
Combining Hierarchical and Goal-Directed
Speed-Up Techniques for Dijkstra’s Algorithm?

Reinhard Bauer, Daniel Delling, Peter Sanders, Dennis Schieferdecker,
Dominik Schultes, and Dorothea Wagner

Universität Karlsruhe (TH), 76128 Karlsruhe, Germany,
{rbauer,delling,sanders,schief,schultes,wagner}@ira.uka.de

Abstract. In [1], basic speed-up techniques for Dijkstra’s algorithm
have been combined. The key observation in their work was that it is
most promising to combine hierarchical and goal-directed speed-up tech-
niques. However, since its publication, impressive progress has been made
in the field of speed-up techniques for Dijkstra’s algorithm and huge data
sets have been made available.

Hence, we revisit the systematic combination of speed-up techniques in
this work, which leads to the fastest known algorithms for various scenar-
ios. Even for road networks, which have been worked on heavily during
the last years, we are able to present an improvement in performance.
Moreover, we gain interesting insights into the behavior of speed-up tech-
niques when combining them.

1 Introduction

Computing shortest paths in a graph G = (V,E) is used in many real-world
applications like route planning in road networks, timetable information for rail-
ways, or scheduling for airplanes. In general, Dijkstra’s algorithm [2] finds a
shortest path of length d(s, t) between a given source s and target t. Unfortu-
nately, the algorithm is far too slow to be used on huge datasets. Thus, sev-
eral speed-up techniques have been developed (see [3] for an overview) yielding
faster query times for typical instances, e.g., road or railway networks. In [1],
basic speed-up techniques have been combined systematically. One key obser-
vation of their work was that it is most promising to combine hierarchical and
goal-directed techniques. However, since the publication of [1], many powerful
hierarchical speed-up techniques have been developed, goal-directed techniques
have been improved, and huge data sets have been made available to the commu-
nity. In this work, we revisit the systematic combination of speed-up techniques.

? Partially supported by the Future and Emerging Technologies Unit of EC (IST
priority – 6th FP), under contract no. FP6-021235-2 (project ARRIVAL), and by
DFG grant SA 933/1-3.

1.1 Related Work

Since there is an abundance of related work, we decided to concentrate on pre-
vious combinations of speed-up techniques and on the approaches that our work
is directly based on.

Bidirectional Search executes Dijkstra’s algorithm simultaneously forwards
from the source s and backwards from the target t. Once some node has been vis-
ited from both directions, the shortest path can be derived from the information
already gathered [4]. Many more advanced speed-up techniques use bidirectional
search as an optional or sometimes even mandatory ingredient.

Hierarchical Approaches try to exploit the hierarchical structure of the given
network. In a preprocessing step, a hierarchy is extracted, which can be used to
accelerate all subsequent queries.

Reach. Let R(v) := max Rst(v) denote the reach of node v, where Rst(v) :=
min(d(s, v), d(v, t)) for all s-t shortest paths including v. Gutman [5] observed
that a shortest-path search can be pruned at nodes with a reach too small to
get to either source or target from there. The basic approach was considerably
strengthened by Goldberg et al. [6], in particular by a clever integration of short-
cuts [3], i.e., single edges that represent whole paths in the original graph.

Highway-Node Routing [3] computes for a given sequence of node sets V =:
V0 ⊇ V1 ⊇ . . . ⊇ VL a hierarchy of overlay graphs [7, 8]: the level-` overlay graph
consists of the node set V` and an edge set E` that ensures the property that
all distances between nodes in V` are equal to the corresponding distances in
the underlying graph G`−1. A bidirectional query algorithm takes advantage of
the multi-level overlay graph by never moving downwards in the hierarchy—by
that means, the search space size is greatly reduced. The most recent variant
of HNR [9], Contraction Hierarchies, obtains a node classification by iteratively
contracting the ‘least important’ node, yielding a hierarchy with up to |V | levels.
Moreover, the input graph G is transfered to a search graph G′ by storing only
edges directing from unimportant to important nodes. As a remarkable result,
G′ is smaller than G yielding a negative overhead per node. Finally, by this
transformation the query is simply a plain bidirectional Dijkstra operating on G′.

Transit-Node Routing [10] is based on a simple observation intuitively used by
humans: When you start from a source node s and drive to somewhere ‘far away’,
you will leave your current location via one of only a few ‘important’ traffic
junctions, called (forward) access nodes

−→
A (s). An analogous argument applies

to the target t, i.e., the target is reached from one of only a few backward access
nodes

←−
A (t). Moreover, the union of all forward and backward access nodes of all

nodes, called transit-node set T , is rather small. This implies that for each node

the distances to/from its forward/backward access nodes and for each transit-
node pair (u, v) the distance between u and v can be stored. For given source
and target nodes s and t, the length of the shortest path that passes at least one
transit node is given by dT (s, t) = min{d(s, u) + d(u, v) + d(v, t) | u ∈

−→
A (s), v ∈

←−
A (t)}. As a final ingredient, a locality filter L : V × V → {true, false} is needed
that decides whether given nodes s and t are too close to travel via a transit
node. L has to fulfill the property that L(s, t) = false implies d(s, t) = dT (s, t).
Then, the following algorithm can be used to compute the shortest-path length
d(s, t):

if L(s, t) = false then compute and return dT (s, t); else use any other routing
algorithm.

Note that for a given source-target pair (s, t), let a := max(|
−→
A (s)|, |

←−
A (t)|).

For a global query (i.e., L(s, t) = false), we need O(a) time to lookup all access
nodes, O(a2) to perform the table lookups, and O(1) to check the locality filter.

Goal-Directed Approaches direct the search towards the target t by prefer-
ring edges that shorten the distance to t and by excluding edges that cannot
possibly belong to a shortest path to t—such decisions are usually made by
relying on preprocessed data.

ALT [11] is based on A∗ search, Landmarks, and the Triangle inequality. Af-
ter selecting a small number of nodes, called landmarks, for all nodes v, the
distances d(v, λ) and d(λ, v) to and from each landmark λ are precomputed.
For nodes v and t, the triangle inequality yields for each landmark λ two lower
bounds d(λ, t) − d(λ, v) ≤ d(v, t) and d(v, λ) − d(t, λ) ≤ d(v, t). The maximum
of these lower bounds is used during an A∗ search. The original ALT approach
has fast preprocessing times and provides reasonable speed-ups, but consumes
too much space for very large networks. In the subsequent paragraph on “Pre-
vious Combinations”, we will see that there is a way to reduce the memory
consumption by storing landmark distances only for a subset of the nodes.

Arc-Flags. The arc-flag approach, introduced in [12], first computes a partition
C of the graph. A partition of V is a family C = {C0, C1, . . . , Ck} of sets Ci ⊆ V
such that each node v ∈ V is contained in exactly one set Ci. An element of a
partition is called a cell. Next, a label is attached to each edge e. A label contains,
for each cell Ci ∈ C, a flag AFCi

(e) which is true if a shortest path to a node in
Ci starts with e. A modified Dijkstra then only considers those edges for which
the flag of the target node’s cell is true. The big advantage of this approach is its
easy and fast query algorithm. However, preprocessing is very expensive, either
regarding preprocessing time or memory consumption [13].

Previous Combinations. Many speed-up techniques can be combined. In [7],
a combination of a special kind of geometric container [14], the separator-based
multi-level method [8], and A∗ search yields a speed-up of 62 for a railway

transportation problem. In [1], combinations of A∗ search, bidirectional search,
the separator-based multi-level method, and geometric containers are studied:
Depending on the graph type, different combinations turn out to be best.

REAL. Goldberg et al. [6] have successfully combined their advanced version
of REach with landmark-based A∗ search (the ALt algorithm), obtaining the
REAL algorithm. In the most recent version, they introduce a variant where
landmark distances are stored only with the more important nodes, i.e., nodes
with high reach values. By this means, the memory consumption can be reduced.

HH∗ [15] combines highway hierarchies [16] (HH) with landmark-based A∗

search. Similar to [6], the landmarks are not chosen from the original graph,
but for some level k of the highway hierarchy, which reduces the preprocessing
time and memory consumption. As a result, the query works in two phases: in an
initial phase, a non-goal-directed highway query is performed until all entrance
points to level k have been discovered; for the remaining search, the landmark
distances are available so that the combined algorithm can be used.

SHARC [17] extends and combines ideas from highway hierarchies (namely, the
contraction phase, which produces SHortcuts) with the ARC flag approach. The
result is a fast unidirectional query algorithm, which is advantageous in scenar-
ios where bidirectional search is prohibitive. In particular, using an approxima-
tive variant allows dealing with time-dependent networks efficiently. Even faster
query times can be obtained when a bidirectional variant is applied.

1.2 Our Contributions

In this work, we study a systematic combination of speed-up techniques for Dijk-
stra’s algorithm. However, we observed in [18] that some combinations are more
promising than others. Hence, we focus on the most promising ones: adding goal-
direction to hierarchical speed-up techniques. By evaluating different inputs and
scenarios, we gain interesting insights into the behavior of speed-up techniques
when combining them. As a result, we are able to present the fastest known
techniques for several scenarios. For sparse graphs, a combination of Highway-
Node Routing and Arc-Flags yields excellent speed-ups with low preprocessing
effort. The combination is only overtaken by Transit-Node Routing in road net-
works with travel times, but the gap is almost closed. However, even Transit-
Node Routing can be further accelerated by adding goal-direction. Moreover,
we introduce a hierarchical ALT algorithm, called CALT, that yields a good
performance on denser graphs. Finally, we reveal interesting observations when
combining Arc-Flags with Reach.

We start our work on combinations in Section 2 by presenting a generic ap-
proach how to improve the performance of basic speed-up techniques in general.
The key observation is that we extract an important subgraph, called the core,
of the input graph and use only the core as input for the preprocessing-routine
of the applied speed-up technique. As a result, we derive a two-phase query

algorithm, similar to partial landmark REAL or HH∗. During phase 1 we use
plain Dijkstra to reach the core, while during phase 2, we use a speed-up tech-
nique in order to accelerate the search within the core. The full power of this
core-based routing approach can be unleashed by using a goal-directed technique
during phase 2. Our experimental study in Section 5 shows that when using ALT
during phase 2, we end in a very robust technique that is superior to plain ALT.

In Section 3, we show how to remedy the crucial drawback of Arc-Flags: its
preprocessing effort. Instead of computing arc-flags on the full graph, we use a
purely hierarchical method until a specific point during the query. As soon as we
have reached an ‘important’ subgraph, i.e., a high level within the hierarchy, we
turn on arc-flags. As a result, we significantely accelerate hierarchical methods
like Highway-Node Routing. Our aggressive variant moderately increases prepro-
cessing effort but query performance is almost as good as Transit-Node Routing
in road networks: On average, we settle only 45 nodes for computing the distance
between two random nodes in a continental road network. The advantage of this
combination over Transit-Node Routing is its very low space consumption.

ALT

Arc-Flags

Reach

Core-Based Routing

Highway Hierarchies

Highway-Node Routing

Transit Node Routing

REAL

SHARC

HH ∗

TNR+AF

CHASE

ReachFlags

CALT

Fig. 1. Overview of combinations of speed-up
techniques. Speed-up techniques are drawn as
nodes (goal-directed techniques on the left, hi-
erarchical on the right). A dashed edge indicates
an existing combination, whereas thick edges in-
dicate combinations presented in this work.

However, we are also able
to improve the performance
of Transit-Node Routing. In
Section 4, we present how to
add goal-direction to this ap-
proach. As a result, the num-
ber of required table lookups
can be reduced by a factor of
13, resulting in average query
times of less than 2 µs—more
than three million times faster
than Dijkstra’s algorithm.

As already mentioned, a
few combinations like HH∗,
REAL, and SHARC have al-
ready been published. Hence,
Figure 1 provides an overview
over existing combinations al-
ready published and those which are presented in this work. Note that all tech-
niques in this work use bidirectional search. Also note that due to space lim-
itations all proofs of correctness are skipped but will be included in the full
paper.

2 Core-Based Routing

In this section, we introduce a very easy and powerful approach to generally
reduce the preprocessing of the speed-up techniques introduced in Section 1.
The central idea is to use contraction [9] to extract an important subgraph and
preprocess only this subgraph instead of the full graph.

Preprocessing. At first, the input graph G = (V,E) is contracted to a graph
GC = (VC , EC), called the core. Note that we could use any contraction rou-
tine, that removes nodes from the graph and inserts edges to preserve distances
between core nodes. Examples are those from [16, 6, 17] or the most advanced
one from [9]. The key idea of core-based routing is not to use G as input for
preprocessing but to use GC instead. As a result, preprocessing of most tech-
niques can be accelerated as the input can be shrunk. However, sophisticated
methods like Highway Hierarchies, REAL, or SHARC already use contraction
during preprocessing. Hence, this advantage especially holds for goal-directed
techniques like ALT or Arc-Flags. After preprocessing the core, we store the
preprocessed data and merge the core and the normal graph to a full graph
GF = (V,EF = E ∪ EC). Moreover, we mark the core-nodes with a flag.

Query. The s-t query is a modified bidirectional Dijkstra, consisting of two
phases and performed on GF . During phase 1, we search the graph search until
all entrance points of s and t are found (cf. [15] for details). We identify a superset
of those nodes by the following approach. We run a bidirectional Dijkstra rooted
at s and t not relaxing edges belonging to the core. We add each core node settled
by the forward search to a set S (T for the backward search). The first phase
terminates if one of the following two conditions hold: (1) either both priority
queues are empty or (2) the distance to the closest entry points of s and t is
larger than the length of the tentative shortest path. If case (2), the whole query
terminates. The second phase is initialized by refilling the queues with the nodes
belonging to S and T . As key we use the distances computed during phase 1.
Afterwards, we execute the query-algorithm of the applied speed-up technique
which terminates according to its stopping condition.

CALT. Although we could use any of the speed-up techniques to instantiate our
core-based approach we focus on a variant based on ALT due to the following
reasons. First of all, ALT works well in dynamic scenarios. As contraction seems
easy to dynamize, we are optimistic that CALT (Core-ALT) also works well in
dynamic scenarios. Second, pure ALT is a very robust technique with respect
to the input. Finally, ALT suffers from the critical drawback of high memory
consumption—we have to store two distances per node and landmark—which
can be reduced by switching to CALT.

On top of the preprocessing of the generic approach, we compute landmarks
on the core and store the distances to and from the landmarks for all core
nodes. However, ALT needs lower bounds for all nodes to the source and target.
As we do not store distances from all nodes to the landmarks, we need proxy
nodes, which were introduced for the partial REAL algorithm in [6]. The method
developed there can directly be applied to CALT: The proxy s′ of a node s is
the core node closest to s. We compute these proxy nodes for a given s–t query
during the initialization phase of the first phase of the query. During the second
phase we use the landmark information for the core in order to speed-up the
query within the core.

3 Hierarchy-Aware Arc-Flags

Two goal-directed techniques have been established during the last years: ALT
and Arc-Flags. The advantages of ALT are fast preprocessing and easy adap-
tion to dynamic scenarios, while the latter is superior with respect to query-
performance and space consumption. However, preprocessing of Arc-Flags is ex-
pensive. The central idea of Hierarchy-Aware Arc-Flags is to combine—similar
to REAL or HH∗—a hierarchical method with Arc-Flags. By computing arc-
flags only for a subgraph containing all nodes in high levels of the hierarchy, we
are able to reduce preprocessing times. In general, we could use any hierarchical
approach but as Contraction Hierarchies (CH) is the hierarchical method with
lowest space consumption, we focus on the combination of Contraction Hier-
archies and Arc-Flags. However, we also present a combination of Reach and
Arc-Flags.

3.1 Contraction Hierarchies + Arc-Flags (CHASE)

As already mentioned in Section 1.1, Contraction Hierarchies is basically a plain
bidirected Dijkstra on a search graph constructed during preprocessing. We are
able to combine Arc-Flags and Contraction Hierarchies in a very natural way and
name it the CHASE-algorithm (Contraction-Hierarchy + Arc-flagS + highway-
nodE routing).

Preprocessing. First, we run a complete Contraction Hierarchies preprocessing
which assembles the search graph G′. Next, we extract the subgraph H of G′

containing the |VH | nodes of highest levels. The size of VH is a tuning parameter.
Recall thatContraction Hierarchies uses |V | levels with the most important node
in level |V |−1. We partition H into k cells and compute arc-flags according to [13]
for all edges in H. Summarizing, the preprocessing consists of constructing the
search graph and computing arc-flags for H.

Query. Basically, the query is a two-phase algorithm. The first phase is a bidi-
rected Dijkstra on G′ with the following modification: When settling a node v
belonging to H, we do not relax any outgoing edge from v. Instead, if v is settled
by the forward search, we add v to a node set S, otherwise to T . Phase 1 ends
if the search in both directions stops. The search stops in one direction, if either
the respective priority queue is empty or if the minimum of the key values in
that queue and the distance to the closest entrance point in that direction is
equal or larger than the length of the tentative shortest path. The whole search
can be stopped after the first phase, if either no entrance points have been found
in one direction or if the tentative shortest-path distance is smaller than mini-
mum over all distances to the entrance points and all key values remaining in
the queues. Otherwise we switch to phase 2 of the query which we initialize by
refilling the queues with the nodes from S and T . As keys we use the distances
computed during phase 1. In phase 2, we use a bidirectional Arc-Flags Dijkstra.

We identify the set CS (CT) of all cells that contain at least one node u ∈ S
(u ∈ T). The forward search only relaxes edges having a true arc-flag for any
of the cells CT . The backward search proceeds analogously. Moreover, we use
the CH stopping criterion and the strict alternating strategy for forward and
backward search. However, during our experimental study, it turned out that
stall-on-demand [3], which accelerates pure CH, does not pay off for CHASE.
The computational overhead is too high which is not compensated by the slight
decrease in search space. So, the resulting query is a plain bidirectional Dijkstra
operating on G′ with the CH stopping criterion and arc-flags activated on high
levels of the hierarchy.

Note that we have a trade-off between performance and preprocessing. If we
use bigger subgraphs as input for preprocessing arc-flags, query-performance is
better as arc-flags can be used earlier. However, preprocessing time increases as
more arc-flags have to be computed.

3.2 Reach + Arc-Flags (ReachFlags)

Similar to CHASE, we can also combine Reach and Arc-Flags, called Reach-
Flags. However, we slightly alter the preprocessing: Reach-computation accord-
ing to [6] is a process that iteratively contracts and prunes the input. This itera-
tion can be interpreted as levels of a hierarchy: A node u belongs to level i if u is
still part of the graph during iteration step i. With this notion of hierarchy, we
are able to preprocess ReachFlags. We first run a complete Reach-preprocessing
as described in [6] and assemble the output graph. Next, we extract a subgraph H
from the output graph containing all nodes of level ≥ `. Again, we compute arc-
flags in H according to [13]. The ReachFlags-query can easily by adapted from
the CHASE-query in straight-forward manner. Note that the input parameter
` adjusts the size of VH . Thus, a similar trade-off in performance/preprocessing
effort like for CHASE is given.

4 Transit-Node Routing + Arc-Flags (TNR+AF)

Recall that the most time-consuming part of a TNR-query are the table lookups.
Hence, we want to further improve the average query times, the first attempt
should be to reduce the number of those lookups. This can be done by excluding
certain access nodes at the outset, using an idea very similar to the arc-flag
approach. We consider the minimal overlay graph GT = (T , ET) of G, i.e., the
graph with (transit) node set T and an edge set ET such that |ET | is minimal
and for each node pair (s, t) ∈ T ×T , the distance from s to t in G corresponds
to the distance from s to t in GT . We partition this graph GT into k regions and
store for each node u ∈ T its region r(u) ∈ {1, . . . , k}. For each node s and each
access node u ∈

−→
A (s), we manage a flag vector f→s,u : {1, . . . , k} → {true, false}

such that f→s,u(x) is true iff there is a node v ∈ T with r(v) = x such that

d(s, u)+d(u, v) is equal to min{d(s, u′)+d(u′, v) | u′ ∈
−→
A (s)}. In other words, a

flag of an access node u for a particular region x is set to true iff u is useful to get

to some transit node in the region x when starting from the node s. Analogous
flag vectors f←t,u are kept for the backward direction.

Preprocessing. The flag vectors can be precomputed in the following way,
again using ideas similar to those used in the preprocessing of the arc-flag ap-
proach: Let B ⊆ T denote the set of border nodes, i.e., nodes that are adjacent
to some node in GT that belongs to a different region. For each node s ∈ V and
each border node b ∈ B, we determine the access nodes u ∈

−→
A (s) that minimize

d(s, u) + d(u, b); we set f→s,u(r(b)) to true. In addition, f→s,u(r(u)) is set to true

for each s ∈ V and each access node u ∈
−→
A (s) since each access node obviously

minimizes the distance to itself. An analogous preprocessing step has to be done
for the backward direction.

Query. In a query from s to t, we can take advantage of the precomputed flag
vectors. First, we consider all backward access nodes of t and build the flag
vector ft such that ft(r(u)) = true for each u ∈

←−
A (t). Second, we consider only

forward access nodes u of s with the property that the bitwise AND of f→s,u and

ft is not zero; we denote this set by
−→
A ′(s); during this step, we also build the

vector fs such that fs(r(u)) = true for each u ∈
−→
A ′(s). Third, we use fs to

determine the subset
←−
A ′(t) ⊆

←−
A (t) analogously to the second step. Now, it is

sufficient to perform only |
−→
A ′(s)|× |

←−
A ′(t)| table lookups. Note that determining

−→
A ′(s) and

←−
A ′(t) is in O(a), in particular operations on the flag vectors can be

considered as quite cheap.

Optimizations. Presumably, it is a good idea to just store the bitwise OR of
the forward and backward flag vectors in order to keep the memory consumption
within reasonable bounds. The preprocessing of the flag vectors can be acceler-
ated by rearranging the columns of the distance table so that all border nodes
are stored consecutively, which reduces the number of cache misses.

5 Experiments

In this section, we present an extensive experimental evaluation of our com-
bined speed-up techniques in various scenarios and inputs. Our implementation
is written in C++ (using the STL at some points). As priority queue we use a bi-
nary heap. The evaluation was done on two similar machines: An AMD Opteron
22181 and an Opteron 2702. The second machine is used for the combination
1 The machine runs SUSE Linux 10.1, is clocked at 2.6 GHz, has 16 GB of RAM and

2 x 1 MB of L2 cache. The DIMACS benchmark on the full US road network with
travel time metric takes 6 013.6 s.

2 SUSE Linux 10.0, 2.0 GHz, 8 GB of RAM, and 2 x 1 MB of L2 cache. The DIMACS
benchmark: 5 355.6 s.

of Transit-Node Routing and Arc-Flags, the first one for all other experiments.
Note that the second machine is roughly 10% faster than the first one due to
faster memory. All figures in this paper are based on 10 000 random s-t queries
and refer to the scenario that only the lengths of the shortest paths have to be
determined, without outputting a complete description of the paths. Efficient
techniques for the latter have been published in [15, 19].

5.1 Road Networks

As inputs we use the largest strongly connected component3 of the road net-
works of Western Europe, provided by PTV AG for scientific use, and of the
US which is taken from the DIMACS Challenge homepage.The former graph
has approximately 18 million nodes and 42.6 million edges. The corresponding
figures for the USA are 23.9 million and 58.3 million, respectively. In both cases,
edge lengths correspond to travel times. For results on the distance metric, see
Tab. 4 in Appendix A.

CALT. In [20], we were able to improve query performance of ALT over [11]
by improving the organization of landmark data. However, we do not compress
landmark information and use a slightly better heuristic for landmark4 selection.
Hence, we report both results. By adding contraction—we use the one from [17]
with c = 3.0 and h = 30—to ALT, we are able to reduce query time to 2.0 ms for
Europe and to 4.9ms for the US. This better performance is due to two facts.
On the one hand, we may use more landmarks (we use 64) and on the other
hand, the contraction reduces the number of hops of shortest paths. The latter
observation is confirmed by the figures of CALT with 16 landmarks. Moreover,
the most crucial drawback of ALT—memory consumption—can be reduced to a
reasonable amount, even when using 64 landmarks. Still, CALT cannot compete
with REAL or pure hierarchical methods, but the main motivation for CALT
is its presumably easy dynamization.

CHASE. We report the figures for two variants of CHASE: the economical
variant computes arc-flags only for a subgraph of 0.5% size of the input while
for the generous variant, the subgraph H has a size of 5% of the input (with
respect to number of nodes). We partition H with SCOTCH [21] into 128 cells.

For Europe, the economical variant only needs 7 additional minutes of pre-
processing over pure CH and the preprocessed data is still smaller than the
input. Recall that a negative overhead derives from the fact that the search
graph is smaller than the input, see Section 1.1. This economical variant is al-
ready roughly 4 times faster than pure CH. However, by increasing the size of
3 For historical reasons, some quoted results are based on the respective original net-

work that contains a few additional nodes that are not connected to the largest
strongly connected component.

4 16 landmarks are generated by the maxCover algorithm, 64 are generated by
avoid [11]

Table 1. Overview of the performance of various speed-up techniques, grouped by (1.)
hierarchical methods [Highway Hierarchies (HH), highway-node routing based on HH
(HH-HNR) and on Contraction Hierarchies (CH-HNR), Transit-Node Routing (TNR)],
(2.) goal-directed methods [landmark-based A∗ search (ALT), Arc-Flags (AF)], (3.)
previous combinations, and (4.) the new combinations introduced in this paper. The
additional overhead is given in bytes per node in comparison to bidirectional Dijkstra.
Preprocessing times are given in minutes. Query performance is evaluated by the av-
erage number of settled nodes and the average running time of 10 000 random queries.

Europe USA

method
prepro. query prepro. query

time overhead #settled time time overhead #settled time
[min] [B/node] nodes [ms] [min] [B/node] nodes [ms]

Reach [6] 83 17.0 4 643 3.4700 44 20.0 2 317 1.8100
HH [3] 13 48.0 709 0.6100 15 34.0 925 0.6700
HH-HNR [3] 15 2.4 981 0.8500 16 1.6 784 0.4500
CH-HNR [9] 25 -2.7 355 0.1800 27 -2.3 278 0.1300
TNR [19] 164 251.0 N/A 0.0056 205 244.0 N/A 0.0049
TNR [9] 112 204.0 N/A 0.0034 90 220.0 N/A 0.0030

ALT-a16 [6] 13 70.0 82 348 160.3000 19 89.0 187 968 400.5000
ALT-m16 [20] 85 128.0 74 669 53.6000 103 128.0 180 804 129.3000
AF [13] 2 156 25.0 1 593 1.1000 1 419 21.0 5 522 3.3000

REAL [6] 141 36.0 679 1.1100 121 45.0 540 1.0500
HH∗ [3] 14 72.0 511 0.4900 18 56.0 627 0.5500
SHARC [17] 192 20.0 145 0.0910 158 21.0 350 0.1800

CALT-m16 2 16 8.0 3 017 3.9000 26 8.0 7 079 8.3000
CALT-a64 2 14 20.0 1 394 2.0000 21 19.0 3 240 4.9000
CHASE eco 3.1 32 0.0 111 0.0440 36 -0.8 127 0.0490
CHASE gen 3.1 99 12.0 45 0.0170 228 11.0 49 0.0190
ReachFlags 3.2 229 30.0 1 168 0.7600 318 25.0 1 636 1.0200
TNR+AF 4 229 321.0 N/A 0.0019 157 263.0 N/A 0.0017

the subgraph H used as input for arc-flags, we are able to almost close the
gap to pure Transit-Node Routing. CHASE is only 5 times slower than TNR
(and is even faster than the grid-based approach of TNR [19]). However, the
preprocessed data is much smaller for CHASE, which makes it more practical
in environments with limited memory. Using the distance metric (cf. Tab. 4 in
Appendix A), the gap between CHASE and TNR can be reduced even further.
Remarkably, both pure Arc-Flags and CH perform much worse on distances
than on travel times, whereas the combination CHASE performs—with respect
to queries—very similarly on both metrics.

Size of the Subgraph. The combination of Contraction Hierarchies and Arc-Flags
allows a very flexible trade-off between preprocessing and query performance.
The bigger the subgraph H used as input for Arc-Flags, the longer preprocess-
ing takes but query performance decreases. Table 2 reports the performance
of CHASE for different sizes of H in percentage of the original graph. Recall

Table 2. Performance of CHASE for Europe with stall-on-demand turned on and off
running 10 000 random queries.

size of H 0.0% 0.5% 1.0% 2.0% 5.0% 10.0% 20.0%

Prepro. time [min] 25 31 41 62 99 244 536
space [Byte/n] -2.7 0.0 1.9 4.9 12.1 22.2 39.5

Query # settled 355 86 67 54 43 37 34
(with s-o-d) time [µs] 180.0 48.5 36.3 29.2 22.8 19.7 17.2

Query # settled 931 111 78 59 45 39 35
(without s-o-d) time [µs] 286.3 43.8 30.8 23.1 17.3 14.9 13.0

that 0.5% equals our economical variant, while 5% corresponds to the generous
variant.

Two observations are remarkable: the effect of stall-on-demand (→ Sec-
tion 3.1) and the size of the subgraphs. While stall-on-demand pays off for pure
CH, CHASE does not win from turning on this optimization. The number of
settled nodes decreases but due to the overhead query times increase. Another
very interesting observation is the influence of the input size for arc-flags. Ap-
plying goal-direction on a very high level of the hierarchy speeds up the query
significantly. Increasing the size of H to 10% or even 20% yields a much higher
preprocessing effort (both space and time) but query performance decreases only
slightly, compared to 5%. However, our fastest variant settles only 35 nodes on
average having query times of 13 µs. Note that for this input, the average short-
est path in its contracted form consists of 22 nodes, so only 13 unnecessary nodes
are settled on average.

ReachFlags. We use l = 2 to determine the sub-graph for arc-flags prepro-
cessing (cf. Section 3.2). We observe that it does not pay off to combine Arc-
Flags—instead of landmarks—with REAL. Although query times are slightly
faster than REAL, the search space is higher. One reason might be that our
choice of parameters for Reach yield an increase in search space by roughly 20%
compared to [6]. Still, it seems as if ReachFlags is inferior to CHASE which is
mainly due to the good performance of Contraction Hierarchies.

TNR+AF. The fastest variant of Transit-node Routing without using flag vec-
tors is presented in [9]; the corresponding figures are quoted in Tab. 1. For this
variant, we computed flag vectors according to Section 4 using k = 48 regions.
This takes, in the case of Europe, about two additional hours and requires 117
additional bytes per node. Then, the average query time is reduced to as little
as 1.9 µs, which is an improvement of almost factor 1.8 (factor 2.9 compared to
our first publication in [19]) and a speed-up compared to Dijkstra’s algorithm of
more than factor 3 million. The results for the US are even better.

The improved running times result from the reduced number of table accesses:
in the case of Europe, on average only 3.1 entries have to be looked up instead
of 40.9 when no flag vectors are used. Note that the runtime improvement is

Table 3. Performance of bidirectional Dijkstra, ALT, CALT, CH, and economical
CHASE on unit disk graphs with different average degree and grid graphs with different
number of dimensions. Note that the we use the aggressive variant of Contraction
Hierarchies, better results may be achieved by better input parameters.

Prepro Query Prepro Query Prepro Query
time space #settled time space #settled time space #settled

[s] [B/n] nodes [s] [B/n] nodes [s] [B/n] nodes

unit disk average degree 5 average degree 7 average degree 10

bidir. Dijkstra 0 0 299 077 0 0 340 801 0 0 325 803
ALT-m16 490 128 10 051 514 128 10 327 566 128 11 704
CALT-m16 34 2 726 166 13 927 658 62 2 523
CALT-a64 32 7 689 135 29 670 511 137 992
CH-HNR 94 -13 236 1 249 -11 1 089 34 274 -4 2 475
CHASE 103 -12 66 1 368 -7 424 34 847 6 1 457

grid 2-dimensional 3-dimensional 4-dimensional

bidir. Dijkstra 0 0 79 962 0 0 45 269 0 0 21 763
ALT-m16 65 128 2 362 100 128 1 759 133 128 1 335
CALT-m16 113 98 798 202 165 1 057 171 142 1 275
CALT-a64 60 211 458 101 386 557 129 487 774
CH-HNR 70 0 418 13 567 14 2 177 133 734 29 14 501
CHASE 73 2 274 13 585 22 2 836 133 741 32 30 848

railways Berlin/Brandenburg Ruhrgebiet long distance

bidir. Dijkstra 0 0 1 299 830 0 0 1 134 420 0 0 609 352
ALT-m16 604 128 56 404 556 128 60 004 291 128 30 021
CALT-m16 174 18 4 622 377 32 7 107 158 29 3 335
CALT-a64 123 45 2 830 191 68 4 247 87 63 2 088
CH-HNR 1 636 0 416 2584 4 546 486 3 376
CHASE 2 008 2 125 2863 7 244 536 5 229

considerably less than a factor of 40.9 / 3.1 = 13.2 though. This is due to the
fact that the average runtime also includes looking up the access nodes and
dealing with local queries.

5.2 Robustness of Combinations

In the last section we focused on the performance of our combinations on road
networks. However, existing combinations of goal-directed and hierarchical meth-
ods like REAL or SHARC are very robust to the input. Here, we evaluate
our most promising combinations—CALT and CHASE—on various other in-
puts. We use time-expanded timetable networks5, synthetic unit disk graphs6

5 3 networks: local traffic of Berlin/Brandenburg (2 599 953 nodes and 3 899 807 edges),
local traffic of the Ruhrgebiet (2 277 812 nodes, 3 416 552 edges), long distance con-
nections of Europe (1 192 736 nodes,1 789 088 edges)

6 We obtain such graphs by arranging nodes uniformly at random on the plane and
connecting nodes with a distance below a given threshold. As metric we use the
distance according to the embedding.

(1 000 000 nodes with an average degree of 5, 7, and 10), and grid graphs (2–4
dimensions with each having 250 000 nodes, edge weights picked uniformly at
random between 1 and 1000.). The results can be found in Tab. 3.

For almost all inputs it pays off to combine goal-directed and hierarchical
techniques. Moreover, CHASE works very well as long as the graph stays some-
how sparse, only on denser graphs like 3- and 4-dimensional grids, preprocessing
times increase significantly, which is mainly due to the contraction routine. Es-
pecially the last 20% of the graph take a long time to contract.

Concerning CALT, we observe that turning on contraction pays off—in most
cases—very well: Preprocessing effort gets less with respect to time and space
while query performance improves. However, as soon as the graph gets too dense,
e.g. 4-dimensional grids, the gain in performance is achieved by a higher amount
of preprocessed data. The reason for this is that contraction works worse on dense
graphs, thus the core is bigger. Comparing CALT and CHASE, we observe
that CHASE works better or very sparse graphs while CALT yields better
performance on denser graphs. So, it seems as if for dense graphs, it is better to
stop contraction at some point and use a goal-directed technique on the core of
the graph.

6 Conclusion

In this work, we systematically combine hierarchical and goal-directed speed-up
techniques. As a result we are able to present the fastest algorithms for several
scenarios and inputs. For sparse graphs, CHASE yields excellent speed-ups with
low preprocessing effort. The algorithm is only overtaken by Transit-Node Rout-
ing in road networks with travel times, but the gap is almost closed. However,
even Transit-Node Routing can be further accelerated by adding goal-direction.
Finally, we introduce CALT yielding a good performance on denser graphs.

However, our study not only leads to faster algorithms but to interesting
insights into the behavior of speed-up techniques in general. By combining goal-
directed and hierarchical methods we obtain techniques which are very robust to
the input. It seems as if hierarchical approaches work best on sparse graphs but
the denser a graph gets, the better goal-directed techniques work. By combining
both approaches the influence—with respect to performance—of the type of
input fades. Hence, we were able to refine the statement given in [1]: Instead of
blindly combining goal-directed and hierarchical techniques, our work suggest
that for large networks, it pays off to drop goal-direction on lower levels of
the hierarchy. Instead, it is better with respect to preprocessing (and query
performance) to use goal-direction only on higher levels of the hierarchy.

Regarding future work, it may be interesting how the insight stated above
can be used for graphs where hierarchical preprocessing fails. One could think
of a technique that runs only a hierarchical query during the first phase and the
second phase is only a goal-directed search, similar to CALT. For example, we
could stop the construction of a contraction hierarchy at some point and apply
Arc-Flags or ALT to the remaining core. We are optimistic that such a technique

would even achieve very good results on dense graphs. Another open problem
is the dynamization of CALT. We are confident, that CALT is very helpful
in scenarios where edge updates occur very frequentely, e.g. dynamic timetable
information systems.

Acknowledgments. We would like to thank Riko Jacob for interesting discus-
sions on the combination of Transit-Node Routing and Arc-Flags. Moreover, we
thank Robert Geisberger for helping us to use Contraction Hierarchies [9] in our
work. He provided his implementation of [9] and some precomputed contraction
hierarchies for various networks.

References

1. Holzer, M., Schulz, F., Wagner, D., Willhalm, T.: Combining Speed-up Techniques
for Shortest-Path Computations. ACM J. of Exp. Algorithmics 10 (2006)

2. Dijkstra, E.W.: A Note on Two Problems in Connexion with Graphs. Numerische
Mathematik 1 (1959) 269–271

3. Schultes, D.: Route Planning in Road Networks. PhD thesis, Universität Karlsruhe
(TH), Fakultät für Informatik (2008)

4. Dantzig, G.B.: Linear Programming and Extensions. Princeton University Press
(1962)

5. Gutman, R.J.: Reach-Based Routing: A New Approach to Shortest Path Algo-
rithms Optimized for Road Networks. In: Proceedings of the 6th Workshop on
Algorithm Engineering and Experiments (ALENEX’04), SIAM (2004) 100–111

6. Goldberg, A.V., Kaplan, H., Werneck, R.F.: Better Landmarks Within Reach. In:
Proceedings of the 6th Workshop on Experimental Algorithms (WEA’07). Volume
4525 of Lecture Notes in Computer Science., Springer (2007) 38–51

7. Schulz, F., Wagner, D., Weihe, K.: Dijkstra’s Algorithm On-Line: An Empirical
Case Study from Public Railroad Transport. ACM J. of Exp. Algorithmics 5 (2000)

8. Holzer, M., Schulz, F., Wagner, D.: Engineering Multi-Level Overlay Graphs for
Shortest-Path Queries. In: Proceedings of the 8th Workshop on Algorithm Engi-
neering and Experiments (ALENEX’06), SIAM (2006)

9. Geisberger, R., Sanders, P., Schultes, D., Delling, D.: Contraction Hierarchies:
Faster and Simpler Hierarchical Routing in Road Networks. In: Proceedings of the
7th Workshop on Experimental Algorithms (WEA’08). Lecture Notes in Computer
Science, Springer (2008)

10. Bast, H., Funke, S., Sanders, P., Schultes, D.: Fast Routing in Road Networks with
Transit Nodes. Science 316 (2007) 566

11. Goldberg, A.V., Werneck, R.F.: Computing Point-to-Point Shortest Paths from
External Memory. In: Proceedings of the 7th Workshop on Algorithm Engineering
and Experiments (ALENEX’05), SIAM (2005) 26–40

12. Lauther, U.: An Extremely Fast, Exact Algorithm for Finding Shortest Paths in
Static Networks with Geographical Background. In: Geoinformation und Mobilität
- von der Forschung zur praktischen Anwendung. Volume 22. IfGI prints (2004)
219–230

13. Hilger, M.: Accelerating Point-to-Point Shortest Path Computations in Large Scale
Networks. Master’s thesis, Technische Universität Berlin (2007)

14. Wagner, D., Willhalm, T., Zaroliagis, C.: Geometric Containers for Efficient
Shortest-Path Computation. ACM J. of Exp. Algorithmics 10 (2005) 1.3

15. Delling, D., Sanders, P., Schultes, D., Wagner, D.: Highway Hierarchies Star. In:
9th DIMACS Implementation Challenge - Shortest Paths. (2006)

16. Sanders, P., Schultes, D.: Engineering Highway Hierarchies. In: Proceedings of
the 14th Annual European Symposium on Algorithms (ESA’06). Volume 4168 of
Lecture Notes in Computer Science., Springer (2006) 804–816

17. Bauer, R., Delling, D.: SHARC: Fast and Robust Unidirectional Routing. In:
Proceedings of the 10th Workshop on Algorithm Engineering and Experiments
(ALENEX’08), SIAM (2008) 13–26

18. Schieferdecker, D.: Systematic Combination of Speed-Up Techniques for exact
Shortest-Path Queries. Master’s thesis, Universität Karlsruhe (TH) (2008)

19. Bast, H., Funke, S., Matijevic, D., Sanders, P., Schultes, D.: In Transit to Constant
Shortest-Path Queries in Road Networks. In: Proceedings of the 9th Workshop on
Algorithm Engineering and Experiments (ALENEX’07), SIAM (2007) 46–59

20. Delling, D., Wagner, D.: Landmark-Based Routing in Dynamic Graphs. In: Pro-
ceedings of the 6th Workshop on Experimental Algorithms (WEA’07). Volume
4525 of Lecture Notes in Computer Science., Springer (2007) 52–65

21. Pellegrini, F.: SCOTCH: Static Mapping, Graph, Mesh and Hypergraph Parti-
tioning, and Parallel and Sequential Sparse Matrix Ordering Package (2007)

A Further Experiments

Table 4. Overview on the performance of prominent speed-up techniques and combi-
nations analogous to Tab. 1 but with travel distances as metric.

Europe USA

method
prepro. query prepro. query

time overhead #settled time time overhead #settled time
[min] [B/node] nodes [ms] [min] [B/node] nodes [ms]

Reach [6] 49 15.0 7 045 5.5300 70 22.0 7 104 5.9700
HH [3] 32 36.0 3 261 3.5300 38 66.0 3 512 3.7300
CH-HNR 3.1 89 -0.1 1 650 4.1900 57 -1.2 953 1.5000
TNR [3] 162 301.0 N/A 0.0380 217 281.0 N/A 0.0860

ALT-a16 [6] 10 70.0 276 195 530.4000 15 89.0 240 750 430.0000
ALT-m16 2 70 128.0 218 420 127.7000 102 128.0 278 055 166.9000
AF [13] 1 874 33.0 7 139 5.0000 1 311 37.0 12 209 8.8000

REAL [6] 90 37.0 583 1.1600 138 44.0 628 1.4800
HH∗ [3] 33 92.0 1 449 1.5100 40 89.0 1 372 1.3700
SHARC [17] 156 26.0 4 462 2.0100 - -.0 - -000

CALT-m16 2 17 8.0 6 453 8.1000 20 8.0 9 034 11.0000
CALT-a64 2 14 19.0 2 958 4.2000 15 19.0 4 015 5.6000
CHASE eco 3.1 224 7.0 175 0.1560 185 2.5 148 0.1030
CHASE gen 3.1 1 022 27.0 67 0.0640 1 132 18.0 63 0.0430
ReachFlags 3.2 516 31.0 5 224 4.0500 1 897 27.0 6 849 4.6900

