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ABSTRACT

In this paper we propose a method of distribution

recognition using the idea of classical maximum likeli-

hood estimation technique (along with chi-squa]re and

Kolmogorov-Smirnov tests). Two examples, one con-

tinuous and the other discrete, are given and thle cor-

responding data sets are analyzed using the software

RVL.

1 INTRODUCTION

The program product RVL (Random Variable Labo-

ratory) was developed for use in teaching simulation

and modeling courses. It is especially useful for course

projects that require fitting distributions to independ-

ent observations of a random variable.

Object-Oriented Programming (OOP) as presented

by Booch(1991) was used in analysis, design, and

implement ation of RVL. 00P provides convenient

facilities for using the software engineering con-

cepts of encapsulant ion, inherit ante, and polymor-

phism (Jones, 1990). Encapsulation allows the pack-

aging of data and functions together in a class and

the protection of the data from unauthorized access.

Inheritance permits a new class to be derived from a

parent class. A child class may use or override func-

tions of the parent and define new data and functions.

The classes are not objects, but templates for objects.

Use of a class requires instantiation of an object from

the class. In polymorphism a single function nabme is

able to operate on each element of a set (container

class) of similar but different objects.

The RVL program product is the result of a~pply-

ing 00P to the basic problem of fitting distributions

to data. The question “Can a Random Variable be

treated as an object?”, popped into Reagan’s head

during a Statistics lecture. The answer to this ques-

tion has proven to be a resounding “YES!”.

Several uses can be envisioned for RVL and its ca-

pabilit y to rapidly fit distributions to data. The pre-

viously mentioned use in simulation model building

is foremost. In addition to modeling input random

variables, RVL may be used to fit a distribution to

an output random variable if the replicates are in-

dependent. An output distribution could be used as

an input distribution to another simulation. RVL is

also useful in teaching students (and faculty) about

distributions and the kinds of data sets they fit. We

learned much about characteristics of distributions

during the development of RVL.

The product has been used in Simulation and Mod-

eling and Mathematical Statistics courses at the Uni-

versity of Southern Mississippi and the University of

South Alabama. The students enjoyed the search for

the “best” distributions and provided valuable feed-

back about RVL and its user interface.

2 RVL ALGORITHM

RVL enables fitting distributions to data using the

maximum likelihood estimation technique. Usually a

numerical procedure is required to find the optimum

parameter estimates. The random variables then are

ranked based on the likelihood values obtained. Al-

though ranking based on likelihood values has been

proposed before (Hogg et al., 1972), we are unaware

of its use in a distribution fitting code. Since the

parameter estimates for each fit maximize the likeli-

hood, the fit which optimizes the maxima is deemed

to be an optimum in some sense.

Most numerical procedures in RVL were taken from

the Pascal version of Press, et al (1989), including the

minimization solver using Powell’s method, the Beta

function, the Gamma function, and the iterated mid-

point integration module. An original algorithm was

used to compute integral of the densities near the

singularities of the Beta, Gamma, and Weibull den-

sities. A future version of RVL will use the simplex

method (Amoeba in Press et al. 1989) as prelimi-
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nary testing has shown it to be 3 to 10 times faster

than the Powell method. To facilitate extensive test-

ing of RVL, random variable generation is provided.

The user chooses a random variable, the number of

variates, and the parameter values.

The major steps in the overall algorithm are:

1.

2.

3.

4.

5.

6.

7.

8.

9.

If the user wants to generate a random vari-

able then generate the random variable, else read

user’s datafile. Sort the data and compute the

summary statistics.

Fit various distributions chosen by the user to

data using maximum likelihood. For most dis-

tributions the maximization problem is solved

numerically.

Rank the fits based on values of the likelihood

function.

Compute other goodness of fit statistics includ-

ing Kolmogorov-Smirnov and Chi-Square.

Plot selected densities against a histogram.

Plot selected cumulative distribution functions

and the empirical cumulative distribution func-

t ion.

Compute the (population) mean and variance for

each distribution fit.

Plot P-P and Q-Q probability plots for selected

distributions.

Print textual and graphical results in a useful

form.

After the fitting in step 2 is complete the user is

free to view or review the resulting screens in any

order.

RVL was analyzed, designed, and implemented

using Object-Oriented Programming (OOP). Turbo

Pascal 6.0 was used to implement the RVL design.

The class Sample is used to hold the data set, its

title, and statistics computed from the sample. The

functions used to plot the histogram and the em-

pirical cumulative distribution function and all other

functions and data associated with the data are en-

capsulated in the Sample class.

Each random variable (distribution) is given a de-

scriptive name e.g., Gamma to which is concatenated

the number of unknown parameters. All RV’S (Ran-

dom Variables) are inherited from the base class Rand

which contains data and functions that are used by all

of its children. The classes Cent for continuous RV’s

and Disc for discrete RV’S are inherited from Rand.

All the continuous RV’S are inherited from Cent, and

all the discrete RV’S are inherited from the class Disc.

These relationships are illustrated in the tree shown

in Figure 1.
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Figure 1: Class Relationship Tree

The definitions and order of the parameters in the

RVL output follow those used in several references.

The GLD4 distribution is described in Dudewicz and

Mishra (1988) and Zaven and Dudewicz (1991). The

Cauchy2 is described in Johnson and Kotz (1970).

The remaining distributions follow Law and Kelton’s

(1991) compendium but with the addition of a shifted

version of most entries.

The Linear2, Linear4, and Linear6 densities are

piecewise linear with 2, 4, and 6 independent param-

eters which are taken as the density values at equally

spaced points. For example the Linear6 has six pan-

els with 7 density values needed to draw the distribu-

tion. The rightmost density value is computed from
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the other 6 values to force the area under the function

to be one. These are included to provide an ordered

family of probability y models. The Linear6 usually

fits better than models with fewer parameters and

thus provides a good comparison case for the more

common densities. Linear6 is capable of modeling a

trimodal density. Linear6 could be used as a practical

input random variable. It also would be particularly

useful in automated systems with real time updlating

of the process distribution, such as a traffic control

system.

The list of RV’S chosen by the user to be fit contains

mixed objects since the random variables have dif-

ferent numbers of parameters, different density func-

tions, etc. The concept of polymorphism is used to

allow a single function name like FitMLE (MLE =

Maximum Likelihood Estimate) to be applied tcj each

RV in the list.

A World Graphics Interface Class (WGI) was used

for the plots. This reusable class was originally writ-

ten in Turbo C++ and later converted to Turbc) Pas-

cal. A WGI object is a rectangular region c~f the

screen positioned by device independent coordinates

locating the vertices.

A major advantage of the 00P approach is that

RVL is extensible. This means that a user can add

a new RV to her (or his) version of RVL by writ-

ing several short Pascal procedures which specify the

basic properties of the random variable. The new

RV inherits all the capabilities of RVL for fitting and

plotting.

3 EXAMPLES

The results for two examples - one continuous and

one discrete - are included. The data sets both came

from the exercises from Chapter 6 in Law and Kelton

(1991a). The results presented agree with the ones

given in the solution manual for the Law and Kelton

text (1991b).

3.1 Example 1

The continuous problem apparently arose in quality

control and consists of 154 values of errors in the

diameters of ball bearings (Law and Kelton 1991a,

problem 6.21, p 415). The tabular results from RVL

are given in Tables 1-3. Table 1 contains the sum]mary

stat ist ics for the data set. The ranked distributions,

fave (the nth root of the likelihood function), and the

parameter estimates are list ed in Table 2. The ex-

pected values for each fit population and the values

oft he Kolmogorov-Smirnov and ChiSquare statistics

are arranged in Table 3. Linear6 provides the best fit

with Linear4 and Norma12 close behind. Other dis-

tributions fit well and could be used in a simulation

model.

The graphics for the continuous example are plot-

ted in Figures 2-5. The four best densities appear in

Figure 2 along with a histogram which has about 5

data points per cell. The numerically integrated cu-

mulative distribution functions are plotted in Figure

3 with the empiric. P-P and Q-Q probability y plots

are in Figures 4 and 5, resp. The plots graphically

confirm the numerical ranking in Table 2. NOTE:

The different plots are shown in color on the display

when the program is run. However the hardcopy pro-

vided herein is black and white. Different line styles

are also used to help differential e the curves.

3.2 Example 2

The discrete example contains 76 values of the num-

ber of items demanded per day from an inventory

(Law and Kelton 1991a, problem 6.22, page 416).

The tabular results are in Tables 4-6. The results

agree with Law and Kelton (1991b) with the Nega-

tiveBinomia12 winning the contest and Geometric a

close second.

The graphics for the discrete example are in Figures

6-8. The plots confirm the ranking by likelihood.

4 PITFALLS AND REMARKS

(i)

(ii)

(iii)

RVL is a mixed bag of numerical analysis, experi-

ence, and software engineering. It contains many

iterative procedures which are not guaranteed to

converge. Nevertheless RVL’s probability y of fail-

ure is low enough that it is still a very useful

tool.

All integration within RVL is done numerically.

Integration of the density to compute probabili-

ties is the primary operation. Since some of the

densities (Beta, Gamma, etc.) may be infinite

for some parameter values and others while fi-

nite are still badly behaved (LogNormal for ex-

ample) the integration is a tricky business. How-

ever the MLE fitting process does not involve in-

tegrals. Thus the integration only provides “win-

dow dressing” to be used in visual verification of

goodness of fit.

Maximum likelihood estimation is an optimal

technique for statisticians. A data analyst

probes in many directions to get an optimal re-

sult for the problem. While exploring the dif-

ferent methods of distribution fitting we decided
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Table 1: Sample Statistics for Example 1 — Errors in Diameters of Ball Bearings

Kind Size Mean Median Mode

CONTINUOUS 154 1,230 1.220 1.09

Variance Skewness Kurtosis SD Minimum Maximum Range

0,852 -0.225 3.654 0.923 -1.720 4.010 5.730

Table 2: Distribution Rankings for Example 1

DISTRIBUTION

Histogram

Linear6

Linear4

Norma12

Weibul13

Beta4

LogNorma13

GLD4

Gamma3

Triangular

Linear2

Cauchy2

Uniform2

Exponential

fave

0.30575

0.27048

0.26514

0.26296

0.26035

0.26001

0.25752

0.24173

0.23945

0.23889

0.23871

0.22505

0.17452

0.12469

-----

0.046

0.019

1.230

4.442

10.466

2.296

1.145

10.006

-1.806

0.010

0.544

-1.720

2.950

-- Parameter Estimates --------

0.000

0.032

0.852

3.895

8.827

0.009

0.349

0.370

4.073

0.340

1.265

4,010

-1.720

0.298 0.406 0.278 0.032

0.501 0.148

-2.337

-3.528 5.209

-8.722

4.487 5.807

-2.423

1,300

Table 3: Expected Values and Statistics for Example 1

RV E(X) V(X) -Ln(L’hood)/n KS Chi2

Linear6 1.172 0.928 1.308 0.086 28.734

Linear4 1.386 0.926 1.327 0,082 33.442

Norma12 1,230 0.852 1.336 0.044 62.177

Weibul13 1.214 0.821 1.346 0.047 80.835

Bet a4 1.212 0.934 1.347 0.062 58.773

LogNorma13 1.253 0.884 1.357 0.054 154.397

GLD4 1.275 1.387 1.420 0.097 58.512

Gamma3 1.275 1.366 1.429 0.094 180.064

Triangular 1.189 1.442 1.432 0.129 57.178

Linear2 1.153 1.415 1.433 0.140 57.278

Cauchy2 999.999 999.999 1.491 0.103 57.946

Uniform2 1.145 2.736 1.746 0.245 163.143

Exponential 1.230 8.705 2.082 0.388 277.667

Sample 1.230 0.852
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Figure 2: Density Plots for Example 1
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Figure 3: Cumulative Distribution Plots for Example 1
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Figure4: P-P Probability Plots for Example 1
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Figure5: Q-Q Probability Plots for Example 1
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Table4: Sample StatisticV aluesforE xample2 - DemandD ata

Kind Size Mean Median Mode

Discrete 76 3.974 3.000 1

Variance Skewness Kurtosis SD Minimum Maximum Range

12.426 1.559 6.962 3.525 0 20 20

Table 5: Distribution Rankings for Example 2

Distribution fave ------- - Parameter Estimates --------

Empiric 0.09604

NegBinom2 0.08637 2.000 0.320

Geometric 0.08240 0.201

Poissonl 0.05678 3.974

DUniform2 0.04762 0.000 20.000

Binomia12 ——

HypGeom3 .—

Table 6: Expected ‘Values and Statistics for Example 2

217

RV E(X) v(x) -Ln(L’hood)/n KS Chi2

NegBinom2 4.251 13.j!24 2.449 0.064 21.800

Geometric 3.965 19.478 2.496 0.096 21.459

Poissonl 3.974 3.:)74 2.869 0.205 1.77E+OO06

DUniform2 10.000 36.667 3.045 0.492 103.053

Sample 3.974 12.426
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Figure 6: Density Plots for Example 2
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Figure8: P-P Probability Plots for Example2

likelihood because the “t)eaked-

ness” of the likelihood function at estimated val-

ues of the parameters (if in fact data was taken

from that probability y model).

(iv) The piecewise linear family of random variables

has several applications. First, comparison of the

piecewise linear random variable with a compet-

ing more standard distribution, providef~ refer-

ence for using or not using the standard random

variable. Secondly, if no one of commonlly used

distribution fits “adequately”, the linear family

may be a quite feasible choice. In fact, use of the

piecewise linear density and its smooth CDF is

definitely preferable to direct use of the empirical

distribution function.

5 AVAILABILITY OF RVL

An executable copy of RVL with on-disk documentat-

ion is available to those who request it. Teachers who

want to use it in their courses are especially encour-

aged to acquire it. RVL is a quite usable prototype

now (July 1992).
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