
Depth Reduction for Noncommutative Arithmetic Circuits

(Extended Abstract)

Eric Allender*

Department of Computer Science

Princeton University

35 Olden Street

Princeton, NJ, 08544-2087

allender@cs. princeton, edu

Abstract

We show that for every family of arithmetic circuits
of polynomial size and degree over the algebra (Z*,
max, concat), there is an equivalent family of arith-
metic circuits of depth log2 n. (The depth can be re-
duced to log n if unbounded fan-in is allowed.) This is
the first depth-reduction result for arithmetic circuits
Olrer a nonco~utative semiring, and it complements

the lower bounds of [Ni91, K090] showing that depth
reduction cannot be done in the general noncommuta-
tive setting. The (max,concat) semiring is of interest,
because it characterizes certain classes of optimization

problems [AJ92, Vi91]. In particular, our results show
that OptSACi is contained in AC1.

We also prove other results relating Boolean and
arithmetic circuit complexity. We show that ACl has
no more power than arithmetic circuits of polyno-
mial size and degree n“(log log’) (improving the trivial
bound of nOIIOg‘)). Connections are drawn between
TCl and arithmetic circuits of polynomial size and de-
gree.

1 Introduction

One of the most striking early results of arithmetic cir-
cuit complexity is the theorem of [VSBR83], showing

*Supported in part by National Science Foundation grant

C CIL9204874; currently on leave from Rutgers University.
t Supported in part by National Science Foundation sr=t

CCEL9204874.

Permission to copy without fee all or part of this materisl ie

granted provided that the copies are not made or distributed for

direct commercial advantage, the ACM copyright notice and the

title of the publication and its date appear, and notica is given

that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requiras a fee

and/or specific permission.

25th ACM STOC ‘93-51931CA,W3A

01993 ACM 0-89791 -591 -7/93 /0005 /0515 . ..$1.50

Jia Jiaot

Department of Computer Science

Rutgers University

Hill Center, Busch Campus

New Brunswick, NJ, USA 08903

j j iao~paul. rutgers. edu

that any arithmetic circuit of polynomial size and poly-
nomial algebraic degree, with + and x gates defined
over a commutative semiring, is equivalent to an arith-
metic circuit of polynomial size having depth log2 n.
(In fact, if the+ gates are allowed to have unbounded
fan-in, the depth is logarithmic, as was observed in
[Vi91].) The results of [VSBR83] were extended in
[MRK88] by providing fast parallel algorithms for eval-
uating arithmetic circuits, and [MRK88] raised the
question of whether analogous results could be proved
in the presence of noncommutative multiplication.

Motivated by this question, [K090] and [Ni91]
showed that commutativity is crucial for the results
of [VSBR83, MRK88]. Namely, it was shown in [K090,
Theorem 1] that for the particular semiring of 22” with
x denoting concatenation and + denoting union, there
is a circuit with linear size and degree that is not equiv-
alent to any circuit with sublinear depth. An essen-
tially equivalent example is presented in [Ni91, Theo-
rem 4]. Although fast parallel algorithms were shown
for certain limited sorts of noncommutative algebras
(e.g., finite semirings) in [MT87], no examples were
known of noncommutative semirings where depth re-
duction can be accomplished within the arithmetic cir-
cuit model.

We show that depth reduction can be carried out in
the particular case of the algebra on X“ where x is
concatenation and + is lexicographic maximum. We
do not have an interesting characterization of the class
of algebras to which our techniques apply. However,
this particular algebra is of interest for two reasons.

Concatenation is in some sense the canonical ex-
ample of a noncommutative multiplication opera-
tion.

Natural clamea of optimization problems (in
particular the classes OptL [AJ93, AJ92] and
OptSACl [Vi91]) can be characterized in terms of

515

http://crossmark.crossref.org/dialog/?doi=10.1145%2F167088.167226&domain=pdf&date_stamp=1993-06-01

arithmetic circuits over (max,concat).

In Section 4 and in the Appendix we include some
related results concerning arithmetic circuits over com-
mutative semirings, and connections to Boolean com-
plexity classes.

2 Arithmetic Circuits and

Optimization Classes

A semiring is an algebra with two operations +, x sat-
isfying the usual ring axioms, but not necessarily hav-
ing additive inverses. (For more formal definitions see
[JS82].) For any alphabet Z, one obtains the semir-
ing (x* u {L}, +, x) where x denotes concatenation

(and 1 x z = z x J- = 1 for all z) and + denotes
lexicographic maximum (where z + 1 = 1 + z = z
for all z). We will usually denote this semiring as
(S”,max,concat).

An arithmetic circuit over this semiring consists of
gates labeled with the operations + and x. For ease
of exposition, we will allow + gates to have unbounded
fan-in. Each x gate has a left input and a right input.
The leaf nodes of the circuit are labeled either with an
input variable ~i, or with some element of Z’ U {L}. A
circuit has one output node. A circuit family is a set
of circuits {Cn : n = 1,2, . . .}, where C’fl has n input
variables. In order to capture the classes OptL and
OptSACl in terms of arithmetic circuits, it is necessary
to (1) restrict the input variables to take on values in X
(so C’n can be viewed as taking inputs of length n), and
(2) allow leaf nodes that return A if ~i = a for a given
a c X, and return 1 otherwise. Since our motivation
comes in part from these optimization classes, this is
the model of arithmetic circuit we will use throughout.

We will also have occasion to discuss arithmetic cir-
cuits over the naturals and over other commutative
semirings. Our definitions in this setting are com-
pletely standard and conform to those of [VSBR83],
for instance.

The size of an arithmetic circuit is the number of
gates in it, and the depth is the length of the longest
path from an input to the output. We will also need
the notion of the (algebraic) degree of a node (which
should not be confused with the fan-in of a node). The
degree is defined inductively: a leaf node has degree
1, a + node has degree equal to the m~imum of the
degrees of its inputs, and a x node has degree equal
to the sum of the degrees of its inputs. The degree
of a circuit is the degree of its output gate. A circuit
family is uniform if the function 1* ~ C. is logspace-
computable. (Note that uniform circuit families have
polynomial size.)

A circuit is skew if each x gate has at most one non-

leaf input. (Skew circuits have been used to character-
ize the complexity of the determinant [T092] aa well as
NLOG [Ve92].)

The class OptP was defined by Krentel [Kr88] as the
class of functions that can be defined as ~(~) = max{g :
there is some path of Ikf that outputs y on input z},
where itf is a nondeterministic poly-time Turing ma-
chine. The analogous clsss OptL defined in terms of
logspace-bounded nondeterministic machines was de-
fined and studied in [AJ93, AJ92]. It is shown in [AJ92]
that OptL is contained in AC1 (a later proof may be
found in [ABP92]); it is also shown in [AJ92] that
iterated matrix multiplication over (X* ,max,concat)
is complete for OptL. As was pointed out by Jen-
ner [Je93], it is not hard to use the techniques of
[T092, Ve92] to show:

Proposition 2.1 OptL ia the clam of functions com-

puted by uniform families of skew arithmetic circuits

over (X*, maz, concat).

Vinay considered the analogous class defined in
terms of nondeterministic logspace-bounded AuxPDAs
running in polynomial time [Vi9 1]. Since AuxPDAs
characterize the class LOGCFL (consisting of prob-
lems logspace reducible to context-free languages), and
LOGCFL in turn is precisely the class SACl (consist-
ing of problems computed by uniform log-depth circuits
of bounded fan-in AND gates and unbounded fan-in
OR gates), he called this CISSSOptSACi. In [Vi91]
it was claimed that OptSACl is the class of functions
computed by logarithmic-depth arithmetic circuits over
(Z* ,max,concat), but this claim was later retracted
[Vi91a]. Instead, the following is easy to show (using
the techniques of e.g., [Vi91, Ve91]):

Proposition 2.2 OptSA (? is the class of functions

computed by uniform families of arithmetic circuits of

polynomial degree over (X”, maz, concat).

Proof: (~) Let AuxPDA A4 be given; it can be as-
sumed that the worktape of &f keeps track of

● the number of output symbols that have been pro-
duced thus far in the computation, and

● the number of steps executed so far.

Also’ assume that each time an output symbol is pro-
duced, it is preceded by a push and followed by a pop,
and that the stack changes height by one on all other
moves.

The circuit we build will have gates with labels of
the form (C’, D, i, j, a, b), which should evaluate to the
maximum of all words w that can be produced as bits
i through j of a string output in a segment of com-
putation beginning at time a and ending at time b,

516

beginning in surface configuration C and ending in sur-

face configuration D, where (C, D) is a realizable pair.
(For definitions of ‘surface configuration” and ‘realiz-
able pair,n see [C071].) The leaves will be of the form

(C, D,i, i + c,a, a + 1) (where c ~ {–1, O}) which will
evaluate to u 62 u {~] if M can move in one step from
C to D outputting u (and i, c and a agree with C and
D) and will evaluate to 1 otherwise; note that this leaf
will depend on the input.

Non-leaf nodes of the form (C, D, i, j, a, b) are

the maximum over all E, F, k, and c of
cdncat((C, E, i, k,a, c), (E, D, k + l,j, c + 1, b)) and

(E, F, i, j, a + 1, b – 1) (where in this last expression
only those E and F are considered where- C t- E via
a push and F 1- D via a pop of the same symbol).
Standard analysis ([C071]) shows that gates defined in
this way have the properties outlined in the preceding
paragraph. The output of the circuit is the maximum

1over all m of (Cinit, Daccept ~ t TW 1, n~). The degree of
any node (C, D, i, j, a, b) can be seen to be b – a, and
thus is polynomial,

(~) This direction is also completely standard. The
AuxPDA will start exploring the circuit Cm at the root.
To explore a x gate, put the right child on the stack
and explore the left child. To explore a + gate, nonde-
terministically choose a child and explore it. To explore
a leaf, output the value of the leaf (this might depend
on the input); then pop the top node off the stack and
explore it.

It is easy to see by induction that the time required to
explore a gate g is O(depth(g) x degree(g) x t(n)) where
t is the time required to check connectivity between
gates. Thus the entire running time is polynomial. n

This paper investigates the degree to which this class
can be characterized in terms of circuits of small depth.
No parallel algorithm for OptSACl is presented in
[Vi91a], and in fact this is explicitly listed as an open
problem there; instead, attention is drawn to the neg-
ative results of [Ni91, K090] showing that depth re-
duction is not possible in general for noncommutative
semirings.

3 Depth Reduction for (max,

concat) Circuits

In this section we show that (max,concat) circuits
of polynomial size and degree can be simulated by
(max,concat) circuits of polynomial size and logarith-
mic depth, when unbounded fan-in gates are allowed.

Our first proof of this fact was rather complicated,
and was similar in spirit to the proof given in the ap
pendix showing that in the case of commutative semir-
ings, the class of (uniform) arithmetic circuits of poly-

nomial size and degree is equivalent to the class of (uni-
form) arithmetic circuits of polynomial size and loga-
rithmic depth, where + gates have unbounded fan-in
and x gates have fan-in two. Although we feel that a
proof in this vein is instructive, the proof given below is
extremely simple, and is very similar to the argument
in [ABP92].

Note that, in order to achieve logarithmic depth,
unbounded fan-in concat gates must be allowed; it
remains an open question if the equality ‘poly-size
and degree arithmetic circuits = poly-size, log-depth
semi-unbounded arithmetic circuitsn holds also for
(max,concat), as is the case for commutative semirings.

Theorem 3.1 If f i8 computed by a family of arith-

metic circuit8 over (2”, maz, concat) of polynomial 8ize

and degree, then f i8 computed by a family of am”thmetic

CimUit8 over (2* , maz, concat) of polynomial Bize with

depth 0(log2 n).

Proof: The following definition is similar to the notion
of ‘accepting subtreen studied in [VT89]: Let g be a
+ gate, and let h be an input to g, and consider the
behavior of the circuit when given some input x. We
say that h contribute to the value of g if the value of h

is equal to the value of g (that is, the value of h is the
largest value that is input to g). More generally, we say
that a gate g contributes to the value of g’ (where g’ is
not necessarily adjacent to g) if there is a path from g
to g’ such that every edge h d h’ on this path (where
h’ is a + gate) haa the property that h contributes to
the value of h’. We say that g contributes to the value
of the circuit if it contributes to the value of the out-
put gate. A contributing tndwircuit at h is a subcircuit
where each + gate has one child and each x gate has
two children, and all nodes in the subcircuit contribute
to the value of h.

Lemma 3.2 For any circuit family of polynomial ttize
and degree, there iB an equivalent circuit family of poly-

nomial size and degree 8uch that each node (other than

the output node) iB labeled with a pair i, j, and if node

h is labeled with i, j, then it contribute to the value

of the circuit only if the value of h i8 equal to 8ymbo18

i through j of the output. (For convenience later on,

we will number 8ymbo18 fv’om the right, 8tarting with

po8ition O at the rightmo8t end.)

This is immediate from the proof of Proposition 2.2.
The outline of our proof is now as follows: Given

an input x and a circuit in the form guaranteed by
Lemma 3.2, we first build an equivalent circuit over the
(commutative) semiring (Z,max,+). Then we evaluate
this circuit using the [MRK88] algorithm, which in this
setting can be implemented in ACl. Then we turn this
ACl algorithm into a family of arithmetic circuits.

517

Assume that the alphabet Z = {O, 1}; the argument
for other alphabets is similar.

Let input x and circuit Cl be given. Replace each
leaf of C’l that evaluates to 1 (0) with a pair of leaves
evaluating to (11) (10); this has the effect of forcing
any output of non-zero length to have some 1’s in it.
Call this new circuit C. Let nk be an upper bound on
the number of bits in the output of C’(Z) (this follows
from the degree bound on C).

Now build a (maX,+) circuit (operating over the in-
tegers) as follows. 1 Recall that each leaf node of C is
labeled with a pair as in Lemma 3.2. For each leaf la-
beled with pair (i, i) that evaluates to 1; change that
leaf to the number 2i. Any leaf that evaluates to .L will
be replaced by a leaf evaluating to –21+”k. All other
leaves receive the value O. Call the new circuit C’,

It is now easy to observe that the output of C’ is the
number whose bhary representation is the value of the
output gate of C.

The circuit C’ can be evaluated using the algo-
rithm of [MRK88], which consists of O(log n) appli-
cations of a routine called Phase, where a single appli-
cation of Phase consists of matrix multiplication over
(Z,max,+), and hence can be done in ACO. Thus
O(log n) applications of Phase can be done in ACI.

Let f be the function computed by the original
(max,concat) circuit family. We have seen that the
language L = {z, i, b : the ith bit of ~(z) is b} is
in AC1. By a trivial transformation, the language
L1 = {z, i,b : the ith bit of Cl(z) is b} is also in
ACl. Now we can build log-depth arithmetic circuits
over (max,concat) for Cl in an essentially trivial way.
Namely, note that ({L, ~},max,concat) is isomorphic to
({O, 1}, V, A). Thus we can build log-depth arithmetic
circuits (using unbounded fan-in max and concat gates)
of the form [i, b] that evaluate to J if z, i, b is in L1, and
evaluate to 1 otherwise. The final arithmetic circuit is
the maximum (over all output lengths m) of the result
of concatenateing (for m > i > 1) the maximum over
all bits b of concat(b, [i, b]). ~

4 Relationships among Arith-

metic and Boolean Complex-

ity Classes

Computing the determinant of integer matrices is
known to be hard for NLOG, and it can be done in
TCl (TC1 denotes the class of things computable by
threshold circuits (equivalently, MAJORITY circuits)
of polynomial size and depth O(log n)). However, no

‘ Formally, it is necessary to include the element —m in order

to make this structure a semiring. This is irrelevant for om-

purposes.

relationship is known between SACl or AC1 and the
determinant. In this section we review some known re-
sults about arithmetic circuits that bear on these ques-
tions, and present some new inclusions and characteri-
zations.

Definition 4.1 #L is the class of functions of the

form #accM(Z), where M is a NLOG machine.

(#accM (x) counts the number of accepting computa-
tions of M on input z.)

#SA@ is the class of functions of the form

#accM (x), where M is a polynomial-time bounded non-
deterministic AuzPDA.

(Perhaps a more natural definition of #SACl is as
the class of functions computed by uniform poly-
degree arithmetic circuits over the natural numbers;
see [Vi9 1]. Equivalent y, we may restrict these arith-
metic circuits to be of depth O(log n), with unbounded
fan-in + gates and fan-in two x gates.)

It is known that the complexity of the determinant
is roughly determined by #L. More specifically, f is
logspace many-one reducible to the determinant2 iff it
is the difference of two #L functions (see [Vi9 la, Da91,
To91a]; an essentially equivalent result is also proved
in [Va92, Theorem 2]). Also, this class of functions is
precisely the class computed by polynomial-size skew
arithmetic circuits over the integers [T092].

The question of the relationship between #L and
#SAC’ is thus exactly the question asked in [Va79],
concerning the relationship between the determinant
and circuits of polynomial size and degree.

First we note that there is a tantalizing connection
between TCl and #SAC1.

Theorem 4.2 A function is computed by To circuits

iff it is computed by arithmetic circuits over the natu-

ral numbers, with depth O(log n), polynomial size, with

unbounded fan-in +- gates, and fan-in two x and +-
gates.

Here, + is integer division, with the remainder dis-
carded.
Proof: Since unbounded fan-in +, and x and + can
be computed by TCO circuits [RT92], inclusion from
right-to-left is straightforward. (This is true even for
logspace-uniformity, since it follows from [BCH86] and
[RT92] that division can be done in uniform TCO if the
number N is given, where N is the product of the first

n2 primes. But N Cm be computed in TC1.)
To see the other direction, note that the MAJOR.-

ITYofzl, ..., zn is equal to (~~=1 ~i) + 2 [log ‘j. The
subcircuits computing powers of 2 can be re-used; thus

‘That is, there is a logspace-computable g such that ~(m) =

determinant(g(o)).

518

O(log n) layers of MAJORITY gates can be simulated
with O(log n) levels of arithmetic gates. I

We note that other (less trivial) connections between
TCO and classes of arithmetic circuits over finite fields
are also known [RT92, BFS92].

In spite of Theorem 4.2, it is not known if TCl
or even ACl can be reduced to arithmetic circuits of
polynomial size and degree (#SACl). It is a trivial
observation that ACl can be reduced to arithmetic
circuits over the integers of polynomial size and de-
gree nO(lOg’). The following result improves this triv-
ial bound to n“(log log’), at least in the non-uniform
setting. (Note that arithmetic circuits of nonpolyno-
mial degree can produce output of more than polyno-
mial length. The following proof does not make use of
this capability; only the information in the low-order
O(log n) bits is used.)

Theorem 4.3 Every language in A C is efficiently re-

ducible to a function computed by polynomial-size, de-
gree n“(log ’05”) arithmetic circud8 over the natural
numbem.

Proof: We use the by-now-standard simulation of
AND and OR gates by parity gates and ANDs of
small fan-in (used, for example, in [VV86, T091, AH93,
KVV93]). More precisely, in Lemma 13 of [AH93] there
is an explicit construction showing how, for any polyno-
mial p(n), one can construct a probabilistic, constant
depth circuit of AND gates with fan-in O(log n) and
PARITY gates, simulating an AND or OR gate with
error probability y at most l/p(n). If we take an ACl cir-
cuit and perform this substitution simultaneously for
all the AND and OR gates, one obtains a probabilis-
tic, polynomial-size circuit that, with high probability,
provides the same output as the original circuit. Note
that replacing AND gates by x and PARITY gates by
+, one obtains an arithmetic circuit, the low-order bit
of whose output is the same as the output of the orig-
inal ACl circuit with high probability. The degree of
this circuit is O(log n)”(log’) = n“(log ’06’)

It remains to make the circuit deterministic. First
we make use of the ‘Toda polynomials” introduced in
[T091]. For example, there is an explicit construction
in [13T91] of a polynomial pk of degree 2k – 1 such that
pk (y) mod 2k = y mod 2. If we implement this poly-
nomial in the obvious way and apply it to the arith-
metic circuit constructed in the preceding paragraph,
we obtain an arithmetic circuit of degree n“(los ‘Os’)
and polynomial size, whose low order bit is the same as
the output of the original ACl circuit with high proba-
bility, and with the additional property that the other
2 log n low-order bits of the result are always zero.

If we now take 2n independent copies of this prob-
abilistic circuit, and add the results, then bit number

1+ l-log n] yields the correct answer with only an expo-
nentially small error probability (since this represents
the MAJORITY of 2n independent trials). It now fol-
lows (via the standard argument of e.g. [Ad78]) that
there is a single setting of the probabilistic bits that
gives the correct answer on all inputs. Hardwiring this
setting of the probabilistic bits into the circuit yields
the desired arithmetic circuit. B

An obvious question is whether this also holds in the
uniform setting.

5 Open Problems

It is known that for commutative semirings, arithmetic
circuits of polynomial degree are exactly as powerful
as circuits of logarithmic depth (where x gates have
bounded fan-in, and + gates have unbounded fan-in).
It is natural to wonder if the same result is true also
over (E* ,max,concat).

Is OptSACl any more difficult than LOGCFL? We
remark that it is still not known if OptL is contained
in LOGCFL.

Is #SACl hard for TCl under any reasonable notion
of hardness?

6 Appendix

Here, we show that the [VSBR83] depth-reduction re-
sults for arithmetic circuits hold also in the uniform
setting.3 For the particular case of the Boolean ring
this is proved in [Ve91], and for the integers it is proved
in [Vi91]. The proof for the case of general commuta-
tive semirings does not seem to have appeared before.

Theorem 6.1 Let R be any commutative semiring.

The class of functions computed by uniform am”thmetic

circuits over R of polynomial degree is equal to the

clasa of functions computed by uniform semi-unbounded

arithmetic circuits over R of depth O(log n).

(Recall that semi-unbounded circuits have x gates with
fan-in two, and + gates with unbounded fan-in.
Proofi The first step is to show that for any uniform
polynomial-degree circuit family there is an equivalent
one with the property that each gate is labeled with
its formal degree. Let C’ be an arithmetic circuit and
assume that there are no consecutive + gates. (If nec-
essary, insert “ x 1“ gates between each two consecu-
tive + gates; this does not cause the degree to be-
come non-polynomial.) Now let C’ be the circuit con-
structed as follows: for each gate g in C, build gates

3The ~=ent ~rovjded in [VSBR83] requires that the degree

of each gate be known. Although this can be computed quickly in

parallel [MRK88] it is easy to see that this is hard for NLOG, and

thus cannot be assumed in the logspac-uniform circuit model.

519

(g, 1), (g, 2),..., (g, nk) (where nk is an upper bound
on the degree of C). If g is a + gate, then (g, i) is a
+ gate with children {(h, i) : h is a child of g}. If g
is a x gate, then (g, i) is a + gate with children that
are x gates of the form (hi, j) x (hz, i– j), where hl
and h2 are the children of g, and 1 ~ j < i – 1. If h is

not a leaf, then make (h, 1) a leaf with value O. If h is
a leaf and i > 1, then make (h, i) the root of a trivial
subcircuit with degree i and value O. The output gate
of C’ is the sum of all gates (g, i), where g is the output
gate of C.

It is easy to prove by induction on i that each gate
(h, i) in C’ has as its value the sum of all monomials
of degree i in the formal polynomial corresponding to
gate h in circuit C. Thus C’ is equivalent to C.

The following technical definition will be useful later
in the argument. Say that g and h are +-adjacent if
there is a path from g to h where all intermediate nodes
are + gates. Note that C’ has the property that if g and
h are +-adjacent, then the path of+ edges connecting
g and h must be unique and have length at most 3, and
there is not any path from g to h through a x gate.
Among other things, this guarantees that it is easy to
check in O(log n) space if g and h are +-adjacent.

Also, note that it is easy to re-write C’ so that the
first child of any x gate has degree no more than the
degree of the second child.

An exploration of gate g is a depth-first search of a
subcircuit rooted at g, with the property that

●

●

●

For each + node, a child is chosen nondeterminis-
tically to explore.

For each x node the second child is put on the
stack and the first child is explored.

When a leaf is encountered, the stack is popped
and the node on top of the stack is explored (unless
the stack is empty, in which case the exploration
stops). The leaf that is the last node visited is the
terminal node of the exploration.

Note that, by our guarantee that the degree of the first
child of a x node is no more than half the degree of
its parent, it follows that the degree of the node being
explored decreases by 1/2 each time the stack height
increases. Thus the stack height is logarithmic on any
exploration. Let the explomtion height of a node be the
maximum stack height of any exploration of the node.

Clearly the value of g is the sum (over all explorations
e of g) of the product of all leaves encountered on e.
(This can be verified by an easy induction starting at
the leaves.)

Given gate g and leaf 1, define [g, Zl to be the sum
over all explorations e of g having terminal leaf 1of the
product of all leaves encountered on e. Thus the value
of g is the sum over all leaves Zof [g, 1].

More generally, for any two gates g and h where h

is not a leaf, let [g, h] denote the value determined by
the definition in the preceding paragraph, where gate
h is replaced by a leaf with value 1. We will show how
to build a circuit computing the values [g, h] for aU h

(leaf and non-leaf).
If g is a leaf, then [g, g] is a leaf returning the value

of g, and for all other h, [g, h] is a leaf with value O.
If g is a + gate, then [g, h] is simply the sum of all

[g’, h], where g’ is a child of g.
If g is a x gate and g and h are +-adjacent and

h is a leaf, then [g, h] should simply return h x (the
value of gl), where gl is the first child of g. (This is
because there is a one-to-one correspondence between
explorations of g and explorations of gl, because of the
uniqueness of the + path connecting g and h). Thus
if g is a x gate and g and h are +-adjacent and h is
a leaf, then [g, h] is h x (the sum over all leaves 1 of

[91, o

Similarly, if g is a x gate and g and h are +-adjacent
and h is not a leaf, then [g, h] is the sum over all leaves
1 of [gl, 1]. (This is because h is treated as a leaf with
value 1.)

If g is a x gate and g and h are not +-adjacent, then
the definitions imply that [g, h] is equal to Ounless there
is an exploration of g with h as a terminal node (where
h is treated as a leaf). For each such exploration there
is a unique sequence of gates g = go, gl, ..., g~ = h

such that the second child of gi is +-adjacent to gi+l,
and each gi is a x gate (except possibly gm = h). (That
is, being the terminal node of an exploration is equiv-
alent to being reachable via a path using only + gates
and the second edges out of x gates.) In such a se-
quence there is ezactly one gi such that4 degree(gi) ~
(degree(g) + degree(h))/2 > degree of the second child
of gi. The product of the leaves encountered along this
exploration is the product of the leaves encountered
before gi and those encountered after gi. It follows
that [g, h] is the sum over {gi such that degree(gi) ~
(degree(g) + degree(h))/2 > degree of the second child
Of gi} Of ([g, gi] X [g:, h]).

Clearly the resulting circuit is of polynomial size, and
is semi-unbounded. To analyze the height of the cir-
cuit, observe that the subcircuit evaluating [g, h] when
g and h are +-adjacent depends on subcircuits of the
form [g’, h’], where the exploration height of g’ is one
less than the exploration height of g. Also note that if
g and h are not +-adjacent, then the subcircuit eval-
uating [g, h] depends on subcircuits of the form [g’, h’]

where degree(g’) – degree(h’) is no more than half of

‘In this expretion, “degree(g)” refers to the degree of g in
circuit C’, not its degree in the subcircuit being explored (where

h is a leaf). Similarly, “degree(k)” is the degree of h in C’. Note

that by the construction of C’, we can wume that these degrees

are explicitly encoded in the names of g and h.

520

degree(g)- degree(h). It follows that
O(log n). I

Acknowledgments

the height is

We thank Birgit Jenner and V. Vinay for their helpful
comments.

References

[Ad78]

[A189]

[ABP92]

[AH90]

[AH93]

[AJ92]

[AJ93]

[BCH86]

[BT91]

[BFS92]

[C071]

L. Adleman, Two theorems on random poly-
nomial time Proc. 19th FOCS (1978) pp. 75–
83.

E. Allender, A note on the power of thresh-

old circuits, Proc. 30th FOCS, pp. 580–584.

E. Allender, D. Bruschi, and G. Pighizzini,
The complexity of computing mazimal word
function8, DIMACS tech report 92-15.

E. Allender and U. Hertrampf, On the power

of uniform families of constant depth thresh-

old circuits, Proc. 15th MFCS, 1990, Lecture
Notes in Computer Science 452, pp. 158-
164.

E. Allender and U. Hertrampf, Depth ?’educ-

tion for circuits of unbounded fan-in, to ap-
pear in Information and Computation. Pre-
liminary versions appeared as [A189, AH90]

C. Alvarez and B. Jenner, A note on log

space optimization, report, L. S.I., Universi-
tat Politbcnica Catalunya, Barcelona, 1992.

C. Alvarez and B. Jenner, A very hard log-

space counting class, Theoretical Computer
Science 107 (1993) 3-30.

P. W. Beame, S. A. Cook, and H. J. Hoover,
Log depth circuits for division and related

problems, SIAM J. Comput, 15 (1986) 994-
1003.

R. Beigel and J. Tarui, On A CC, Proc. 32nd
FOCS (1991) 783-792.

J. Boyar, G. Frandsen, and G. Sturtivant,
An arithmetical model of computation equiv-
alent to threshold circuits, Theoretical Com-
puter Science 93 (1992) 303-319.

S. Cook, Characterization of pushdown ma-
chines in terms of time-bounded computers,
J. ACM 18 (1971) 4-18.

[Da91] C. Damm, L=L#L ?, Informatik-Preprint
8, Fachbereich Informatik der Humboldt-
Universit5t zu Berlin, 1991.

[Je93] B. Jenner, personal communication.

[JS82] M. Jerrum and M. Snir, Some ezact com-

plexity results for straight-line computations

over Semirings, J. ACM 29 (1982) 874–897,

[KVV93] R. Kannan, H. Venkateswaran, V. Vinay,
and A. Yao, A circuit-based proof of Toda ’s

theorem, to appear in Information and Com-
putation.

[K090] S. R. Kosaraju, On the parallel evaluation
of classes of circaits, Proc. 10th FST&TCS,
Lecture Notes in Computer Science 472
(1990) 232-237.

[Kr88] M. Krentel, The complezit y of optimization
problems, JCSS 36 (1988) 490-509.

[MRK88] G. Miller, V. Ramachandran, and E.

[MT87]

[Ni91]

[RT92]

[T091]

[To91a]

[T092]

[Va79]

[Va92]

Kaltofen, Eflcient parullel evaluation of

straight-line code and arithmetic circuits,

SIAM J. Comput. 17 (1988) 687-695.

G. Miller and S.-H. Teng, Dynamic parallel
complexity of computational circuits, Proc.
19th STOC (1987) 478-489.

N. Nisan, Lower bounds for non-com-

mutative computation, Proc. 23rd STOC
(1991) 410-418.

J. Reif and S. Tate, On threshold circuits

and polynomial computation, SIAM J. Com-
put. 21 (1992) 896-908.

S. Toda, PP is as hard as the polynomial-

time hierarchy SIAM J. Comput. 20 (1991)
865-877.

S. Toda, Counting problems computationally

equivalent to the determinant, manuscript.

S. Toda, Clas~es of arithmetic circuit8 cap-

turing the complexity of computing the de-

terminant, IEICE llans. Inf. and Syst., vol.
E75-D (1992) 116-124.

L. Valiant, Completeness clawea in algeb?’a,

Proc. 1lth STOC (1979) 249-261,

L. Valiant, Why is Boolean complexity the-

ory dificult ? in Boolean Function Complex-
ity, edited by M. S. Paterson, London Math-
ematical Society Lecture Notes Series 169,
Cambridge University Press, 1992.

521

[VSBR83] L. Valiant, S. Skyum, S. Berkowitz, and C.

[VV86]

[ve91]

[Ve92]

[VT89]

[vi91]

[Vi91a]

Rackoff, Fast parallel computation of poly-

nomial U8@ feW prOCe880T8, SIAM J. COm-

put. 12 (1983) 641-644.

L. Valiant and V. Vazirani, V, NP is as

easy as detecting unique solution8 Theoreti-
cal Computer Science 47 (1986) 85-93.

H. Venkateswaran, Propertie8 that charac-

terize LOGCFL, JCSS 42 (1991) 380-404.

H. Venkateswaran, Circuit dejinition8 of

nondetermini8tic complexity claaseg, SIAM
J. Comput. 21 (1992) 655-670.

H. Venkateswaran and M. Tompa, A new

pebble game that cha?’acterize8 parallel com-

plexity cla88e8, SIAM J. Comput, 18 (1989)
533-!549.

V. Vinay, Counting auzdiary pushdown au-
tomata and 8emi-unbounded am”thmetic civ.

cuit8, Proc. 6th IEEE Structure in Complex-
ity Theory Conference (199 1) 270–284.

V. Vinay, $emi-unboundedne8s and complex-

ity c/a88e8, doctoral dissertation, Indian In-
stitute of Science. Bamzalore.

,“

522

