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ABSTRACT

Discrete-event simulation programs invariably use

random variates to model chance fluctuations. The

basic requirement is to appropriately select

probability distributions, such as the exponential or

normal, and then sample variate values from these

distributions to represent quantities, such as arrival

and service times, needed to carry out the

simulation itself. This tutorial discusses the basic

techniques and the points that need to be borne in

mind for both selecting distributions and generating

variate values from these, once chosen.

1. INTRODUCTION

Random variate generation is a basic, and hence

important, element of a simulation program.

However, because of its specific nature it forms a

rather narrow part of simulation. Providing the

user has an understanding of elementary ideas

about random variables and their distributions,

then the standard methods available for their

generation are easily explained and understood.

Moreover variate generation routines have become

increasingly available in computer library

subroutines for an ever—widening list of

distributions. It is all too easily possible, especially

at the introductory y level, for a user to conduct

simulations with only a sketchy knowledge of the

processes or methods used for generating random

variates. With these points in mind, I shall try to
discuss two aspects.

Firstly, in accordance with the intention of the

tutorial, I shall cover basic methods of variate

generation. However there are many excellent texts

with much more space to fully describe the range of

methods available. The aim here will be to provide

a brief guide, highlighting points of particular

generality or usefulness, which will hopefully

provide an easy introduction to more

comprehensive accounts,

The second aim is much more difficult but

arguably more important and interesting for the

practitioner. Stochastic simulation is just one

particular kind of statistical study. And the core of

all statistical studies is the examination of random

variables of interest and their distributions. Rather

tritely, these are the only two fundamental

questions we need or can ask: What are the

quantities of interest in the simulation? What are

their distributions? A consequence of this is that a

user needs to have a clear idea of certain basic

properties of random variables if a simulation is to

be built on other than a shaky foundation. In

particular the choice of what input distributions to

use is very important as far as the modelling

process is concerned.

Once input distributions have been selected, the

mechanics of generating variates from them is

actually rather simple. In fact, as far as discrete

event simulation is concerned relatively few specific

distributions are seriously used in practice. The

main continuous theoretical distributions are the

uniform, normal, exponential, gamma, lognormal,

Weibull, beta of the 1st and 2nd kind and possibly

the triangular. I would personally add the inverse

Gaussian distribution making it the round ten.

This last is undeservedly obscure. It is easy to use,

and is interesting both theoretically and practically

with useful structure and characteristics not present

in the others. The main discrete distributions are

the discrete uniform, Bernoulli, binomial, Poisson,

geometric and negative binomial.

As far as generation of variates from these

distributions is concerned it would be possible

simply to give cookbook recipes for each. However

this would not be very insightful and it is not done

here. But the user should be aware that practically
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this is all variate generation boils down to.

Section 2 recalls some basic definitions concerning

random variables and their distributions. [t is

assumed these ideas are familiar.

Section 3 discusses the issues involved in choosing

appropriate input distributions. There are two

main aspects. How to select a distribution by

fitting a theoretical distribution to actual data,

and how to assess if the fit is a good one.

Section 4 describes the basic methods of variate

generation, an d Section 5 discusses some specific

examples drawn from the above list.

There are many good accounts of random variate

generation. For this tutorial I found Law and

Kelton (1991, 2nd Ed), Lewis and Orav (1989) and

Morgan (1984) most apposite; in particular the

order of presentation of material in Law and Kelton

seemed just right and I have used essentially the

same order; but with my own comments, of course.

Finally, I have confined discussion specifically to

variate generation in the context of discrete event

simulation. Variate generation in the context of

simulation in statistics is actually a much richer,

more demanding and interesting area. Lewis and

Orav place some emphasis on this and I would

certainly recommend also Ripley (1987) and

Devroye (1986). There are some truly general

variate methods in this latter reference which I

have found particularly useful in statistical studies

of nonstandard distributions.

2. RANDOM VARIATES AND THEIR

DISTRIBUTION

This section is simply a stricture on the absolute

minimum about random variates and probability

distributions that someone needs to know if their

use in simulations is to be meaningful.

Formally a random variable, X is a function

defined on a sample space (Law and Kelton ~4.2).

In a simulation experiment this sample space

comprises all the possible outcomes and a random

variable is simply some quantity of interest

associated with these outcomes. For example in a

single server queue, X might be the total number of

customers served, the length of time it takes to

serve the first customer, the time of arrival of the

second customer, and so on. Because chance

assigns different probabilities to these outcomes,
this means that X takes on different values with

different probabilities. The cumulative distribution

function (calf), F(x), is a very convenient way of

defining these probabilities:

F(x) = P(x < x) —ro<x<m (2.1)

where P (X < x) meana the probability y that, as a

result of the experiment, X takes on a value less

than or equal to x. The main properties are that: O

< F(x) < 1; it is nondecreasing aa x increases; F(x)

tends to Oasx+-mandtol aax +m. If Xcan

take a continuous range of values (as is the case for

example when X is ‘an arrival ~me)

termed a continuous random variable.

can be written as

J-
x

F(x) = f(y)dy

then it is

Then F(x)

(2.2)

where f(x) ia called the probability density function

(pdf).

The value of f at x, f(x), is always positive and it

gives, in a precise way, the relative chance of X

taking a value close to x. The larger f is, the

greater this chance. The shape of f(x) is thus

important in determining the behaviour of X. For

instance the value of f in the ‘tails! of the

distribution, viz. when x is large in magnitude

(negative or positive) determines how often extreme

values of X will occur.

The equation

p = F(x) -m<x<m (2.3)

defines the distribution in the sense that it tells us

the probability or p—value corresponding to

different x. However it can be regarded in its

inverse form aa determining x, call it x , for a
P

given p—value; x ia called the pth quantile or
P

percentile or percentage point. The equation then

becomes

= F–l(P)
‘P

O<p<l (2.4)

–1
where F is the inverse of F. An example of this

inversion can be seen with the exponential

distribution. This haa cdf F(x) = 1 – e-, x >0,

and for this case (2.4) takes the simple form

0-1log(l–p).
‘P=–

(2.5)

We shall see in the next section, that, as in the

exponential case, variate generation from the
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distribution with cdf F(x) is easy when F
–1

can be

written in closed form.

If X can take only a fried set of prescribed values

Xo, xl, X2, .... (for example when X is the number

of customers served in a given time) then it is

called a discrete random variable and F(x) becomes

piecewise constant. The analogue of (2.2) is

F(x) = ~ pi (2.6)
X.<x

1-

where p. =
1

probability that X equals xi. The

quantile Xp is not uniquely determinable for all p

j
values in this case. If p = ~ pi for some j then a

i=o

range of x values satisfies (2.6). However if we

restrict choice to the prescribed values and set

x J < P f F(x~,= xi where F(x.
P

(2.7)

with F(x ) = 0, then this frees x uniquely given
–1 P

O < p < 1 so that (2.7) may be regarded as the

analogue of (2.4). An elementary example is the

Bernoulli random variable

X=l with probability 0, X = O otherwise.

Here

x =0 if O<pfl–o
P

=1 if l– O<p<l (2.8)

The above terminology

population distributions.

terminology exists for a

observations. If the sample

<
““” < ‘(n)’ ‘hen ‘he

refers to underlying

A corresponding

random sample of

‘s ordered ‘(1) < ‘(2)

empirical distribution

function is defined as

Fn(x)
‘0 ‘<x(l)

= lx
n (i) ‘X<x(i+l) lsi$n–l

=
1 ‘(n)< x

(2.9)

and this is the analogue of (2.6). The analogue of

(2.7) is

(2.10)

3. CHOOSING INPUT DISTRIBUTIONS

3.1 Input Dwtributions

When a simulation run is carried out, random

variates will be generated from various distributions

to represent quantities like interarrival times

between customers and service times of customers.

Selecting appropriate distributions to use is a very

important step in building the simulation model. It

is certainly much more difficult than the actual

business of generating random variates once the

distribution has been chosen.

The approach will depend on whether information

or data exists about the input variables of interest

or not.

If information does exist, for example if there are

records of times taken to serve customers, then

there are three possibilities. If there is enough such

information then the data themselves can be used

directly. Secondly the bootstrap approach can be

taken whereby the data are used to form an

empirical distribution function and variates can

then be generated from this empirical distribution

treat ing it as being the population distribution.

Thirdly a theoretical distribution can be fitted to

the data using some standard statistical estimation

technique. The theoretical distribution is known up

to some unknown parameters and the fitting
process comes up with estimates of these
parameters based on these data.

The first approach is very useful for comparison

purposes. For example in a study of gas demand

and how best to control supply, the investigators

found it useful to use the actual day to day

temperature variations for a year when there had

been known to be gas supply difficulties. The third
method is attractive on a number of counts. Use of

a theoretical distribution with known properties
adds ‘structure’ to the overall model. This is often

useful in giving insight into the behaviour of the

system by showing how it depends on specific

characteristics of the input distributions. There is

one danger in using a theoretical distribution. It

may be that the actual distribution has

characteristics that are subtly different from those

which can be represented by the chosen theoretical
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distribution. For instance the probability of

extreme events occurring is determined by the ~tail~

behaviour of the distribution, If a theoretical

distribution is used whose tail behaviour is not

appropriate then the occurrence of extreme events

will not be correctly modelled in the simulation.

Even if an appropriate theoretical distribution is

chosen there remains the problem of assessing the

accuracy of the estimated parameters. For instance

if the parameter (.Y of the exponential distribution

of (2.5) had been estimated then some account

should be taken of this in the simulation. One

possibility is to carry out simulations at both the

upper and lower limits of a confidence interval for

the unknown true &value.

A similar approach can be adopted in the

situation when no data are available. Theoretical

input distributions should be used with sufficient

flexibility to model the range of behaviour that

might occur. Simulations can then be run with the

parameters set at different values to reflect this

range of behaviour.

We now look at the two main aspects of fitting

distributions in more detail: ‘how to estimate

parameters and assess the accuracy of these

estimates and how to check if the fitted distribution

is a good fit to the data.

3.2 FMng Dwtributiorui

Suppose we have selected a candidate distribution

to represent a required input distribution. For

example we might think the gamma distribution is

an appropriate model of service times in some

C&-l
queueing model. Its density is f(x) = x

e‘x’~l(r( @j The distribution is specified

apart from the values of the parameters ~ and ~.

We wish to estimate ~ and ~ using n observed

sample service times: x ~, X21 .... Xn. We denote the

unknown parameters by a vector (). By far and

away the most powerful general method for doing

this is the method of maximum likelihood (ML).

The likelihood is simply the product of the pdf%

evaluated at x ~! X2, ..$, Xn, viewed as a function of

O. The maximum likelihood estimates, j, are the
values of the parameters which maximize the

likelihood. Sometimes it is possible to obtain closed
form expressions for maximum likelihood

estimators, for example this occurs with the mean

and variance of the normal dist ribut ion. In general

a numerical technique has to be used (see Law and

Kelton for a discussion). I find that, in general, a

search technique which works by directly

evaluating the likelihood at selected parameter

values is as convenient a method as any. This

avoids having to evaluate derivatives.

A very important feature of the maximum

likelihood method is the fact that the distribution

of the estimators, under fairly general conditions,

approaches normality as the size of the sample used

in the estimation becomes large. This allows

confidence intervals to be found in which the

unknown true parameter value lies with prescribed

degree of confidence. There are three basic ways of

doing this calculation based on the Wald statistic,

score statistic or the likelihood ratio. The last

method appears to be the most accurate. It

additionally best matches the numerical search

technique for finding the ML estimates. It is based

on the result that

2(L(~) – L(o))

is approximately chi-squared with p degrees of

freedom. Here p is the number of parameters

fitted, & is the unknown true parameter value and

L(O = i log f(xi, 0)

i= 1

is the log of the likelihood. The import of the

result is that if we evaluate L at a e value and
.

compare it with L( ~, then L( @ is unusually small

compared with a chi-squared variate with p

degrees of freedom and will indicate a o value

unlikely to be the true one. The easiest way is to

implement this result for each parameter separately.

Consider #l and denote by L*( ~1) the value of the

likelihood maximised with respect to the other

parameters assuming #l f=ed. If we denote by

x~(~) the upper ~ quantile of the chi~quared

distribution with one degree of freedom and carry

out a search on 61 for the two values, ~lL and O
lU

say, satisfying

then these two points give the limits of a @ 100%

confidence interval for 81.
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The attraction of this method is that as

derivatives are not involved it is easy to modify the

original ML estimation process to do this

calculation also.

This uncertainty in the parameter value can be

taken into account by carrying out simulations at

both OIL and ~lU.

3.3 Goodness of Flt Tests

If there is any doubt that a selected input

distribution is not appropriate, because its

characteristics do not properly represent or display

all those of the sampled observations, then it is

important to carry out tests to see if the flt is a

good one or not.

There are a whole battery of so-called goodness

of fit tests that can be used to assess how well the

fitted distribution represents the sample. Arguably

the best known is the chi-squared goodness of fit

test. This works by comparing sampled and fitted

frequencies and is in effect a comparison of density
functions. It is easy to carry out and has the merit

of allowing the fact that parameters have been

fitted to be taken into account in the test process.

It has a disadvantage in that it requires the

observations to be grouped into a number of

ranges, and there is a certain subjectiveness in this,

Various good tests are available which compare

the empirical distribution function with that of the

fitted calf. The best known is the Kolmogorov

Smirnov test which looks at the maximum

difference between the two distribution functions.

It has two obvious weaknesses. Firstly, because

both distribution functions are bound to start at

zero and end at unity, the test tends to be

insensitive to differences in the distributions in the

tails. Secondly it is sensitive to whether parameters

have been fitted or not. Stephens (1986) shows

how with several commonly occurring distributions

this can be allowed for in the test.

I would also recommend the Anderson–Darling

test which also looks at the difference between the
empirical and fitted distributions, but in an

aggregated way with especial weight given to the

tails. In practice this is a very sensitive test and it

is not really much more difficult to carry out than

the others.

Finally it is worth considering graphical methods

which give a clear indication if a fit is not good and

if not, why not. The so-called quantile-quantile

(Q-Q) PIOt Or the probability-probability (p–p)

plot, as their names imply, compare like quantile

and like probability values. When equal this gives

straight line plots. Differences show up as

deviations from the straight line. Good discussions

of these plotting methods are given by Law and

Kelton and by Lewis and Orav.

The former authors give helpful suggestions as to

the general shape of different distributions and in

what applications they are likely to be of use.

4. RANDOM VARIATE GENERATION

4.1 Random Numbers

Before discussing random variate generation in

general we look at the special case of random

numbers. Like many mathematical terms with an

apparently non specific name, the term random

numbers is used in a precise sense; it always means

a uniform random variate from the continuous

uniform distribution U(O, 1) i.e. with pdf f(x) = 1

for O < x < 1, f(x) = O otherwise. Its pre-eminent

place lies in the fact that it provides a convenient

starting point, both theoretically and practically,

for generating variates from other distributions,

Random numbers will be denoted by U or Ul, U2.

In practice on a computer, instead of producing

true random numbers one has instead what are

deterministic, often called pseudo random number,

algorithms which produce a stream of numbers with

the appearance of randomness. The theory and the

methods of testing such generators is one of the

most dif~lcult in simulation. At the introductory

level it would be inappropriate to attempt any kind

of serious technical discussion. However some brief

remarks are in order.

Most computing systems provide a generator,

But there have been instances of examples whose

performance has not been satisfactory. (See Wlpley

1987, Lewis and Orav 1988 for instances where the

deterministic nature of pseudo random numbers can

resurface in disconcerting ways.) Some important
features to look out for and check are discussed by

Ripley (1989) and include closeness to being
uniformly distributed, especially independence in a

reasonable number of dimensions, repeatability y,

speed and long period.

The most commonly occurring generators seem to

be of linear congruential or of shift register type

together with shufflng to increase apparent

randomness.

My main suggestion to a (first time) user of a
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random number generator is to be aware of the 4.3 The Composition Method

requirements, to make sure that they use a

generator that has been documented and if possible Sometimes it is possible to write the cdf of interest

to ascertain that at least some of the characteristics as

mentioned above have been investigated and found

satisfactory.

If there is any doubt it is better to avoid the F(x) = ; pjFj(x) (4.4)

library function and incorporate a routine one has j=l

selected oneself. Ripley (1989), Lewis and Orav

(1988), Bratley, Fox and Schrage (1983) give simple where {pj} is a discrete probability distribution and

examples with tested provenance which are easy to
the Fj(x) are cdfls. F(x) is called a mixture

code.

All methods of generating random variates from a

given distribution use random numbers as their

starting point.

At the elementary level there are really only three

methods that can claim to be general. The inverse

transform, the composition and the

accept ante/reject ion method. Each will be

described briefly.

4.2 The Inverse Transform Method

This method can be applied to both discrete and

continuous variables. Equations (2, 7) and (2.4) are

formulas for the pth quantile x in terms of the
P

probability y value p. If p is actually generated as a

U(O,l) variable U say, then x becomes a random
P

variable, X say. Its cdf is

P(x<x) = P(F–l(U) ~ x) (from 2.4)

distribution. The mixture may arise naturally from

the context of the problem. Alternatively it may

simply be an ingenious but contrived

decomposition. Either way it is possible to

generate X with distribution F(x) by selecting the

jth cdf of the set Fj with probability pj, generating

a variate Xj with distribution Fj, and setting X =

x..
J
The main way the method is implemented is to

try and make p ~ as large as possible and at the

same time to have F a distribution that is easy to
1

generate from ; pl large then ensures that FI is

chosen frequently. A typical example is the

Marsaglia and Bray (1964) ‘convenient’ method for

generating normal variates, where over 86% of the

time a linear combination of three U(O, 1) variables

is taken. The remainder of the time more elaborate

calf’s have to be used.

= P(U ~ F(x))
The composition method can be used for discrete

distributions rather neatly. See Law and Kelton for

= F(x). (4.2)
an example.

Thus X generated in this way has precisely the

distribution we want. In the example of the

exponential distribution this gives a closed formula

x = –a–l log(l–u), (4.2)

In fact (l–U) can be replaced by U itself as both

have the same distribution, U(O,l).

The result works for the discrete case using (2.7)

instead of (2.4). The Bernoulli case (2.8) reduces

to the obviously sensible

X=o if O< U<l — e
= 1 ifl– O< U<l. (4.3)

4.4 AcceptanceRejection

This is mainly used for continuous random

variables. Suppose f(x) is the pdf of the

distribution we want to generate variates from.

Suppose g(x) is the pdf of another distribution for

which we already have a method of generating

variates from, and that moreover we can find a

scaling factor K so that

e(x) = Kg(x) > f(x). (4.5)

Thus e(x) is an envelope whose graph lies
completely above the graph of f(x). If we generate

X so it has pdf g(x) and take Y = Ue(X) where U

is U(O,l) and independent of X, then (X,Y) is a

point under the graph of e(x) and in fact it turns
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out to be uniformly distributed under this graph.

Imagine a large number of points generated in this

way. They will be scattered uniformly under e(x).

If we now insert the graph of f(x) and discard

points that lie above it then the remainder will be

uniformly distributed under f(x). Thus the number

of points with a given x value will be proportional

to f(x). In practice X’s with the right distribution

can be obtained one at a time: points (X,Y) are

generated until one is found satisfying Y < f(X);

then X is the next accepted variate value. A

formal proof is given in Law and Kelton Appendix

8A.

The efficiency of acceptance rejection methods is

dependent on the scaling factor K of (4.5) which

gives the average number of pairs (X,Y) needed for

each X accepted.

As an example consider the gamma distribution

with

cl— 1
x

f(x)= r(~) e
—x

X>o.

A large number of acceptance rejection methods

have been suggested for this distribution. I often

use the method of Fishman (1976, & G3 1978)

valid for ~ > 1, provided (1 is less than 3 say, as it

is one of the simplest methods. It uses a negative

exponential envelope. The scaling factor K is

proportional to a+ so the method becomes

increasingly inefficient as ~ increases. The method,

GB, using a log logistic envelope which I suggested

(Cheng, 1977) has K < 1.47 for all CY~ 1, and is
satisfactory for larger Q!.

4.5 Dwcrete Dmtributions

The above methods can be applied to discrete

distributions reasonably satisfactorily. For example

the inverse transform method works well if the

distribution function is known numerically. In this

latter case because of the way the method then
works it is sometimes called the ~table—look—up~

method.

There is a further general approach introduced by

Walker (1977) and improved by Kronmal and

Peterson (1979) called the alias method which is

powerful and quick. A detailed description is given
by Law and Kelton. The method has a modified

acceptance technique where a ilniform variate is

tested. Depending on the outcome one of two

variate values is returned (hence the name alias).

As a variate is always returned, no rejection occurs.

The method is expensive to set up and applies only

to discrete distributions with a finite range, but is

otherwise very effective.

5. EXAMPLES

Though the basic methods are reasonably useful

two reservations need to be made. Firstly even if,

for the given distribution of interest, one of the

basic methods can be used, it may be that some

special property peculiar to that distribution can be

used to produce a more effective method. Indeed

there are many relationships between different cases

so that using certain distributions as basic building

blocks a fairly comprehensive set of distributions

can be covered.

A typical example of a special method is if

independent pairs of U(O, 1) variates are simply

added:

X= U1+U2.

The resulting variate X has the triangular

distribution.

Convolution sums are a convenient way of

generating variates from certain other distributions.

Erlang variates can be obtained as sums of
exponent ials, chi~quared variates as sums of

squares of independent standard normals.

Others can be obtained as ratios. For example

Yl, Y2 are independent gamma variates with

parameters CYl and tY2 then X = Y1/(Yl + Y2) is

a beta variate with parameters al and ~
2.

We end with the celebrated example of the Box

Muller method for generating standard normal

variates. There is a simple way of viewing the

method geometrically.

Suppose we imagine ourselves to be at the origin
of the xy plane and take one step in the x direction

and one in the Y direction. If each step is standard
normal in length z ~, z

2
say, then the overall

distance D travelled from the origin satisfies D2 =
2

‘1 + z;.
This makes D2 an exponential variable

with parameter 2. Moreover any direction is

equally likely. In other words the random angle so

obtained has the uniform distribution V = 2 TU
1.

The Box Muller method simply reverses the
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process. Take a point at distance D froml the

origin, using the inverse transform method to

generate D say, at a random angle V (from the x

axis). Then the projections of this point onto the x

and y axis are:

ZI = D cos 2TUI , Z2 = D sin 2TUI

and these will be independent N(O, 1) variables.
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