm is the extension

of the Knuth-Morris-Pratt ~2j3] (henceforth KM P) algo-

rithm for FPM to multiple patterns. The AC algorithm

preprocesses the patterns in time O(d log a) and searches

a text in time O(t log u + tom), where d is the total size

of all patterns, u is the number of characters that oc-

cur in some pattern, and tocc is the total number of

pattern occurrences. The A(.; algorithm can be trivially

modified to report just the longest pattern that matches

(ending) at each position of the text in time O(t log a).

To extend FPM to two dimensions we make both the

text and the pattern rectangular arrays. Define:

● Two Dimensional Fixed Pattern Matching

(TFPM): Given ajized rectangular pattern P, pre-

process it so as to be able to find all its occurrences

in a rectangular query text T.

The TFPM problem was originally solved by Bird [12]

and independently by Baker [10]. The basic idea in their

algorithms is to linearize the pattern by treating each

column as a single character in a new derived alpha-

bet. Bird and Baker use the A(.; algorithm as a sub-

routine to transform the columns of pattern and text

http://crossmark.crossref.org/dialog/?doi=10.1145%2F167088.167116&domain=pdf&date_stamp=1993-06-01

into these special characters and then run the KMP al-

gorithm to search the modified text. The preprocess-

ing time is O(plogu) and the search time is O(tlog u),

where p and t are the area of the pattern and text. Other

algorithms that seem to perform better on random pat-

terns have been described in ~29, 9]. Recent papers give

new algorithms whose running times are linear without

depending on the alphabet size ~2, 17].

Since he used an algorithm for M PM to solve the

TFPM problem, it is not surprising that Baker [10] ob-

served that it is natural to combine the two paradigms.

Define:

● Two Dimensional Multiple Pattern Matcl~-

iq (TMPM): (-;iven a ficed set of rectangular pat-

terns PI, Pn over an alphabet Z, preprocess it

so as to be able to search for all occurrences of all

the patterns in a rectangular query text T. The set

of patterns is also called a dictionary.

Template-based computer vision is one natural motiva-

tion for TM PM. We can think of a seeing being as having

a mental dictionary of known templates (patterns) that

are quickly matched against a new scene (text). For

other applications of two-dimensional matching and a

general survey with lots of references see Section 7.3.2

of [21]. Much of that section focuses on a “dual’> prob-

lem where there are multiple texts to be preprocessed

and one query pattern; (.jianc.arlo [18] has some recent

improvements to those results.

If all the patterns in an instance of TM PM are of

fixed height, then Baker [10] noted that his algorithm

can be adapted to solve TMPM by replacing the use of

the KMP algorithm with a use of the AC algorithm. The

search time for one height or width becomes O(t log(n +

u)+tocc). When the number of different heights, widths,

and aspect ratios is large, we would like an algorithm

whose performance depends as little as possible on the

number of different pattern sizes. Baker explicitly left

open this question of how to solve TM PM efficiently

when the patterns have varying heights and widths [10].

Amir and Farach [3] found an efficient algorithm for

TM PM in the special case where all the patterns are

square; a similar algorithm was given by Giancarlo [19].

Square patterns have the special property that they can

be altgncd at a corner. Amir and Farach used this fact to

linearize the text clown the diagonals (instead of across

rows or down columns, as Bird and Baker did) and apply

a generalization of the AC algorithm to the linearized

text.

We use a different approach from [3, 19] to solve

TM PM for rectangular patterns. Rectangular patterns

of different heights, widths, and aspect ratios cannot be

aiigncd at a corner. There is no natural way to define

the “biggest suffix” of the text that matches a “prefix”

of some pattern.

The most interesting feature of our algorithm is a con-

nection between two dimensional pattern matching and

some multidimensional range searching problems. Our

TM PM algorithm also includes new adaptations of three

techniques from algorithms for other two dimensional

string matching problems: splitting patterns into two

overlapping pieces of fixed height ~20], focusing on text

columns that are (numbered) O mod q for some appro-

priate q (see [8, 9]), and the smaller matching with tree

partial order paradigm, which was defined and studied

in [5]. For other, different uses of computational geom-

etry in string matching see [25, 8].

The time and space of our TMPM algorithm depend

on the distribution of patterns among the different sizes

because this affects which known range searching algo-

rithm is best to use. Following the general trend in

string matching, we restrict ourselves to variations of

our algorithm that use linear, i.e. O(d), space, and get

the best time possible using linear space.

Define the linear size b(P) of a rectangular pattern

P to be the smaller of its height and width. Let B

be the biggest linear size of any pattern. To express

the possible running times of our algorithm we give one

definition,

Definition 1.1 We call a dictionary swe-dwerse if for

some jixed k > 1, the number of patterns of any fixed

linear size b ~ logd is O(bk).

For size-diverse dictionaries our algorithm achieves the

following time bounds using linear space:

Dictionary Preprocessing Time: O(d log(n + a))

Text Scanning Time: O(t log d log(B + n + a) + tom)

There are many dictionaries that are not size-diverse

for which the above time bounds still hold. For any

dictionary, we can achieve the combination:

Dictionary Preprocessing Time: O(d log(n + u))

Text Scanning Time: O(t log2 d log(B+ n+ u) +t occ)

It is surprising that our algorithm may achieve better

times for size-diverse dictionaries because this looks like

the hardest case from the perspective of the Bird-Baker

algorithm.

The rest of this paper is organized as follows. In Sec-

tion 2 we give basic definitions and an overview of our

method. In Section 3 we present the connection l>e-

tween pattern matching and computational geometry,

showing how to preprocess the patterns and do the final

stage of matching against the text. In Section 4 we give

82

more details of the text scanning algorithm and prove

the resource l~ounds. In Section 5, we sketch how our

algorithm can be extendecl to a clynamic setting where

the set of patterns can change over time.

2 Defhitions and Algoritlml Overview

ln this section we give some basic definitions, introduce

some auxiliary data structures, and give an overview of

the text scanning algorithm. The algorithm begins by

making two classifications into cases. First, we assume

that all patterns have height ~ width; the opposite case

can be handled symmetrically. Second, we partition the

set of patterns into [log 1?] sets 7., PI, . . . such that:

Definitio~~ 2.1 The patfcrns in set ‘Pg have a height h

in tl, e range 29 < h < 29+1.

For each g, we search the text for just the patterns in

?9 in one phase. Since there are at most [log BJ sets

of patterns, this contributes a multiplicative factor of

O(log B) to the text scanning time, hut does not change

the asymptotic preprocessing time or space.

From now on we focus on one specific Tg and assume

we are just interested in the patterns in that set. We use

the following example to illustrate various definitions.

Example 2.2 Consider a dictionary oj two 3 x 4 pat-

terns. Here, g = 1 and h = 3.

a bca b c a b

Crlrl b aa be

a bba bbab

Our first key idea is to divide each pattern into two

pieces, such that each piece has height 29 and full width.

For a pattern of height h, the top piece includes rows

1,29, and the bottom piece includes rows h – X’ +

1, h. The two pieces share 29+1 – h rows and will

overlap unless h = 29+1.

Definitiol~ 2.3 We call the pattern paeces haljpatterns;

the top pieces are called upper halfpaiternsj and the bot-

tom pzeces are called lower halj patterns.

In Example 2.2, the upper half patterns are:

a bca bcab

caa b aa l)c

And the lower half patterns are:

c a (t b a a bc

a bba b bab

Definition 2.4 Let (1 be the set oj text columns that

occur in soIne halj pattern.

As in the Bird-Baker algorithm, each column is

assigned a number (memory address) that we think

of as a character, and then we view each half pat-

tern as a one dimensional string of column charac-

ters. In Example ~.~, the set of text columns is (~ =

{ah, ac, ba, bc, ca, c+}, where each column is written as

a string where left-to-right in the string corresponds to

tol~-to-ljottorn in the column. For convenience, we write

a two climensional pattern as a one climensional string of

columns, where each column is separaterl by a vertical

bar. With this notation, we can write the first pattern

of Example 2.2 as aca[bablcablaba, its upper half pattern

as ac]ba\ca[ab, and its lower half pattern as calablablba.

Since all half patterns are of the same height, we

could use the Bird-Baker algorithm to recognize all oc-

currences of half patterns. To do the efficient synthesis

of half patterns into full patterns, we need extra prepro-

cessing.

Definition 2.5 A prefix (sufix) oj a rectangular pat-

tern tcf a prefix (.sufix) oj its string- oj-column - charact er

rcpresentalion, The rmcrse oj a rectangular pattern is

the reverse oj zts strmg-oj-column-c haructer representa-

tion (t. e, the pattern read raght-to-lefi).

In Example 2.2, bab]cablaba is a prefix of the sec-

ond pattern and a suffix of the first pattern, whereas

bcblabalcablbab is the reverse of the second pattern.

We maintain two extra dictionaries of upper half pat-

terns.

Definition 2.6 The dactaonary H~z” (H jor hal~ f jor

forward, u for upper) contains the ’29 longest prejixes oj

each upper haljpattern. The dictionary Hbu (b jor back-

ward) contatn.s the 29 smallest non-empty prefixes oj the

reverse of each upper half pattern; m other words, Hbu

contains the last 29 non- t-mpty sufizes of each upper half

pattern, with the prefixes stored an reverse fas-hzon. We

also maintain two similar dictionaries H~I’ and HbI’ jor

lower half patterns.

In Example 2.2, Hj” = {aclbalcalab, aclbalca,

balcalablbc, balcalab}, Hj’ = {calablablba, calablab,

ablablbalcb, ablablba}, Hbu = {ab, ablca, bc, bclab}, and

Hbl = {ha, balab, cb, cblba}.

The reason for storing the prefixes and reverse prefixes

is that our final scanning pass will look only in text

columns numbered O mod 29. Following [8], we call these

power columns. If there is a match spanning columns

[c, . . . C2] of the text, we will find it in the rightmost

power column c < C2. The pattern occurrence must

inclucle at least one power column })ecause its width is

assumed to be at least as big as its height, which is at

least 29 + 1.

C2, C2— 1,...

The part of the match &

c (read from right to left)

text columns

will have its

83

upper half in HbIu and its lower half in Hb’~. The part

of the match in text columns c1, c1 + 1, c (read from

left to right) will have its upper half in Hj’” and its

lower half in Hf’l.

Let P be a pattern of width w. Since we cannot pre-

dict where in F an occurrence will first intersect a power

column, we define:

Definition 2.7 An avata~ of pattern P M an ordered

paw (P~, Pb) such that P~ is a prefix of P of length at

least w – 29 + 1 and pb zs the reverse of a ,sufix of

P of length at most 29. The strings Pf, f’b overlap in

exactly one column character. We say the Pj ts the

forward projection of the avatar, and Pb is the backward

projection of the avatar.

our intention is that a match of pattern P can be

viewed as that avatar, (Pj, Pb), where Pj is the part

to the left of and including power column and l’b is

the part to the right of ancl including the power col-

umn. Each pattern has W avatars. In Example 2.2, the

avatars of the first pattern are (acalbablcablalm, aba) and

(acalbablcab, abalcab). The avatars of the second pattern

are (bablcablabalbcb, bcb) and (bablcablaba, Ix+laba).

For every h, Y’ < h ~ 29+’, we maintain two one

dimensional dictionaries on the avatars of all patterns

of height h.

Definition 2.8 The dictionary Fh contains the forward

pr-ejections of the avatars of al! the patterns. Similarly

~h contains ail the backward projections of the avatars

of all the patterns.

In Example 2.2, F3 = {acalbablcablaba, acalbablcab,

bablcablaJa16cb, bablcablaba}, and I?3 = {aba, abalcab,

bcb, bcblaba}.

We extend the definitions of avatar and projections to

half patterns. We have set up the auxiliary dictionaries

so that the forward projection of any avatar of any upper

half pattern is in Hf’”, the backward projection of any

avatar of any upper half pattern is in HbIu, and similarly

for lower half patterns.

our text scanning algorithm has two basic parts, a

text preprocessing step and a matching step. In the

preprocessing step, we find for text location T[i, j] in

power column j, the widest elements of H.fIu and H.fi

that match when their upper right corner is placed at

T[i, j]. The answers are placed in the auxiliary arrays

FU, FL. Similarly, we seek the widest elements in HbJu

and HbI~ that match the text when their upper /efi cor-

ner is placed at T[i, j]. These answers are stored in the

arrays B(J, EiL.

1‘l%e word avatar comes from SaAcrit and originally means an

iucarnatiou of a Hindu deity. In English, avatar also can meau a

variant phase of a coutiuuiug basic eutit y (Webster’s Dictionary).

In the text scanning phase, we ask for each power

column location T[i, j] and each height h E (Y, 29+1]:

are there any matches of patterns such that the top row

is i, the rightmost power column is j, and the height of

the pattern matched is h? We ask 2$’ queries at each

power column position, but there are at most [t/2gj

power columns, so the total number of queries is O(t).

3 Preprocessing ad Matching Patterns

In this section we investigate how to synthesize projec-

tions and subpattern matches into full pattern matches.

(Iur synthesis uses a geometric approach. We describe

how to build (preprocess) and use (search) our geometric

pattern representations.

The synthesis from projections and subpattern

matches to full pattern matches is carried out in three

steps as follows:

Step 1: For a text location T’[i, j] on a power column

j, we compute Wf [i, j] which is the widest forward

projection of a pattern of height IL matching at

‘T[i, j]. For this we take the values FLJ [i, j] and

FL[i + h – 29, j], which are pointers into H~’” and

lff,~ respectively, and transform them into wf [i, j]

which is a pointer in Fh.

Step 2: We do a similar procedure on BU[i, j] and

BL[i + h – 29, j] and obtain the widest backward

projection wb[i, j] of a pattern of height h matching

at 7’[i, j].

Step 3: We use wf [i, j] and wb[i, j] to report all match-

ing patterns at the subrow T[i, j] through T[i, j +

29–1].

We now define a computational geometric problem and

one

the

●

●

The

variant of it. We reduce each of the above steps to

variants.

Rectangle Enclosure Reporting (RER) [15]:

Given a set V of rectangles in the plane and another

query rectangle Q, the rectangle enclosure reporting

problem asks for reporting all rectangles in V that

enclose Q.

Nested Rectangle Enclosure Searcl~ing

(NREs): We guarantee that the set V is nested

which means that for VI, V2 E V, if VI and V2 in-

tersect then one of them encloses the other. In this

case, we report the smaile.st rectangle v in V that

encloses Q. Since V is nested the choice of v is

unique.

rectangle enclosure reporting problems can be

solved efficiently using multidimensional range search-

ing algorithms ~24, 15, 16]. In the rest of the section, we

84

show the reductions from steps 1, 2, 3 to R,ER or NRES.

To perform the reductions we define a dominance rela-

tion on strings as follows:

Definition 3.1 For any two strzng.s U1 and U2, U2 dom-

mates UI or UI M do7ninated by Uz, denoted U1 <~ U2,

Zf U1 w a .sufiz of U2. We. also extend thr definition of

dommance to a pair- of strings as follows: (UI, VI) <,

(U2, 7J2) tf ul <~ Uz and VI <$ 7J2.

For example, cbc ~, abcbc ancl bablcablaba <,

acalbablcnblaba. Similarly (cbc, aba) <$ (abcbc, bcaba)

and (bnblcablaba, aba) <$ (mlbablcablabal bcblaba).

Definition 3.2 Let D be a one dimensional dictionary

automaton constructed using the A <1 algorithm [1]. For

any prefix u an D, dejine faii(u) as the longest proper

sufiz v of u such that v M also a prefix in D. TILe fail

[tnk of u points to v.

Fact 3.3 The fail iinks of a dictionary D form a tree

which we call the fail tree of the dictionary, denoted by

fai/tree(D).

We can conclude from Definition 3.2 and Fact 3.3 that:

Fact 3.4 [1, 3] If U1 and U2 are prefixes of some pat-

terns an a dictionary D, then U1 <, U2 zf and only tf ul

is an ancestor of U2 in failtree(D).

We use Fact 3.4 to transform each prefix of a pattern

in a one dimensional dictionary D with m prefixes to

a line interval on the real line as follows. Perform an

Euler tour of failtree(D) and use:

Fact 3.5 [22, 7] When we perform an Euler tour of a

tree starting at the root we visit each node twtce, once in

the preorder and once in the posiorder. If we replace the

first visit by a left parenthesis and the second visit by a

rvght parenthe.sw we get a list of balanced parentheses.

Each matching pair of parentheses corresponds to a node

in the tree which also corresponds to a prefix of some

pattern. If we do a bijective mapping of the list of 2nt

parentheses to the integer points O . . . 2nl – 1 on the real

line in the same order, then each prefix of a pattern cor-

responds to an interval on the real line. It may be noted

that these intervals are nesting because the correspondi-

ng parentheses are balanced. We call this scheme the

line-mapping of a dictionary D on to the real line.

Definition 3.6 For a pattern P c D, we use line(P)

to denote the interval to which P is mapped. More gen-

erally, ifu is a prejiz of some pattern in D, then line(u)

denotes the tnterval to which u as mapped, Similarly we

usc /ine(D) to denote the set of interva!.s formed.

The following lemma follows from the above definition:

Lemma 3.7 Suppose u, v G D. Then u <, v if and

only if Jine(u) enclo.se.s li71e(v).

If ul, V1 are prefixes in a dictionary D1 and Uz, V2 are

prefixes in a dictionary D2, then (ul, U2) <. (VI, Vz)

if and only if ul is ancestor of V1 in fniitree(Dl) and

U2 is an ancestor of V2 in failtree(D2). If we line-

map D1 on x-axis ancl D2 on y-axis, then each pair

(ul, uz) is mapped to two intervals—line(ul) on x-axis

and line(uz) on y-axis—which induce a rectangle. We

call this scheme the rectangle-m appmg of a pair of dic-

tionaries (Dl, D2) on to the plane.

Definition 3.8 For a paar of patterns P1 G DI and

P2 E D2, we use rect(P1, P2) to denote the rectangle

to whzch (Pl, P2) is mapped. More generally, if U1 zs a

prefix tn DI and U2 is a prejix in D2 then rect(ul, U2)

denotes the rectangle to which (UI, U2) is mapped. Simi-

larly we use rect(Dl, D2) to denote the set of rectangles

formed.

The following lemma follows from the above definition:

Lemma 3.9 Suppose U1, VI E Dl and 7L2, V2 E D2.

Then (u1, w) S, (v1, w) tf and only if rect(ul, u2) m-
Closes rect(vl , V2).

We are now ready to show the reductions:

Theoreul 3.10 We can reduce both Step 1 and Step

2 to NRES.

Proofi We first reduce Step 1 to NRES. For every

forward projection F’f of a pattern of height h in F),,

its upper half pattern P; is in H~’U and its lower half

pattern I; is in H~J1. [Jnder the rectangle-mapping

of (~.f,”, ~.f,~), Pf = (P~, Pj) is transformed into a

rectangle in the plane. Let V(= {rect(~~, P;) I

Pj E F~} be the set of rectangles corresponding to

the patterns in Fh. We want to set Wj [i, j] to the

wiclest F’f such that (P;, P;) <, (FU[i, j], FL[i+ h –

2g, j]). Since (F’U[i, j], 17L[i + h – 29, j]) is also trans-

formed into another rectangle in the plane, we have that

rcct(P; , P;) is the .smalle.st rectangle in V(that encloses

reci!(FU[i, j], FL[i+ h – Y,j]) by Lemma 3.9. Since Fh

itself is a one dimensional dictionary, the set of rectan-

gles rect(H~’U, Hj’l) is nesting. Therefore the choice of

the widest pattern Pj in Fh, or equivalently the smallest

f is ~~niquerectangle rect (P;, P;) in V,l

We can reduce Step 2 to N RES using a similar pro-

cedure to the above. We define V; similarly. We set

‘Wb[i, j] to the widest l’b = (P;, Pi) in ~h such that

(Pf,pj) <$ (BU[i, J, BL[i+l~- ‘29, J). H

85

Theorem 3.11 We can .sinidar!y reduce Step 3 to

RER.

We now express the time and space required to prepro-

cess patterns of height h in ~g as a function of the time

and space needed for RER and NRES.

Lemma 3.12 Let llh be the number oj patterns m Dh.

,Smiilariy let dh be the total size of al! patterns in Dh.

Suppose the preprocessing time and space bounds for

etther RER or NRES wtth rn recta ng!e.s are O(nt .

T,ect(m)) and O(nt . 15’rect(rn)) respectwely. Gwen (~,

we can budd F},, Bh, V:, V)!, V], in time ~(dh 10g Ilh + 11.

?th . Trect(/t 7L/L)), and SpaCe (~(dh + h . ?ih . ,$r,C~(h . ?~h)).

Proofi (.;onsider a pattern P of height h in Dh. Let

(Fy, P;),..., (P~’, P$g) be the avatars of P, such that

P; = P. From the definition of an avatar, P; is a prefix

of P;–’ for 1< i <29. Similarly P; is a prefix of P~+l

for 1 ~ i <29. Since any dictionary automaton contain-

ing a pattern P contains all the prefixes of P, there is

no penalty in terms of time and space to include a pre-

fix of P as a new pattern. Following this reasoning, the

avatars of P can be added in Fh or ~h without any extra

cost. Therefore the resource bounds for building Fh and

~/, are (~(d~ log ?~h) time and ~(dh) sPace respectively

which follow from the bounds of the AC algorithm. The

reason the time is ~(dh log ?lh) is that in AC goto tree,

each state can have only ?~h outgoing edges.

Let us bound the number of rectangles in Vi, V):, and

vh. The number of avatars of P are 29. Since Y’ < h, the

total number of avatars is bounded by the sum of heights

of the patterns in ~h which is h . rth. Since the size of

the image of any mapping is at most equal to the size of

the domain of the mapping, it follows that the number

of rectangles generated in any reduction is at most equal

to the number of avatars. The time and space bounds

to reduce each step to either RER or NRES follow. U

We are now ready to state the time and space bounds

for the preprocessing of patterns. Pseudocode for the

preprocessing of patterns is given in the Appendix.

Theorem 3.13 Let pg denote the total size of all pat-

terns in Pg. Suppo,se the preprocessing time and space

for either RER or NRES with rn rectangles are O(rn .

T,e,t(rn)) and O(rn . S,ect(rn)) respectively. Let irg =

zh(lt ~ ?~h) be. the total number of avatars generated

by patterns in Pg. We can preprocess ‘Pg in tme

O(pg log(n + u) + rg . Tr,Ct(~g)), and space O(pg + mg .

Yr,,t(mg))

Proofi (Jsing analysis similar to that in the

previous proof, it follows that the dictionaries

<,’, HfIU, Hf(, Hb,U, Hb,i can be built in O(pg log(n+ u))

time and O(pg) space using the A(.: algorithm. From

Lemma 3.12, steps :3–1:3 take time O(zh(h. ?lh. TreCt(h.

?~h))). From this we cone.lucle that steps 1–113 take time

O(Pg log(?t + U) + mg ~T~,,t(mg)). Similarly we can prove

that steps 1–13 take space O(pg + Tg . Sheet). There-

fore the preprocessing time and space bounds follow.

I

4 Preprocessing and Searclliq the Text

In this section we give some more details of the scanning

algorithm outlined in the previous section, summarize

the scanning algorithm in pseudocode, and prove the

time I>ouncls we claimed in Section 1.

The pseucloc.ocle for the scanning algorithm is given

in the Appenclix. We discuss three cletails of it that are

not apparent from the clescription in Section 13.

First, our use of the AC algorithm to report all half-

pattern columns occurring in a text column is a little un-

usual. Normally, the AC algorithm records its matches

at the encl of the match, where they are detected. In

our application, each half pattern column is of height

2$’. Thus there can be at most one match ending (start-

ing) at a given position in a text column ancl the length

of the match is known. Therefore, we can modify the AC

algorithm to recorcl the column matches at the starting

(highest) position, !Jy subtracting 29-1 from the row

number where the match encls,

Second, although it is possible to use our geometric

approach for any distribution of patterns, we get bet-

ter time bounds with iineur space by using the Bird-

Baker algorithm for small pattern heights. Specifically,

we define a height h~,n such that for patterns of height

< l~min we use the Bird-Baker algorithm for each sepa-

rate height. This takes time O(hmin tlog(n + a) + tom).

We choose suitable values of hm,n later.

Third, from the description of the algorithm it may

appear that we use O(t) extra space to store the ar-

rays TC, FIJ, FL, B(J, 13L because they store one item

per text character. There is a standard trick to keep the

space to O(d), when d << t. Split the text into over-

lapping patches of size 2d x 2d and run the algorithm

separately on each patch. Each text position occurs in

at most 4 patches.

Exaulple 4.1 We use the following section of a text T

to explain the scanning process. We use the dictionary

of Example 2.2 for the purpose. Later we show how we

match patterns for locations T[i, j] through T[i, j + 1].

Here j is a power column.

m
86

We now illustrate the scanning algorithm, under the

assumption that hmln = O, using Example 4.1. Since

g = I in this case, we are operating in the range 2 <

h ~ 4. We show how we find all the matching patterns

for the subrow T[i, j] through T[i, j + 1] with a .sznglc

query at location T[i, j].

After step 5, we have FU[i, j] = arlbalcalab, FL[i +

l,j] = ra[ab[ablba, BU[i, j] = bclab, and BL[i, j] =

cb]ba. At step 6, we deal with the case h = 3 since

the patterns in Example 2.2 are of height 3. At steps 8

and 9, we set Wj[i, j] = acalbublcablaba, and wb[i, j] =

bcblaba. Finally at steps 10 and 11, we report the actual

matches as follows. The first pattern acalbab[cablaba

is matched at location T[i, j] since it has an avatar

(mcalbablcablaba, aba) dominated by (wf [i, j], wt,[i, j]).

From Theorem 3.11, it follows that the rectangle of this

avatar is in Nf at step 10. Similarly the second pat-

tern bablrablabalbcb is matched at location T[i, j + 1]

since it has an avatar (bab]cablcdm, bcblabti) dominated

~Y (ZOj [~, ~], wb[i, j]). Accordingly, its rectangle is also in

M at step 10.

The correctness of the algorithm follows from Sec-

tion 3. It remains to prove the running time bounds

and make sure that we use only O(d) space. We first

state two important results from previous papers.

Lemu~a 4.2 [24, 15] RER and NRES can be reduced

to ~-dtmen.sional range searching problems.

Proofi Let each rectangle R have extreme x

values (~mi.(R), x~~~(R)) and extreme y values

(Ynun (R), Ynlax(R)). Then rectangle R encloses the

query rectangle Q if and only if xtni” (R) < zm]n(Q),

xmax(~) 2 ~maX(Q), VmIII(~) < Ymi.(Q), and

Ymax (~) 2 Ymax (Q). If we re]~resent each rectan@ ~Y its

four extreme coordinates, we seek in the RER problem

to report all rectangles R that satisfy the four inequal-

ities above with respect to Q. To solve NRES we seek

the enclosing rectangle with maximum xmin and y~,n.

H

In fact, the prohlerns are equivalent in some sense [15].

Those readers familiar with range searching will notice

that in the above reduction the four constraint intervals

for Q are unbounded on one side. This enables us to

use a result of Gabow-Bent ley-Tarjan [16] who already

noted its applicability to the counting variant of RER.

Lemma 4.3 [16] There M a data structure that enables

us to store m points an four dimensions wtth S’~eCt =

T.eCt = 0(log2 rn) and answer RER querae.s in tame

~(logz m + 7~rect), where nrect is the number of rect-

angles reported. For the NRES problem, the addilzve

term nrect M dropped.

We now give two results on time bounds:

Theorem 4.4 We i-an solve the TMPM problem ustng

O(d) space and times:

Preprocessing: O(d log(n + u))

Ted Scanning: 0(t(log2 d log(l? + n + u)) + tom)

Proof: We analyze the algorithm SCAN whose Pseu-

docode description is given in the Appenclix. One mul-

tiplicative factor of log B in the scanning time, when we

do not use the Bird-Baker algorithm, arises because we

call SCAN once for each height range. Regarclless of

whether the dictionary is size-diverse or not, steps 1–5

take time O(t log d) using the A(.: algorithm.

We take h~,n = log2 d. This means that the use of

the Bird-Baker algorithm in step 0 (over all heights)

takes time O(t log2 d log(n + a) + tore). Since there are

29 possible heights h and and lt/29j power columns, the

number of instances of RER and NRES queries that we

need to solve in the loop at steps 6–1 1 is O(t). Since each

query takes 0(log2 d) time by Lemma 4.3, the scanning

time hound follows.

We now prove the time and space bounds for the pre-

processing. Recall from Theorem 3.12 that the num-

ber of avatars inserted is 79, which is also the numb-

er of points inserted in any geometric structure. From

Lemma 4.3, the space and time used by the (iabow-

Bentley-Tarjan structures is O(m log2 r-n) for r-n pat-

terns. To show that this amount is O(d), it suffices to

show that Tg = 0(d/(log2 d)). The key point is that we

do not, use the avatars of short patterns with height be-

low /ire, n.Thus h ~ hmin z log2 d by our choice. There-

fore: fig S Zk~~m,n(~~nk) S (X~~~m,n (l~2”7~h))/l~min =

d/(log2 d) .

From the above argument and Theorem 3.13, the time

and space bounds follow. ~

Theorem 4.5 For size-diverse dzcizonarte.s we can i7n-

prove the bounds to:

Preprocessing: O(d log(n + u))

Ted Scanning: O(t(log d log(B + n + u)) + tom)

Proofi In the case where the patterns are size di-

verse, we replace the Gabow-13entley-Tarj an structure

for range searching with a data structure of Bentley and

Maurer [11] that achieves query time O(log 7n) at the
-!

expense of having ,Syfrt = Trcet = 0(7711+’), for c >0.

[n the size diverse case we use hrn,n = log d. The im-

proved scanning time bound follows as in the general

case. To prove the space and preprocessing time bounds,

it suffices to show that if the patterns are size-diverse,

7;+’ = o(d).
We choose c small enough, so that the patterns are size

diverse with exponent k = (1 – [)/(. By the definition

87

of size-diverse, we have nh ~ h(l-’)/’ and n~ ~ hi-’.

Refining the above inequalities one more time, we get:

5 Dynamic Dictionary Matching of

Rectangular Patterns

One of the secondary themes of this paper is that com-

bining string matching paradigms (in particular, mul-

tiple matching and two-dimensional matching) can be

difficult. Thus, it is interesting to ask: to what extent

can our algorithm for multiple matching of rectangular

patterns be extended to encompass other paradigms? In

this section we briefly summarize how we can extend our

algorithm to further combine it with the dynamic dictio-

nary paradigm. The details are given in our full paper.

For one dimensional strings this paradigm is defined as

follows:

● Dynamic Dictionary Matching(DDM): Main-

tain a dictionary of patterns under the operations

insert a pattern, delete a pattern, and search for all

occurrences of patterns currently in the dictionary

in a query text.

A semi-dynamic version of DDM, allowing only inser-

tions, was proposed by Meyer [26]. Amir and Farach [4]

introduced the full DDM problem and got the first inter-

esting bounds. The DDM problem for one dimensional

strings was studied further in [6, 22, 7]. The one dimen-

sional DDM algorithms were extended to handle two

dimensional square patterns in [7].

Our main result on dynamic dictionary matching for

rectangular patterns is:

Theorem 5.1 Dynamic dictionary matching of rectan-

gular patterns in a rectangular text can be solved in the

following time bounds:

Preprocessing: O(d log4 d);

Insertion/Deletion: 0(plog4 d), where p is the area of

the pattern;

Ted Searching: O(t log4 d log B + tocc).

At a high level the pattern representation and the

searching algorithm for the dynamic case are similar to

the approach in Sections 3 and 4. We briefly summarize

the main new ideas. First, as one might expect, all our

one dimensional dictionaries of columns and avatars are

made dynamic. Second there are two other principal
changes in data structures. Third, we need to use a

dynamization technique in the spirit of [27] to keep the

space O(d), as d changes. The two other changes in data

structures are:

1.

2.

To dynamically maintain the Euler tour informa-

tion for the pattern trees, we use a list data struc-

ture of Dietz and Sleator [14], which we call a DS-

list.

To dynamize our range searching we use a data

structure of Willard and Lueker [28] instead of ei-

ther the Bentley-Maurer structure or the Gabow-

Bentley-Tarjan structure that were preferable for

the static case. The Bentley-Maurer structure can-

not be easily used because the validity of the as-

sumption that the dictionary is size-diverse may

change over time. The Gabow-Bentley-Tarjan

structure cannot be used because it relies on fast

processing of least-common-ancestor queries in a

static tree, and hence, appears hard to dynamize.

Acknowledgements We thank Amihood Amir for

suggesting this problem to us, Martin Farach and Raf-

faele Giancarlo for helpful discussions, and Gaston

Gonnet for sending us the transparencies of [20].

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

A. V. Aho and M. J. Corasick. Efficient string

matching: An aid to bibliographic search. Comm.

ACM, 18:333-340, 1975.

A. Amir, G. Benson, and M. Farach. Alphabet in-

dependent two-dimensional matching. Proc. of the

21th Ann. ACM Symp. on Theory of Computing,
pages 59–68, 1992.

A. Amir and M. Farach. Two dimensional dictio-

nary matching. Information Processing Letters. To

appear.

A. Amir and M. Farach. Adaptive dictionary

matching. Proc. of the 32nd IEEE Annual Symp.

on Foundation of Computer Science, pages 760–

766, 1991.

A. Amir and M. Farach. Efficient 2-dimensional
approximate matching of non-rectangular figures.

Proc. of the Second Ann. ACM-SIAM Symp. on

Discrete Algorithms, pages 212-223, 1991.

A. Amir, M. Farach, R. Giancarlo, Z. Galil,

and K. Park. Dynamic dictionary matching.

Manuscript, 1991.

A. Amir, M. Farach, R. M. Idury, J. A. La Poutr6,

and A. A. Schaffer. Improved dynamic dictio-

nary matching. Proc. of the Fourth Ann. ACM-

SIAM Symp. on Discrete Algorithms, pages 392-

401, 1993. Full version available as DIMACS Tech.

Report 92-33.

88

[8] A. Arnir, G. M. Landau, and U. Vishkin. Efficient

pattern matching with scaling. J. Algorithms, 13:2-

32, 1992.

[9] R. Baeza-Yates and M. R&gnier. Fast algorithms

for two dimensional and multiple pattern match-

ing. Proc. of the ,%d Scandinav~an Workshop on

Algorithm Theory, Lecture Notesin Computer Sci-

ence~d7, pages 332–347, 1990.

[10] T. P. Baker. Atechnique forextending rapid exact-

match string matching to arrays of more than one

dimension. SIAM J. Comp., 7:533–541, 1978.

[11] J. L. Bentley and H. A. Maurer. Efficient worst-case

data structures for range searching. Acts Inforntat-

ica, 13:155–168, 1980.

[12] R. S. Bird. Two dimensional pattern matching. in-

formation Processing Letters, 6:168-170, 1977.

[13] R. S. Boyer and J. S. Moore. A fast string searching

algorithm. Con~n~. ACM, 20:762–772, 1977.

[14] P. Dietz and D. D. Sleator. Two algorithms for

maintaining order in a list. In Proc. of the 19th

Ann. ACM Symp. on Theory of Computing, pages

365–372, 1987. To appear in J. Comp. ,’$yst. SCZ.

[15] H. Edelsbrunner and M. H. Overmars. On the

equivalence of some rectangle problems. Informa-

tion Processing Letters, 14:124-127, 1982.

[16] H. N. Gabow, J. L. Bentley, and R. E. Tarjan. Scal-

ing and related techniques for geometry problems.

Proc. of the 16’th Ann. ACM Syrnp. on Theory of

Computing, pages 135-143, 1984.

[17] Z. Galil and K. Park. Truly alphabet-independent

two-dimensional pattern matching. Proc. of the

33rd IEEE Annual Symp. on Foundation of Com-

puter Science, pages 247-256, 1992.

[18] R. Giancarlo. Personal Communication, 1992.

[19] R. Giancarlo. The suffix tree of a square matrix

with applications. Proc. of the Fourth Ann. ACM-

SIAM Symp. on Discrete Algorithms, pages 402–

411, 1993.

[20] C;. Gonnet. Efficient two-dimensional searching.

Proc. of the 3rd Scandinavian Workshop on Algo-

rithm Theory, Lecture Notes in Computer Science

6.21, page 317, 1992. Abstract of an invited talk.

[22] R. M. Idury and A. A. Schaffer. Dynamic dictionary

matching with failure functions. In Proc. of the

Third ,9ymp. on Combinatorial Paiiern Matching,

1992. Full version submitted to a journal.

~23] D. E. Knuth, J. H. Morris, and V. R. Pratt. Fast

pattern matching in strings. SIAM J. Comp.,

6:323-350, 1977.

[24] D. T. Lee and C. K. Wong. Finding intersections of

rectangles by range search. J. Algorithms, 2:337–

347, 1981.

~J5] U. Manber and R. Baeza-Yates. An algorithm for

string matching with a sequence of don’t cares. Inf.

Proc. Let., 37:133–136, 1991.

~26] B. Meyer. Incremental string matching. Inforn~a-

tion Processing Letters, 21, 1985.

[27] M. H. Overmars. The Design of Dynamtc Data

Structures. Springer-Verlag Lecture Notes in Com-

puter Science 156, 1983.

~28] D. E. Willard and G. S. Lueker. Adding range re-

striction capabilities to dynamic data structures.

Journal of the ACM, 32:597-617, 1985.

[29] R. F. Zhu and T. Takaoka. A technique for two-

dimensional pattern matching. Communications of

the ACM, 32:1110-1120, 1989.

[21] G. H. Gonnet and R. Baeza-Yates. Handbook of

Algorithms and Data Structures. Addison-Wesley,

2nd edition, 1991.

89

A Pseudocode for Pattern Preprocessing and Text Scanning

Algorithnl 1 Code for preprocessing pa~ierns.

PREPROCESS

NOTE Vp E Pa, height(p) < width(p) and 29< height(p) < 29+1

1

2

3

4

5

6

7

8

9

10

11

12

13

Build the dictionary C of columns of height 29 ‘- ‘

Build ll~’”, Z-If ’r, H~IU, HbI1

For each h, 29< h ~ 29+1

Build the dictionary of columns of height h

Let Dh ~ Pg be the set of patterns with height h

Assume w.1.o.g. that Dh is non-empty. Build Dh

For each pattern P G Dh

For each avatar (Pj, Pb) of P

Add rec-t(P~, P}) to vi

Add rect(Pf, Pi) to V:

Add ?’ect(P~, Pb) to Vh

Build the data structure needed to solve NRES on V{ and V:

Build the data structure needed to solve RER on Vh

Algorithxn 2 Code for scanning a text wzth Pg.

SCAN(T)

o’”
1

2

3

4

5

6

7

8

9

10

11

Suppose g > hmin. Otherwise run Bird-Baker algorithm directly

Scan each column of T top-to-bottom with C, giving T.

Scan each row of T left-to-right with HfJU, giving FU

Scan each row of T left-to-right with Hf”, giving FL

Scan each row of T right-to-left with H*”, giving BU

Scan each row of T right-to-left with Hb’~, giving BL

For each h, 29< h ~ 29+1

For each power column j (i.e. j mod 29 = O) of T

Set w~[i, j] to the smallest rectangle in Vi enclosing ~ect(~~[i,j], F’-L[i+ h – 2g, j])

Set w~[i, j] to the smallest rectangle in Vh enclosing rect(l?~[i, j], 13J5[i + h – 29, j])

Let M G vh be the set of rectangles enclosing rect(wj [~, j], wb[’i, j])

Report the corresponding patterns of M

90

