
A Deterministic Algorithm for the Three-Dimensional Diameter Problem*

Jiii Matouiek

Katedra aplikovan~ matematiky, University Karlova,
Malostransk6 nim. 25, 11800 Praha 1, Czechoslovakia and

Institut fur Informatik, Freie Universitat Berlin

Arnimallee 2-6, W 1000 Berlin 33, Germany

Otfried Schwarzkopf

Vakgroep Informatiea, Universiteit Utrecht,

Postbus 80.089, 3508 TB Utrecht, the Netherlands

Abstract

We give a deterministic algorithm for computing the

diameter of an n point set in ti~ree dimensions with

O(n log’ n) running time, c a constant.

1 Introduction

We consider the following problem: Given an n-point

set P in three-dimensional space, compute its diameter

diam(~), defined as the maximum distance between a

pair of points in P. This problem was solved by Clark-

son and Shor [CS89] by a randomized algorithm with

optimal expected running time O(n log n). However, it

seems quite difficult to construct a deterministic algo-

rithm with a comparable asymptotic efficiency.

Chazelle et al. [CEGS92] applied Megiddo’s paranlet-

r-ic search [Meg83] in connection with the Clarkson-Shor

algorithm and further techniques and obtained a de-

terministic O(nl ‘c) algorithm, where c > 0 is an ar-

bitrarily small constant. In this paper, we improve

this running time to O(n polylog n) (we use polylog n

as a generic notation for a function of the form (log n)’,

c >0 a constant).

Our basic approach is the same as that of [CEGS92].

Also the basic scheme for achieving the improvement

has appeared in previous works: While Chazelle et al.

*This research was supported by the Netherlands’ Organiza-

tion for Scientific Research (N WO) and partially by the ESPRIT

Basic Research Action No. 7141 (project ALCOM It). J. M. ac-

knowledges support by Hunlboldt Research Fellowship. Part of
this research was done while he visited U trecht University.

Permission to copy without fee all or part of this material is

granted provided that the copies are not made or distributed for

direct commercial advantage, the ACM copyright notice and the

title of the publication and its date appear, and notice is given

that copying is by permission of the Association for Computing

Machinery. To copy otherwise, or to republish, requires a fee

and/or specific permission.

25th ACM STOC ‘93-51931CA,USA
a 7993 ACM O-8979 J-~9J-7/93/0005 /047~... +~0~O

divide the problem into a constant number of subprob-

lems, we refine the “divide” step and use a larger num-

ber of subproblems (na for a small but positive con-

stant a). With this change, some computations which

are trivially done for a constant number of subprob ems

become more demanding.

In order to apply parametric search in this situation,

it is helpful to change the usual approach to para lnet-

ric search. In many presentations and application, s of

the parametric search technique, the need for designing

a parallel algorithm is emphasized. What is reall,y re-

quired, however, is a sequential algorithm, only with

comparisons involving the value of the unknown pa-

rameter collected into “batches” of independent c ~m-

parisons. This has already been pointed out by various

authors, and we consider it an important part & the

parametric search rnethocl, which is very easy to over-

look. It is this slight shift of attention which enables us

to solve problems which we could not overcome beicre.

Theorem 1 &ven a set P of n points in three-

dinten.stonal space, the diameter of P can be determined

by a deterministic algorithm in time O(n polylog n’].

The algorithm is too complicated and has too large

constants hidden in the asymptotic notation to he of

any practical value; it is only a theoretical contrib~cion

to the problem of deterministic asymptotic complfi.xity

of the diameter problem. And, one must ask, ar,~ all

these heavy tools really necessary, or are we just blinded

by the various techniques available to overlook a simple

elementary solution’?

2 Diameter and Parametric Search

Let P be a given set of n points in 3-space. A quadratic

algorithm for computing dianl(P) is trivial. Using ;m-

domization, Clarkson and Shor [CS89] have obta Il!ed

an algorithm whose expected running time (ovel the

478

http://crossmark.crossref.org/dialog/?doi=10.1145%2F167088.167217&domain=pdf&date_stamp=1993-06-01

internal randomizations that it performs) is O(n log n).

They first transform the problem to the following ball

problem:

Given n unit-balls and n points in 3-space,

determine whether any point lies outside the

common intersection of the balls.

This problem is then solved using a randomized incre-

mental algorithm. In their algorithm, both the trans-

formation to the ball problem, and the solution of the

latter involve randomization.

Chazelle et al. [CEGS92] considered the prob-

lem of making this algorithm deterministic. Fortu-

nately, the transformation to the ball problem can be

made deterministic by applying Megicldo’s paramet-

ric search [Meg83]. Unfortunately, this transformation

adds some additional requirement on the solution of the

ball problem, and Chazelle et al. [CEGS92] could only

give a deterministic solution to the latter with running

time O(nl+’), for an arbitrarily small e >0. As stated

in the introduction, we will be able to get closer to the

complexity of the randomized algorithm. Matching the

randomized complexity remains as a challenge for fu-

ture research.

Let us start by describing the application of paramet-

ric search (see e.g., Megiddo’s original work [Meg813] or

the paper of Chazelle et al. [CEGS92] for a more de-

tailed explanation of the parametric search paradigm):

We assume that we are given an algorithm A that solves

the following “fixed-size” problem: Given n points P,

and a parameter 6 > 0, determine whether diam(P)

is less than, equal to, or greater than d. (Observe that

this is a restricted version of the ball problem mentioned

above, since we have to determine whether any point in

P lies outside the intersection of the balls of radius d

around the points in P).

The algorithm A plays a dual role in the overall al-

gorithm for diameter computation. First, it serves as

a oracle which, given a specific value d“ of 6, decides

whether d“ < diam(P), J* = diam(P) or d“ > diam(P).

Second, it serves as so-called genervc algor-~thm (let us

remark that in general, these roles can be played by dif-

ferent algorithms in parametric search applications, but

for us it is suitable to use A in both roles). For this sec-

ond role, we require that A uses the information about

the parameter d in a restricted manner. That is, we as-

sume that r5 is not explicitly available to A, but rather

that A has access to an oracle that allows it to test

whether d is less than or equal to some value d“ > 0.

Note that this allows the algorithm d to test the sign of

arbitrary polynomials of constant-bounclecl clegree in d

(it finds the roots of the polynomial, which is considered

as a constant-time operation in the model of computat-

ion we use, and then it locates the position of J among

them). When describing the algorithm d in the sequel,

we will usually first explain its oracle function, with a

specific value of d, and then we will comment on the

way the use of the actual value of d is restricted to a

small number of oracle calls, in the generic algorithm

role of A.

Let us denote the number of calls to the oracle made

by A for an input of size n in the worst case by Q(n),

and the running time of A (with each oracle call charged

by one time unit only) by T(n). This makes sense for

the case of explicitly given J, when an oracle call is

reduced to a single comparison of real numbers.

We are now ready to apply parametric search to

the diameter problem. We run our algorithm A in

the generic role on the set P and with parameter

6 = diam(P). This definition of 6 may seem strange,

since diam(P) is exactly what we intend to compute in

the end, but recall that A cannot access J directly. The

only thing it can do is to ask the oracle whether d < 15*

for some specific values d“ > O; these values are com-

puted from P and the previous answers of the oracle.

Since we can implement the oracle by A in the oracle

role, it follows that the total running time of the generic

d including the oracle calls is

T(n) + Q(n)7’(n) = O(T(n)Q(n)).

Finally, the generic algorithm A will stop and answer

“EQ[JAL”. This is not surprising, since this is the ap-

propriate answer for d = diam(P). However, it is not

difficult to verify that in order to be able to answer

“EQUAL”, one of the calls to the oracle must also have

returnecl “EQUA L“. By keeping track of the values 6“

used in the calls to the oracle, we find diam(P). (Ac-

tually, we can stop the whole computation as soon m a

call to the oracle returns with answer “EQUAL”).

We summarize our exposition of parametric s~arch

for the diameter problem in a lemma.

Lemma 2 Let A be a determznzstzc algorithm for the

ball problem on n potnts which uses at most Q(n) tails

to the oracle descr~btng the parameter b and with run-

ntng tame bounded by T(n). Then the dzameter of a set

of 71 poants zn three dtmenstons can be computed by a

deiermznastac algortthm tn ttme O(T(n)Q(n)).

3 A deterministic algorithm for the ball

problem

We want to give an algorithm for the following (slightly

generalized) problem: Given a set P of 71 points, a set

Q of m points, and a parameter d >0 (in the form of

an oracle), determine whether Q C k’ := ~P6p ~(i), ~),

where B(p, p) denotes the ball around p with radius p,

479

Note that the intersection set K is a convex body,

bounded by spherical facets (supported by a ball B(p, d)

for some p E P). The facets are bounded by circu-

lar edges (circular arcs in three dimensions, arising as

the intersection of the boundaries of two balls of radius

d). Since all balls have equal radius, the combinatorial

complexity of K is only linear in n (see [CS89]). Fur-

thermore, the facets of K are “convex” in the following

sense [CS89]: Let f be a facet of K, z and y be points

in the facet f. Then the shorter one of the two great

circle arcs connecting z and y lies completely in f (note

that z and y cannot be antipodes of each other, unless

there is only one ball).

Clarkson and Shor’s randomized algorithm [CS89]

works as follows: It computes the body K by a ran-

domized incremental construction, picks some point, o

in the interior of K, and centrally projects the edges of

K from o on a unit-sphere around o. This results in a

planar map for which a planar point location structure

is constructed. It then locates every point of Q using

this structure. On the top level of the algorithm, one

has P = Q; the above generalized version of the ball

problem will be a typical subproblem appearing in a

recursion in our algorithm.

The part which appears difficult to do determinis-

tically is the construction of K. Instead of an incre-

mental construction, we will use a divide-and-conquer

approach. It will also be convenient to combine the re-

cursive construction of K with the location of the points

of Q in K.

In the first step, we will identify a subset R of P.

We will compute KR := (_)PER l?(p, J). The surface of

KR consists of vertices, edges (circular arcs) and facets

(portions of unit spheres bounded by circular arcs). The

total number of these features is O(IRI). We form a

decomposition ‘T(R) of KR into O(IRI) cells, each cell

u c 7(R) being described by a constant number of real

parameters. We call these cells (for a lack of a better

name) bricks. A natural way to produce such a decom-

position would be as follows: for every facet f of KR,

choose a point vf E f, and subdivide f into “spherical

triangles” by connecting vf to the vertices off by great

circle arcs. Then choose a point o in the interior of KR

and for every spherical triangle r on the surface of KR,

connect each its point with o by a segment, forming

a brick (“spherical tetrahedron”) corresponding to ~.

This is essentially the way which is used (and works)

in Chazelle et al’s method [CEGS92] (although their

definition contains some formal imprecision). It turns

out, however, that this decomposition method is not

good enough for our purposes, and we have to choose

another one, analogous to vertical decomposition in the

plane. The precise definition will be given in Section 4,

for time being we suppose that we have the subdivision

7(R) of KR into O(IRI) bricks of some kind.

For every brick a E ‘T(R) we compute the set QO of

points in Q lying in u, and also the set PO of p ~ P

such that a is not completely contained in 13(p, d). If

any point of Q turns out to lie outside KR, we are done.

Otherwise, we proceed by solving the subproblems de-
fined by the sets P., Q. and by 6 for every u G T(R).

When the cardinality of either P. or Q. drops below

some constant, we solve the problem naively.

Thus, we obtain the following recursion for the time

T(n, m) necessary to solve the ball problem.

T(?1, m) = s(n) + S’(n, m) + ~ T(no, m.),

u6’T(R)

Here, S(n) is the time necessary to identify a proper

subset R, triangulate it and identify the subsets P, for

all a c 7(R). S’ (n, m) is the time necessary to identify

the subsets QC; and n. and m. are the cardinalities of

Pa and Q., resp. Note that ~Oe7(R) ma = m.

Let r >1 be a parameter bounded by a constant. Us-

ing c-net theory and results from [Mat9 la], it is possible

to find, in time S(71) = O(n log r), a subset R C P of

size O(r log r) with the property that no < n/r for ev-

ery u c ‘T(R). With these values and S’(n, r-n) = O(m),

the above recurrence solves to O(rn log n + nl+’), for a

constant e >0 which can be made arbitrarily small by

increasing r. This is essentially the solution by Chazelle

et al. [CEGS92].

To get rid of the polynomial factor O(nC), however,

we want to find a suitable subset R of larger size, as in

the following lemma.

Lemma 3 There extsis a positive constant a, such that

for an 71 point set P zn three dimensions, and a pa~am-

eter b > 0 gtven as an oracle, we can zdentify in time

O(n log 71) a subset R of P, satwfying the following con-

ditions:

(i) IRI < r := na,

(ii) for all m E T(R) we have no < cl(n/r) log r, and

(iii)

for constants c1, C2 >0. Furthermore we can compute

ihe iwterseciion I(R of the balls B(p, d) and identify the

sets PO for all u c ‘T(R) within the same time bound.

The number of calls to the oracle describing & is in

o(log2 71).

Given another r-n point set Q, we can compute QO

for every u E ‘T(R) tn O(rnlog n) time and with

O(log m log n) additional oracle calls.

480

This lemma will be proved in the next section. Using

this result as the divide step of our algorithm for the

ball problem, our recurrence becomes

q??, m) = 0((72 + m) log n) + ~ T(?t., n%)

0’E’-r(R)

< czn and ~c~T(R) nl.with EO~T(R) na ~ = m. It is

straightforward to check that the solution of this re-

currence satisfies T(n, m) E O((n + m) polylog n) (the

power of the logarithm is determined by the constants

a and C2).

It remains to analyze the total number of oracle

calls. We note that the computations in the subprob-

lems are independent of each other and they can thus

be executed in a pseudo-parallel fashion. Specifically,

the depth of the recursion is O(log log 71), and every

subproblem appearing in the recursion needs at most

0(log2 n) oracle calls. Thus, the oracle calls in this com-

putation can be grouped into 0(log2 n log log n) rounds

of independent calls (that is, the values of J* for the

calls in one round do not depend on the outcome of the

other calls in that round). [Jsing binary search, each

round can be answered using only O(log 71) actual ora-

cle calls (this is the standard trick to reduce the number

of evaluations of the oracle, when the generic algorithm

is fully parallel, [Meg83]), resulting in 0(log3 n log log 71)

calls altogether (this is a crude bound, a more refined

analysis is possible). In view of Lemma 2, this proves

Theorem 1. It remains to describe the “divide” step in

detail.

4 The divide step

In this section we give a proof of Lemma 3. First we

establish several auxiliary results.

Canonical decomposition. We will need that the

decomposition T(R) of ~~R defined in Section 3 is a

canonical deco?npositzon in the sense of [CS89, CF90].

Let ~ be a facet of k’R and s = B(pl, d) its support-

ing sphere. We define the poles of s as the points of

s with the largest and with the smallest, z-coordinate,

and through every vertex w of the facet f, we pass the

great circle through v and the polesi. Each such circle

intersects j in a connected arc, and these arcs subdivide

~ into “spherical trapezoids”. If ~ does not contain a

pole, then these spherical trapezoids look analogously

to trapezoids in the plane; if it does, then a spherical

trapezoid has a bowtie shape — its two sides formed by

the great circle arcs cross at the pole.

1If v happens to be a pole itself, we introduce no great circle

for it.

We then pick a point o in the interior of KR. A clever

choice for o is the center of the smallest enclosing ball

for the point set P, which can be precomputed in linear

time using a deterministic algorithm by Dyer [Dye92].

Note that ~~R must contain this point, unless ~{ is

empty. In the latter case we are done2.

We extend all spherical trapezoids on the surface of

~fR to bricks by taking the union over all line segments

connecting o with a point in the spherical trapezoid.

This finishes the definition of the decomposition 7-(R)

of ~fR. It is straightforward to check that this decom-

position has O(lR/) bricks.

Let Z denote the set of all bricks that appear in a

decomposition ‘T(R) for some subset R ~ P.

Lemma 4 The decomposzizon ‘T(R) dejined abovt is a

canontcal decomposition of I<R tn the following sense:

Every brtck o ts defined by at most five po~nts,

I.e. u appears trL ‘T(U) for some subset U <-I P

wzth]Ul <5.

A brack u c F appears zn ‘T(R) exactly zf the defin-

ang potnts are zn R, and no pozni of PO is tc R.

(Recall that P“ w the set of potnts p E P such that

B(p, 6) does not contatn u.)

Proofi Consider a brick u appearing in some decom-

position 7(R) for R ~ P. It is completely defined

by its spherical trapezoid, which lies in some facet f

on the bounclary of a sphere B(pl, J). The spherical

trapezoid is defined by at most two arcs -y bounding ~

and by at most two vertices on them. The bounding

arcs ~1, 72 are defined by intersections of B(pl, 6) with

some balls B(pz, ~) and I?(p3, c!) (if there is onl~ one

arc we may formally put, p3 = p2). The vertices 01 the

arcs are defined by intersections of -yl or 72 with some

other two balls B(p4, d) and 13(p5, d) (again, we nay

put p5 = p4 if there is only one defining vertex). We

} Consider now the decompo-se [J = {Pi, P2, . ..1P5

sition ‘T(U). It is easy to check that u will appear in

this decomposition, so we have proven (i) and can low

define u as u(J, pl, p2, p5) (note that although 7 (U)

consists of several bricks, the ordered 5-tuple of points

determines a unique u). To prove (ii), imagine that we

start from the decomposition T(U) and then add the

points of R \ [J one by one. It is easy to check that the

brick CTdoes not disappear from the current decompo-

sition by adding a new point p unless the complement

of the ball B(p, d) intersects u. •I

2D yer’s algorithm is one of sophisticated subroutines i i our

algori tluu, but we can avoid this one rather easily. We formulate

the algori tlun with its use mainly for simplicity of exposi tit m.

481

Linearization lemma. On several places of the proof

of Lemma 3, we will deal with rather complicated pred-

icates involving nonlinear polynomial inequalities. The

main example will be the predicate “is u contained in

B(p, 6)?”, where a is a brick, p E P is a point and d >0

is a real parameter. Using an observation of Yao and

Yao [YY85], we can nevertheless deal with such predi-

cates using techniques for “linear” objects (points and

hyperplanes), by “lifting” the problem into a suitable

space of higher dimensions. A precise formulation is

given in the following lemma. Let us call a subset of II!d

a linear- cell, if it can be expressed as a union of 0(1)

sets, each of which is an intersection of 0(1) halfspaces

in Rd.

Lemma5 Let ll(zl, zz,z~. al, az, a~), a~) be a

first-order predicate m the theory of real c[osed jields

(one formed from poiynornia! tnequahtzes using Boolean

connectiues and quantifiers). Then there ezzsts a con-

stant d (depending on II) and mappings p, ~ as follows:

● The mapping p assigns to every k-tuple x =

(x*,..., Xk) a poznt p(z) E Rd. The mappmg is

given by bounded-degree polynomials in xl, zk.

● The mapping IJ asstgns to every l-hqle a =

(al; ..., al) a iinear ceii ~(a) ~ Rd. The functions

describing the coeflczents in equations of the half-

spaces defining @(a) are gzven by bounded-degree

polynomials in al, az, al.

● For any a, x, ll(x, a) holds 2ff the point p(x) belongs

to the Jinear cell ~(a).

Proofi The procedure for obtaining such mappings

pl * is based on Yao and Yao’s observation and it is

discussed in [Mat9 1]. First, we convert the formula for

II into an equivalent quantifier-free formula (one com-

posed of polynomial inequalities using Boolean connec-

tive) using a quantifier elimination method, see e.g.,

[Ren92]. This formula can be rewritten as a ciisjunction
of several conjunctions of polynomial inequalities.

We view the polynomials occurring in these inequal-

ities as polynomials in the z~ variables with coefficients
being polynomials in the ai variables. We let M be the

set of all monomials p = p(z) in xl, z~ occurring

in these polynomials. Then we set d = IM 1, we imagine

that the coordinates in IRid are indexed by the monomi-

als of M, and we define the mapping p as follows: given

a k-tuplez = (xl, ...] Zk) of real numbers, the point

V(X) = (VP)PCM E IRd is defined by y~ = Ii(zl, *k)

(the value of the monomial p evaluated at the given k-

tuple x). If we consider one polynomial inequality oc-

curring in our formula, of the form ~L~M 9J, (a)p(z) >

0 (each gP a polynomial in al, al), it is satisfied

for given x, a iff the point p(x) lies in the halfspace

{(YU)KM E ~d; XPW gp(a)?h 2 0}. A conjunction
of several inequalities then corresponds to a member-

ship of p(x) in an intersection of several halfspaces, and

a disjunction of several conjunctions corresponds to a

union of several such intersections. The equations of

the halfspaces are given by the gfl polynomials in the

ai variables and they can also be read off from the for-

mula. Q1

Point location method. As a first application of

the above linearization lemma, we will discuss a way the

subsets Pa as in Lemma 3 can be computed efficiently,

when we already have the decomposition ‘T(R) of the

body KR into bricks.

A brick u can be described by specifying IS and a vec-

tor Z1,Z15 of real parameters, expressing the five

points defining u. We write u = u(d, z). A point

p E R3 is given by its three coordinates (u1, uZ, us).

Then the predicate “u ~ B(p, ~)” can be written as a

first-order predicate in the variables 6, Ui and ~i {this

is somewhat laborious but possible). Using Lemma 5

for this predicate, we get mappings q, @ as follows:

P = P(J, ul, u2, u3) assigns to a value of d and a point

p = (UI, u2, u3) a point in IRd (for some perhaps large

but constant-bounded d), @ = V(Z) assigns to a palam-

eter vector z a linear cell in IRd, and c(J, z) ~ ll(p, $ is

equivalent to P(J, U1, uz, u3) ~ +(z).

We use these mappings for computing the set~ Po

(given the set P and the decomposition ‘T(R)) as fol-

lows. For every brick u ~ 7(R), u = u(6, z), we com-

pute the set ~(z) (note that this is independent of d).

Then we preprocess the arrangement of these sets in IRd

for all u E T(R) for fast point location. This can be

clone by preprocessing the full arrangement of all hy-

perplanes defining our sets for point location (several

methods for point location in hyperplane arrangements

are known, see e.g., [Cha92]). This yields a data struc-

ture with space and preprocessing time polynomial in

[’T(R) 1, thus, for a small enough, no more than hnear

in n. The query time will be O(log n), Then, for e /cry

point p E P, we locate the point p(d, p) using this data

structure, which tells us to which sets Pa does p belong.

The total time will be O(n log 71). As for the oracle calls,

each step of a point location query with some point p

involves a comparison of the point P(J, p) against some

(explicitly known) hyperplane, and such a comparison

can be decided by a bounded number of oracle calls.

Since the 71 point location queries are independent and

can be executed in a pseudo-parallel fashion, the total

number of oracle calls is 0(log2 71).

A quite similar approach can be used to compute the

subset Q.. Here we neecl a data structure for location of

points in the decomposition ‘T(R). We apply Lemma 5

482

on the predicate “q E u“ (for a point q and a brick

u = u(J, z)), and we build a point location structure

in the same manner as above. The set Q~ can thus be

detected in O(rn log n) time with O(log m log n) oracle

calls. Let us remark that an alternative — and perhaps

more natural — way is to use a planar point location

structure for point location in ‘T(R), and then discuss

how such a data structure is “parameterized” with d, so

that the preprocessing and point location queries only

need a small number of oracle calls.

Computing a good sample in polynomial time.

It remains to describe how to compute the “good”

sample R. First we prove a weaker statement, namely

that a suitable R can be found in polynomial time.

Lemma 6 Let P be a set of n points, T < n be a gzuen

parameter and let the parameter d >0 be gtven as an or-

acle. We can identify tn polynomial determintstac tame

a subset R of P such that

(ii) for all u G T(R) we have na < Cl(n/T) logr, and

(iii)

for constants cl, C2 >0. The number of calls to ihe ora-

cle describing b is in O(log n). Withtn the same bounds

we can compute the combtnator~al structure of I<R.

Proof: We appeal to the usual randomization results

([CS89]) to conclude that when an r-element subset, R is

chosen randomly from P, the bounds in the lemma will

hold with a positive probability. Applying derandom-

ization techniques (i.e. the Raghavan-Spencer method)

as in [CF90, Mat91a], we can then find a subset R that

fulfills the requirements of the lemma in polynomial

time.

To be more specific, let us use the result from [CF90].

To this end, we consider the hypergraph (P, S), where

S is the set of all subsets S of P which can be defined

as

s={p EP; IYgl?(p,d)},

for some brick u which occurs in the canonical decom-

position ‘T(R) for some subset R ~ P. Lemma 4 im-

plies that the number of such u is only polynomial in \PI

(since each one is determined by an at most five-element

subset of P). Given this hypergraph (explicitly), [CF90]

shows that a sample R satisfying (i)–(iii) can be com-

puted in polynomial time. We thus only need to com-

pute the hypergraph (P, S) in polynomial time and with

O(log n) oracle calls. This is not difficult, as we do not

care for the exponent of the polynomial bounding the

running time. Namely, we list all at most five-element

subsets U of P, and for every such U we determine the

bricks in the canonical decomposition corresponding to

it. For every such brick, we then compute the subset

of points of P defined by it. All the comparisons in-

volving 6 are independent and can be done in a single

round, thus O(log n) oracle calls suffice to resolve all of

them. The rest of the calculations only deals with the

hypergraph and requires no more information about 6.

The combinatorial structure of ~<R and its decom-

position T(R) can be determined by one more round

of polynomially many (in r-) independent oracle calls.

This proves Lemma 6. ❑

Computing an approximation. Now that we can

compute a suitable sample in polynomial time, we first

compute a sufficiently small subset A of P that ‘ap-

proximates” P so well that it will be sufficient to apply

Lemma 6 to A instead of P. This trick has been used

in several previous works, see [Mat91a].

We consider a set system (P, S), where S is defined

similarly as in the proof of Lemma 6; a set S ~ P

belongs to S if it can be expressed as the subset of points

of P whose balls of radius p do not completely contain

a certain brick u. The difference to the above proof is

that we consider all radii p simultaneously, instead of

a single value p = c!. Hence the set system (P, S) does

not depend on d.

A subset A ~ P is called a (l/r) -approximatio.~ for

(P, S), if for any S E S we have

Suppose that A is a (l/r)-approximation for (P S),

where r := n“ is as in Lemma 3. Let R ~ A he a

subset with at most T elements satisfying the condi-

tions (ii), (iii) of Lemma 3 with P replaced by A (and

for some value of 6), that is, lAal < c1 (lAl/r) logr for

every u G T(R) and ~O~~(R) IAol < c21AI, cl, c2 CfJn-

stants. For any brick a, we have P. E S (by the defini-

tion of the set system (P, S)), and A. = A n PO. It is

then straightforward to verify, using the definition of a

(1/r)-approxirnation, that the subset R ~ A ~ P also

fulfills the conditions (ii) ,(iii) of Lemma 3 for P, only

with somewhat larger constants c1, cz.

To prove Lemma 3, we proceed as follows. First, given

P, we compute a (l/r) -approximation A for the set sys-

tem (P, S), with IAI much smaller than n = IPI. Then

we apply Lemma 6 with A in the role of P, and we ind

a good sample R. By the above considerations, this R

will also be good with respect to P. However, since A

is small enough, we can afford to spend time bounded

483

by a polynomial in IAI. The proof of Lemma 3 is fin-

ished by computing the decomposition T(R) (all the

combinatorial information needed for this can be gained

by a single round of independent oracle calls, thus by

O(log n) actual oracle calls) and detecting the subsets

PO and Q. for every a c T(R); this has already been

discussed above.

It remains to describe how the (l/r)- approximation

A is computed. Here we again apply the “linearization”

method, Lemma 5. Our predicate will be “a ~ B(p, p)”,

u = a(p, z) a brick and p a point. This time, however,

we will regard only the coordinates of the point p in the

role of the xi variables in Lemma 5, both z and p will be

regarded as the ai variables. We thus obtain a mapping

y assigning to a point p E R3 a point p(p) E Illd (for

some constant d) and a mapping @ assigning to every

z and p a linear cell in Rd, in such a way that for any

P, P, Z, U(P, Z) ~ % P) iff P(P) G +(z> P). Ret~lrning
to our set system (P, S), we see that every S’ c S can

be expressed as those points of P whose p-image lies

in a certain linear cell in Rd. Since every linear cell

can be written as a disjoint union of at most C sim-

plices (C a suitable constant), it suffices to compute a

(1/Cr)-approximation for the set {p(p); p E P} with

all its subsets definable by simplices. For this last prob-

lem, we can directly use the results of [Mat92], and

we get that if a > 0 is a small enough constant, our

(l/r) -approximation A of size 0(r2 log r) can be com-

puted in 0(71 log 71) time. This calculation does not in-

volve the parameter J at all. This finishes the proof of

Lemma 3. •l

References

[Cha92] B. Chazelle. Cutting hyperplanes for divide-

and-conquer. Dtscrete @ Computational Ge-

ometry, 1992. To appear. Preliminary ver-

sion: Proc. 3.%d IEEE Syntpo.stunL on Foun-

dations of Computer Science (1991).

[C!EGS92] B. Chazelle, H. Edekbrunner, L. Guihas,

and M. Sharir. Diameter, width, closest line

pair, and parametric searching. In Proc. $th

Annu. ACM Sympos. Comput. Geom., pages

120-129, 1992.

[CF90]

[CS89]

[Dye92]

[Mat91]

[Mat91a]

[Mat92]

[Meg83]

[Ren92]

[YY85]

B. Chazelle and J. Friedman. A determinis-

tic view of random sampling and its use in

geometry. Combinatortca, 10:229-249, 1990.

K. L. Clarkson and P. W. Shor. Applications

of random sampling in computational geom-

etry II. Dzscrete & Computational Geometry,

4:387-421, 1989.

M. Dyer. A class of convex programs with

applications to computational geometry. In

Proc. 8th Annu. ACM Sympos. Comput.

Geom., pages 9-15, 1992.

J. Matouiiek. Cutting hyperplane arrange-

ments. Discrete @ Computational Geometry,

6(5):385-406, 1991.

J. Matouiek. Approximation and geometric

divide and conquer. In Proc. 2?3rd Annu.

ACM ,$ympos. Theory Comput., pages 505-

511, 1991.

J. MatouSek. Efficient partition trees. Dis-

crete @ Computational Geometry 8:315--334

(1992).

N. Megiddo. Applying parallel computation

algorithms in the design of serial algorit’.lms.

Journal of the ACM, 30:852-865, 1983.

J. Renegar. On the computational conlplex-

ity and geometry of the first order thee, y of

the reals. Journal of Symbohc Computation,

1992.

F. F. Yao and A. C. Yao. A general ap-

proach to geometric

ACM Symposium on

pages 16:3-168, 1985.

queries. In Proc. 1?’.

Theory of Compumng,

484

