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ABSTRACT

The simulation community has used metarnodels to study

the behavior of computer simulations for over twenty-five

years. The most popular teebniques have been based on

parametric polynomial response surface approximations. In

this state of the art review, we present recent developments in

this area. We also discuss seven alternative modeling

strategies that are active topics in the current literature.

1 INTRODUCTION

Complex computer simulation models of proposed or

existing real systems are often used to make decisions on

changes to the system design. Analysts use the simulation

model as a surrogate because it is impractical to construct

multiple prototype versions of the real system, or because cost

or other constraints prohibit experimentation with the real

system. These models themselves may be quite complex, and

so simpler approximations ae often amstructe~ models of the

model, or metamodets.Although this term has recent origins

(Kleijnen, 1987), the simulation community has used

rnetamodeZs to study the behavior of computer simulations for

over twenty years (e.g., Mihrarn (1970), Racite, and Lawlor

(1972), Biles (1974)). Interest in metamodeling issues

continues today (see Sargent (199 l)).

Metasnodels have several uses in simulation. The s irnple

form of a metarnodel can reveal the general chsmeteristics of

behavior of the more complex simulation model. The insight

provided by the simpler metatnodel may be used for

veritlcatiert and validation of the complex parent model. It

may also be used to identify the system parameters that most

affect system performance (i.e. factor screening). Since it uses

fewer computer resources, the metatnodel cars b run iteratively

many times for repeated ‘what if’ evahtation for multi-objective

systems or for design optimization. This is particularly

important when the output of the simulation is a random

quantity. Substitution of metamodel code is also an important

strategy when the original model is just one component of a

complex sysuxn model (Kacite and Lawlor (1972)). In this

case, the system model may be impractically slow and/or large

without using metamodels for some or all components.

If we accept the deftition of a metarrtodel as any ‘moclel of

a model’, then the field of metamodeling encompasses much of

the research in simulation methodology. For example, Little’s

Law, L = lW, is a model of a queue or a metamodel of a

simulation of a queue. Sirnhly, a complex simulation model

may itself be modeled as a Jackson network of queues to gain

insight on parent model behavior, for example for validation.

Rapid modeling techniques ( Suri and Dlehl (1985, 1987) and

Anderson (1987)) are generally employed be~ore the complex

parent simulation is buil~ but also offer the same uses as other

metatnodels. Perturbation analysis (Ho and Li (1988)) and

likelihood ratio methods (Rubinstein (1986), Glynrt (1987)) can

be used to build Taylor approximation metamodels of the

simulation input-output function based on a single simulation

run.

This state of the art review will focus more narrowly on

general purpose mathematical approximations to input -
output funetiomr. The ‘general purpose’ excludes metamodels

such as Little’s law and approximations based on perturbation

analysis or likelihood ratios. The mathematical representation

of a simulation model input - output function will be

represented as

y = g(v). (1)

Here, y and v are vector valued, and will usually include

random components. The v vector for a manufacturing

simulation might include the following components: the

number of machines, machine processing times, machine

breakdown time probability distribution parameters, and

perhaps all the pseudorartdom quantities used in the simulation

run. The vector y might include the average work in process,

the average daily throughput, and the average daily operating

expenses.

Metamodels are typically developed separately for each

component of y, that is, for etteh coordinate function of g. For

most of the discussion, we will restrict out attention to input -

output models where i) y has one componen~ ii) the random

component, if presen~ is additive, and iii) the list of parameters

is restricted to those that will be in the argument list of the

metamodeh

y=g(x)+&. (2)

The metatnodeling task involves finding ways to model g

and ways to model a We will generally denote the metarnodel

as f and the predicted output responses as f(x) or $.

g(x) = f(x)= 9 (3)
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The major issues in metamodeling irtclud= i) the choice of

a functional form for f, ii) the design of experiments, i.e.. the

selection of a set of x points at which to observe y (run the full

model) to adjust dte fit of f to g, the assignment of random

number streams, the length of runs, etc., and iii) the assessment

of the adequacy of the fitted metatnodel (confidence intervals,

hypothesis tests, lack of fit and other model diagnostics). The

functional form will generally be described as a linear

combination of basis functions from a parametric family. So

there are choices for families (e.g., polynomials, sine functions,

piecewise polynomirds, wavelets, etc.) and choices for the way

to pick the ‘best’ representation horn within a family (e.g. least

squares, maximum likelihood, cross validation, etc.). The

issues of experiment design and metamodel assessment are

related since the selection of an experiment design will be

determined in part by its effcxt on assessment issues.

This review will focus primarily on the issue of choosing

the functional form for f, with only occasional remarks in the

other two areas. The most popular techniques for constructing

f have been based on parametric polynomial response surface

approximations. While we review recent developments in this

are% we also discuss seven alternative modeling approaches

(eleven distinct models) from the current literature:

● Taguchi models

● generalized linear models

● four methods baaed on splines (tenser product, interaction

splines, MARS, and H)

● radkd basis functions

● kernel smoothing

● spatial correlation models, and

● frequency-domain (Fourier and w avelet) approximations.

@pace limitations do not allow the discussion of robust

regression methods - outliers are less liiely to cause significant

problems for simulation model outputs.)

With so many teeluiques available, a word is in order on

how one might choose from among them. There are many

criteria that cart be considered. Some of these ae listed below.

1 The ability to gain insight from the form of the

metarnodel.

2 The ability to capture the shape of arbitrary smooth

functions based on observed values which may be

perturbed by stochastic components with general

distribution.

3 The ability to characterize the accuracy of the fit through
cotildcnce intervals, etc.

4 The robustness of the Prdlction away from observed (x,

y) pairs.

5 The ease of computation of the approximaut function f.

6 The numerical stability of the computations, and

consequent robustness of pre&ctions to small changes in

the parameters defiig f.

And, fmaliy, a practical concern for simulation modelers,

7 Does software exist for computing the metamodel,

characterizing its fl~ and using it for prediction?

The review is organized to cover each of the modeling

techniques in sequence, beginning with tradhional response

surface methodology, The dkcussion will focus on the nature

of the approximating functions and their characteristics via

criteria 1-7.

The design of simulation experiments has received

extensive attention for the polynomial form of the general

linear model, and therefore it is dwcussed in that section Much

development remains to be done for the other modeling

techniques in the areas of design of experiments and model

assessment. This is an exciting opportunity, because the

evidence indicates that some of these techniques offer

significant improvements over polynomial metamodels,

particularly for providing a better global fit (Schumaker

(1981), Hiirdle (1990)).

2 POLYNOMIAL RESPONSE SURFACE
METAMODELING

Based on the work of Box (1954) and Hunter (1958-1959),

response surface methods have been used effectively for over

thirty years as metamodels. These methods are the topic of

entire texts (see Box and Draper (1987), Khttri and Cornell

(1987), Myers (1976)), but our review must be brief. In Myers,

Khuri, and Carter (1989), the authors defiie response surface

models as

,,... a collection of tools that enhance the exploration of a

region of design variables in one or more responses ... the

function can be approximated in some region of the x’s by a

polynomial model.”

Polynomial regression models were developed for the

‘exploitation’ of response surfaces (1), that is, for optimization.

Thk approach fits first or second order polynomial models to

y, the system response. The model is of the form (3) withy a

scalar and & a scalar, although these quantities are often viewed
as vectors by considering multiple observations

simultaneously. For the remainder of the section we will use y

=@l!...? yn)’ to represent a set of (univariate) outputs of the

simulation model run under input condhions X 1, . . .. Xn ,

respectively. The ~ for the multiple observations are assumed
to be independent, identically distributed Gaussian quantities

with variance d. The baais functions are usually taken as the

products of the power functions, 1, xj, Xj 2, . ... giving

f(x) = ~~kpk(x) (4)

For example, ~(x), a product of pwer functions, might be

(xl), (x 1)2, (x3)Tx4), etc. Al tematively, the basis may be

orthogonal polynomials, ~(x), providing the same polynomial
for f but a different representation

f(x) = zakq%Jx) . (5)

The eoefficienk ~k or txk are estimated from observed (xi,

yi) data points, i=l,..., n via least squares or maximum

likelihood estimation, which are identical procedures for

Gaussian errors. The resulting estimates can be thought of as

random quantities that depend on the random observations.
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The advantage of (5) over (4) is that the coefficient estimates

for the CSk’Swill be uncorrelated and will be robust to small

changes m the observed data.

2.1 Design of Experhnents

The recent developments for polynomial response surface

models have been in the area of experimental design, To

introduce these advances, we fiist describe the design Prclblem.

The coefficient vector ~ in (4) is determined by

$= (x’X)-lxy , (6)

where X= (l, xl, .... Xn)’ for a fust degree @near) polynomial,

and includes products of these columns for higher order

polynomials. From (2), we see tha~ since y is a random vector,

~ will be random.

Some recent research relates to two properties of ~. FirsL

one would like to minimize the vmisnce of ~. Ths will make

the approximating function f less sensitive to the random

perturbations introduced by s. Second, one may want to

estimate some of the coefficients in the ~ vector without

making the number of simulation runs needed to estimate all of

the coefficients in ~. By leaving terms out of the metamodel

(4), the fitting process may produce biased estimates for the

remaining coefficients. Both of these properties are affected by

the choice of the experimental design strategy. Each is

d~ctrssed briefly below.

With independent &i vahres the variance-covarisnce matrix

for the coefficient vector ~ is

Xp = r+(xx)-1 . (7)

When the &i values are dependent, with covariance matrix

&, the variance-covsriance matrix for ~ is

ZD = (Xx)-1x>x(x’x)-1 . (8)

Schrtrben and Margolin (1978) exploited (8) to procluce a

reduced variance-covariance matrix for ~ by inducing

correlation in the &i values. This is not generally possible in

regression modeling, but in simulation metarnodeling, the

random number streams used for the simulation runs can be

controlled to induce both positive and negative correlation

between runs. The Schruben-Margolin strategy induces

positive correlation between runs within a block, and negative

correlations between blocks. The usual statistical analysis

must be modified for this strategy, as described by Nozari,

Arnold, and Pegden (1987) and Tew and Wilson (1992). Tew

and Crenshaw (1990) d~cuss the implications when all of the

random number streams are used as common or antithetic

streams across the experiment (no pure error term remaims).

Thesecond experiment design issue receiving attention in
simulation designs is bks. If there is concern that higher order

terms may be present in (2) that are not modeled in (4), then

simulation runs over the design space must be chosen

differently. Draper and Guttman (1986) discuss how to choose

optimal run conditions over a variety of design region shapes.

Donohue, Houck and Myers (1990) combine these ideas with

common streams and the Schruben-Margolin strategy to

produce response surface designs with low bias (scaled central

composite and Box-Behnken designs were found to be

generally superior to factorial and small composite designs).

A third issue receiving attention is the reduction in the

vaiarrce of ~ by removing (statistically) some of the variation

in y before estimating ~. This is possible when another
response, y’, has a known relation to x and a significant

correlation with y. This y’ is called a control variate. Recent

research in control variate analysis and applications include

Porta Nora and Wilson (1989), AvramidM and Wilson (1990),

Cheng (1990), and Tew (1992). Tew and Wilson (1988) and

Tew (1992) discuss the results of combining the Schrtrben-

Margolin strategy with the control variates strategy for

reducing the variance of P.

2.2 Properties of Polynomial Metamodels

First and second order polynomial models have standard

interpretations based on the coefficients of the terms in (4)

(Box and Youle (1955), Mason, Gtmst and Hess (1989)). A

large coefficient for a linear term indicates that the

corresponding component of x has a significant effect on the

outcome Mmg modekx% y. A large coefficient for a quadratic

term indicates a nonlinear response. A large coefficient for a

cross product (x x ) term is interpreted as a change in the
fq

(linear) effect o Xp as a function of the value of Xq, and

similarly for q vs. p.

Polynomial models do well for criteria 3-7. The calculation

of the estimates for ~ from (6) are simple and numerically

stable for any reasonable design matrix X. Using the normal

theory, confidence intervals and goodness of fit tests cart be

constructed. See Box, Hunter, and Hunter (1978) for example.

Software abounds.

For low-order polynomial fits, the accuracy of the prcdcted

vahre does not degrade rapidly as one moves away from any

experimental observation. This is not true for high order

polynomial fits, however. While the interpretation of these

models is straightforward, the range of shapes that they can

approximate is limited. For response surface optimization this

is usually not a problem, because models are repeatedly built

for approximation in a small x region, and then discarded as

the search for the optimum moves on. when there are multiple

objectives, however, it is unlikely that a small x region will

contain all of the non-dominated solutions, and so (global)

polynomial approximations may be a poor choice in this case.

The classic polynomial regression model requires

restrictive assumptions on the E term in (2) for the observed

simulation outputs (i.i.d. normal). We next review two

extensions of the linear model, Taguchi’s model and the

generalized linear model. Both relax the assumption that the &.
are i.i.d. Gaussian quantities. The generalized linear mode i

also deals with the inflexibility of (4).

3 ALTERNATIVE METAMODELING STRATEGIES

3.1 Taguchi Models

The Taguchi parameter design approach to product

improvement actually involves several concepts, includhlg
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signal to noise ratios, linear graphs for selecting experiment

designs, and noise factors (see Nair, et. al. 1992 for a

comprehensive review). This section concentrates on the

generalization of metamodels that occurs by allowing the

variance of& to depend explicitly on the parameter vector x.

This is applied in the simulation context by Ramberg et al.

(1991).

The Taguchi approach (Phadke 1989) provides two

modflcations to the model described by (4). Fwst, the errors.

&i} are independen~ but the variance is modeled as explicitly
depending on X, i.e. V~(&i) = c?(x). This situation is often the

case practically, and can be addressed (though not in an

entirely satisfactory way) for polynomial response surface

models by i) transforming y, ii) using weighted least squares,

or iii) varying the length of the simulation run at xi in inverse

proportion to the variance of c i. These alternatives are
presented nicely in the simulation context by Welch (1990).

Second, Tagtrchi’s parameter design methodology incorporates

this relation in the model not by providing a second model for

&(x), but by combining the two (models of y(x) and 02(x))

through the signal to noise rotw.

10*log[E(y2)/02) = ~~kpk(x) (9)

Typically the model involves only terms linear in x.

Taguchi expects to fiid some components of x that have smrdl

y values in (9) but large ~k vahtes in (4). After adjusting

io er parameters to maximize (9), these insensitive compenen~

of x are adjusted to move the expected response, f(x) to the

desired vahte.

3.1.1 Experiment Design for Taguchi Metamodels

Taguchi proposed designs for fitting (4) and (9) that were

Kronecker products of: i) small-perturbation fractional

factorial designs on the parameters affecting variance (the

‘outer array’) and ii) factional factorial designs on the full set

of all parameters (the ‘inner array’). Other authors have

proposed more compact fractional designs in which the outer

and inner arrays are not crossed, but combined in a more

economical fashion. See Montgomery (199 1) and Nair et al.

(1992) for a full discussion.

3.1.2 Properties of Taguchi Metamodels

Taguchi metamodels share many properties with the

polynomial response models of the previous section. The

estimates for the O and y vectors are computed in the same way
and share the same (good) numerical properties. The low order

polynomial form for the models (4) and (9) make

interpretations straight forward. The signal/noise structure of

(9) destroys the simple procedures for assessment offered by

(4), unfortunately. Furthermore, the inherent limitations of

polynomials still apply here, now in (9) as well as (4). The

Taguchi metamodel can be fitted and studkd effectively using

the linear modeling capabilities of stamhwd statistical packages.

While software for choosing appropriate fractional factorial

experiment designs is not generally available (but see

Shoemaker and Tsui’s concluding remarks in Nair, et al. 1992),

graphical methods ease this task (see Taguchi 1959 (960),

Phadke 1989, Kacker and Tsui 1990, and Wu and Chen 1992

for details).

3.2 The Generalized Lhear Model

The model in (4) is often referred to as the general linear

nwakl (Scheff6 1954). We have refrained from using that

name to reduce confusion with the yet more general

general= lineur moukf. Both are referred to by the acronym

GLM. We will use this term in this review only for the

generalized linear model of McCullagh and Nelder (1989).

GLM’s are a generalization of general linear models in two

ways. First, the distribution of the&i vahres may come from an
exponential family other than the Normal/Gaussian. This

includes any probability density of the form .foA (e) = exp ( [( S9

– b(t3)) /a(~)) + c(QO) ). For the Gaussian d~tribution, (3= p,

$ = 02, a(~) = @ b (e) = 62/2, and C(&,@) = -(1/2 )[&2~2 +

log (%2)). Other distributions in this class include the

Poisson, binomial, gamma, and inverse Gaussian distributions.

The second generalization has to do with the form of the

model that replaces (4). For the classical model in (4), E(y) =

fix). For the GLM, thk comection is made more flexible

through the ‘link function’ or ita inverse, k, which allows E(y)=

k(f(x)). Any monotonic differentiable function is allowed for

k.. ( The link function is denoted g by Nelder.) The link

function adds another degree of flexibility to GLM

metamodels. Probit and logit analyses are now included as

special cases, via special link functions. For probit analysis, L

is the standard normal cumulative distribution function.

3.2.1 Properties of Generalized Linear Metamodels

The generalized linear model provides a formal framework

for simulation metamodels when the Central Limit Theorem

cannot provide an adequate approximation for simulation

model outputs withh run lengths that are practical. Thii model

has been suggested an alternative for analyzing Taguchi

experiments (see Nelder and Lee 1991). It provides a stronger

statistical foundation and a more flexible form. Its strengths

are in its flexibility. This flexibility is not without cost,

however. The assessment tools for criterion 3 that are

available for generalized linear models are based on the

asymptotic theory of maximum likelihood estimators. These

are weaker than the corresponding techniques for the classic

linear models of (4). The topics of design of experiments,

hypothesis testing, and analysis of variance are not well

developed for this class as a whole, although residuals and an

‘analysis of deviance’ are discussed by McCullagh and Nelder

(1989). Fitting and analysis software is available (GLIM: see

Payne 1986), including macros for analysis of Taguchi-type

experiments, (available from Nelder).

33 Modeling Methods Based on Splines

Any polynomial approximation represented by (4) cart be

constructed from linear combinations of the functions ~ xj~

where the product is over k, and the index j kmay take the same

vahre more than once. ‘Ilk choice for a basis has drawbacks,

as mentioned earlier. Runge (1901) gives a clear example of

the failure of polynomial basis functions to approximate a

simple response function. Thii example is presented in many
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texts, for example in Schumaker (1981). Figure 1 reproduces

the fit of a 15th order (degree 14) polynomial f(x) to the

function g(x) = I/(l+x*) over the interval [-5,5). The problem

in the tails does not go away for increasing samples, increasing

polynomial degree, and increasingly fiie sampling interval.

Runge shows that as the fineness and order of the

approximfion inCrCSSCS)so does the m~im~ error? without
bound. Design of the experiment plays a critical role here. If,

rather than evenly, the points are selected accordhtg to the

zeros of the Chebychev polynomials, the polynomial

approximation has decreasing error as the sample size

increases. The rate of decrease in the error can still be slow,

however. See deBoor (1978) for a discussion.

Flgore 1. Fit of 14th degree polynomial to the function

g(x) = l/(l+x2). The fit deteriorates for 1x1 >3.64, fcr a fit

based on uniformly spaced experimental points as the number

and degree increase.

The high order polynomial achieves a good fit by adjusting

coefficients to achieve cancellation of large oscillatiorls over

most of the range. This reliance on cancellation makes high

order polynomial fits non-robust. If a quadratic approximation

to the function in figure 1 is adequate, then global polynomial

basis functions can be used to build the approximating

metamodel. If a more accurate representation is needed, the

simulation modeler should consider other basis functions from

which to build the metamodel. The remainder of this section

discusses the ‘state of the art’ in the choice of basis functions.

3.3.1 Univariate Spline Metamodels

The difficulties with polynomial basis functions are

avoided iE i) they are applied to a small region and, ii) only

low order polynomials are used. This is the motivation for

metamodels based on piecewise polynomial basis functions.

When wntinuity restrictions are applied to adjacent pieces, the

piecewise polynomials are called splines. The metatnodel can

be written as

f(x) = ~ cjBj(x) (lo)

where the Bj are the quadratic or cubic piecewise polynomial

basis functions. The basis functions can be described most

simply for the univariate case. The domain is divided into

intervak [t ~, tz), [t2, t$. [tn-l, tn) whose endpoints are c~led

knots. Two sets of spline basis functions sre commonly used,

the truncated power function basis and the B-spline basis (de

Boor 1978). The truncated power function basis for cubic

3
‘Phes co~ls~ of 1. x, ad { (x-t j) + ), where (x-tj ): denotes

the one-sided function that is (x-$)3 for x > tj and O for xs \.

This set of basis furtctio~ are easy to describe and

understand, but computationttlly not robust. Numerical

difficulties arise when there are many intervals and

consequently many basis function coefficients to estimate.

Also, the basis functions have infinite support. A change in

one observed value will affect the coefficients of all the basis

fimctions. Further, some of the shape control is still effected

by cancellation, resulting in the lack of robustness problems

described for polynomial models.

The second set of basis functions, called B-splines, are

more difficult to describe. They can be derived from divided

differences of the power function spline basis elements. Their

great advsntage is that they have nonzero support over only k

intervals: B .(x) = O unless x E [t., t.+k). The parameter k is

determined ~y the order of pol~dmtals used in the spline

model; k = 4 for cubic splines. Using a B-spline basis,

estimation of the coefficients Cj in (10) is trivial, because XB,

= 1. A natural choice for cj is g(\ ), giving f(tj ) = g(ti), i.e. ~

interpolating function. ~*alternative experiment dcslgn is to

choose the design points ~ = (tj+t~ ~+...+tj+kk/k ‘d ‘e~,c~:

g(t; *). This produces variation dtrninishing splines:

spime approximation to g crosses any particular straight line at

most as many times as does g itself’ (de Boor (1978)). This

implies that if g is nonnegative so is f, and f is convex if g is.

This choice makes sense for metamodels of deterministic

functions, but it must be modified if the functions are expected

to include a random component.

Since most simulation model output functions will not be

determittktic, another approach is necessary to estimate the

spline coefficients. The motivation for smoothing splines is

based on an explicit tradeoff between the fit or accuracy of the

approximation at known points and smoothness of the resulting

metamodel. The fit term is represented as a sum of squared

differences of the metamodel and simulation model responses

at each of the experimental runs. The smoothness is

represented by an integral of the square of some derivative over

the region of validity of the metatnodel. This is shown in

figure 2.

DATA FtT u SM~SS

~~
cm M madearbiumity m— “nomnmmbmed

dose, to Z~ by iippIO@Stdy

‘nonsmooth’ msasmodet

Figure 2, The tradeoff between accuracy and smoothness.

The spline functions arise as solutions to the following

optimization problem, where the relative importance of fh vs.

smoothness is controlled by the smoothing parameter k:

min Z(yi-fz(x,))z + A J(f~)2 dx . (11)

fkeCk-z



294 Barton

The function that miniies(11) will be a spline of order k,

which is in C ‘-2 (continuous derivatives up to the (k-2)~

derivative) and is a piecewise polynomial with terms up to Xk-l.

The knots will occur at points in x corresponding to the

observed daw x.. An example of smoothiig splines with three

#different values or k is shown in figure 3.

y(x)

.

,

Figure 3. Three smoothing splines fitted to a set of data

((x, Y(xj))l. Knots arenot showm but they will occur at some

Aof e Xj values (for smoothing spliies), and nowhere else.

An important issue is the selection of the value for the

smoothing parameter k. The value may be chosen by visual

examination of the fit (e.g. figure 3), or by minimizing cross

validation (like residual sum of squares), or generalized cross

validation (GCV) (an adjusted residual sum of squmes.). These

approaches are discussed by Eubank (1988) and Craven and

Wshba (1979). Li (1985) gives consistency results for

smoothing splines (and other linear estimates) based on GCV

estimates,

Three classes of spline metamodels can be described as

solutions to special cases of the objective (11): spline

smoothing, spline interpolation (described earlier), and least

squares splines. The key differences are summarized below.

Smoothing Salines: k is chosen by the user, knots are not

pre-specified, but they will occur at the Xj values in the optimal

solution (i.e., t. = Xj ), k can be chosen based on the user’s

preference (e.g!, visual check of several trial vahses for L) or by
cross-validation, or generalized cross validation.

Snline Interpolation: k is chosen by the user, knots me not

pre-specified, but they will occur at the xj values in the optimal

solution, k = O.

Least Sattares Splines: k is chosen by the user, preferably

new local maximaJminima and inflection points, knots are pre-

specified, k = O.

3.3.2 Properties of Spline Metattmdels

As the number of experiments increase, spline metsmodels

provide increasingly accurate approximation to any metamodel

function g. Using the B-spline basis, deBoor (1978) shows

that, for x in the interval [tj, ‘j+~)

Ig(x)-f(x)l S max Ig(x)-g(ti)l, j-kci<j (12)

The result is stronger for continuous functions, where the

error decreases as the length of the maximum knot interval, say

dtothektipowec

maxlg(x)-f(x)l < ~d71g@)ll, (13)

where the maximum is over the entire approximation interval

[a,b), ~ represents a constant depending on k, and llg@)llis the

maximum modulus of the km derivative of g over [a,b).

3.3.3 Multivsriate Spline Metamodels: Tensor Product,

Interaction Splines, MARS, and II

The extension of the univariate spline metamodels to

multivmiate situations has been an active area of recent

research. Tensor products of univariate splines can be used for

multivariate metamodels (deBoor 1978). Tensor product

approximation requires a full factorial experiment design to

estimate the parameters of the metamodel. Univariate splines

are fit for each factor, for each level of every other factor.

There is no requirement for equal numbers of levels across all

design factors, nor equal spacing within one factor. Grosse

(1980) provides efficient calculation of the tensor product

spline coefficients based on the univariate coefficients.

Finding the tensor product spline coefficients involves solving

a linear system with a condition number that is on the order of
25(# ofh-)

Because tensor product splines require many experimental

runs on a complete rectangular grid, and because there are

numerical difficulties in calculating the spline coefficients for

metamodels with many input parameters, several alternative

multivariate spline models have been proposed. The first,

interaction splines, were presented by Wahba (1986). These

models are linear combinations of products of at most two

univariate splines. Gu (1990) gives an application to further

generalize the generalized linear model by replacing (9) with

an interaction spline metamodel.

Multivariate Adaptive Regression Spline models (Friedman

(1990)) use a stepwise procedure to recursively partition the

simulation input parameter space. The univariate product

degree and the knot sequences are determined in a stepwise

fashion based on the GCV score. The MARS model uses

truncated power basis functions, which are not as numerically

robust as B-splines. Friedman provides an ANOVA-like

decomposition of the MARS fit that helps one gain insight

from the metamodel. While our review has focused primarily

on static metamodels, these techniques can be applied to study

dynamic phenomena as well. Lewis and Stevens (1991)

develop a nonlinear time series model of sunspot numbers

using MARS. The data have a periodic structure which is

successfully identified by the MARS regression.

The II model (Breiman 1991) also uses a stepwise
procedure for selecting a linear combination of products of

univariate spline fimctions to be included in the metatnodel.

This method begins with a large number of knots for each

variable, and uses a forward stepwise procedure based on the

GCV score to select terms for the product, and to select the

number of products. The backwards elimination step is also

based on the GCV, and is used to delete knots (or, equivalently,

univariate basis elements). Breiman provides plots of the

univmiate spline basis functions to provide some insight on the

structural properties of the model.

These methods all consider products of univsriate splines,

where the order of the products and knot locations are
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determined by different strategies. All three methods use the

GCV score to identify appropriate components of the spline

model in a stepwise fashion. AH three have software

implementations available from the authors (Gu, Friedman, and

Breiman, respectively). All three cart be expected to have the

attractive properties of spline metamodels: the ability to

provide accurate, computationaily robust metamodels over the

entire domain of the simulation model inpu~. All three h~ave

means for gaining insight based on the metamodel: the (two-

factor) interaction splines can be understood using techniques

similar to those described for the H metatnodel, And ail cambe
used for static or time series modeling, Finally, we note that

the authors assume that the set of data values [(xi, yi)) to be fit

are given. There is no dkcussion about the design of the

simulation experiment to provide the best fit of f to g over

some region of interest.

a response near yl. On the other hand, for an x near Xz the

response should be more like y ~ Kernel smootimg cspwes

this idea through a weight function that depends on the distance

separating x from points xl where the (random) response yi has

been observed via one or more simulation runs. One might

imagine a triangular weight function superimposed at the point

x as shown in figure 5. The point x is nearer xl and so the
weight given to y ~ is greater than the weight given to Y,.

●✼✞
likely values for

YI x near xl

Y2 ‘ike:::~;f”r s! ●

3.4 Radial Basis Functions

Radial basis functions provide an alternative approach to

multivsriate metamodeling. The original development by

Hardy (1971) introduced, among others, simple ‘multiquadric’

basis functions

f(X) = Z ai llX-Xill . (14)

where the sum is over the observed set of system responses,

{(xi, yi ) ) and II*II represents the Euclidean norm. The

coefficients ai are found simply by replacing the left hand side

Of (14) with g(xi)$ i=l, .... n, and solving the resulting linear

system. Hardy showed that these functions provided a good fit

to irregular topographic contours.

Unfortunately, the condition number of the linear system

deteriorates rapidly with increasing dimension and increasing

numbers of data values to be fitted. Also, since this is an

interpolation method, its direct application to simulation

metamodeling is limited. Dyn, Levin, and Rippa (1986) and

Dyn (1987) solve both of these problems by finding effective
preconditioners for the ihtear system, and by using smoothed

global basis functions to fit scattered noisy data.

Radial basis functions also arise for a class of spline

functions. The so called thin plate splines have radial bmsis

functions of IIx -xi11210gllx-xill. Like smoothkg splines, the

radial basis functions, as well as their coefficients in the

metarnodel, depend on the location of the observed values xi.

3.S Kernel Smoothing Regression Models

All of the estimation methods described above prochtce

predicted values, f(x), that are linear functions of the observed

yi values, with coefficients determined by the basis functions

and their coefficients. The kernel smoothiig metamodel uses

this representation explicitly, without developing an explicit

representation for fin terms of basis functions, A value, f(x),

is computed directly as a weighted sum of the observed yi

values, where the weights are determined by a kernel function.

For smooth functions g, simulation responses near x

contain information about E(y(x)). Consider a simple example

where the response, y, is a function of a single design

parameter, x. As shown in figure 4, for an x near xl, we expect

xl X2

Figure 4. Motivation for local (kernel) smoothing.

‘1 1%
x“

Figure 5. Weighting the nearby observed y values to

estimate y(x).

There are many forms that this weighting or kernel function

may take, and there are several ways to use the weighting

function to calculate f(x). To simplify the discussion, we will

fiist discuss kernel smoothing in the setting of a single design

parameter, i.e., x = x. We present only one way to use the

weighting function to compute f(x), the Nadaraya-Watson

formula, because it is popular and easy to understand, and it

reduces the bias of the kernel metsmodel near the borders of

the region over which model outputs have been computed (see

the discussion below). Details on other kernels and kernel

smoothing formulas are in Eubank (1988) and H!irdle(1990).

3.5.1 The Nadaraya-Watson Formula

Given a set of completed simulation runs with data (Xiyi)

the N-W formuia for the metamodcl is

where W(O) is the kernel function.

kernel include

(15)

Common choices for the
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uniform w(u) = 1/2 .l<U<l

triangular w(u) = 1- Iul .l<U<l

quadratic w(u) = (3/4)(1 -U2) -l<U<l

quartic w(u)= (15/16 )(1-u2)2 -1 <us 1

The approximation formula also depends on a smoothhtg

pszsmeter k, which controls the size of the neighborhood over

which y values are averaged. When L is small, few points will

be included in the range of u, producing a nonsmooth

metamodel f(x). When 1 is large, many points are included in

the weighted average, and f(x) will be a slowly varying

functio~ with greater bias.

The natural extension of (15) to the multivariate case would

replae (X-Xi)~ with Ilx-xillfl (11 ● II is the Euclidean norm).

This form is symmetric about xi. As a consequence,

asymmetric boundary modifications of the kernel are not

possible. Furthermore, individual k. are not possible. Instead,

(X;Xi)/A is replaced by II w((xj -~j~) or, more generally, by

(,Q,‘((xj-xij)~)):

fk(x) = $ (Jfi, w((xj-xij)~))yi

~ ,$, ‘((Xj-Xij)~)

(16)

3.5.2 Bias in Kernel Smoothing Metamodels

Figure 6 shows the bias for two fitted metamodels to a

hypothetical simulation response function. Near local minima,

the metamodel will consistently overestimate the response

because it is averaging values that are all greater than the local

minimum A similar problem of underestimation exists near

local maxirrm Reducing A reduces the size of the bias but does

not eliminate it. This problem is handled by modifying the

kernel function for evaluations that are near the boundary of

the data (Rice 1984).

actual .
function ~

Y

smalk less bias

large smoother,
but more bias

J
x

Figure 6. Bias as a function of A for kernel smoothing.

The value of the smoothing parameter k affects both

smoothness and bias, and so must be chosen to balance these

properties of the fitted metamodel. The method of least

squmes might be applied to choose the value of h. However,
~ fk(xi) = yi so that least squares will drive the choice of k to

zero. An alternative to eliminate thii behavior is to leave (x i,

yi) out of the metamodel when calculating the difference

between the metamodel and yi. If we denote metamodel that is

fit to all data except (xi, yi) as fx(x), then the sum of squared

deviations between y i and fu(x) is called cross validation mean

sum of squares. The cross validation estimate for k minimizes
this quantity. It is just a least squares estimate, with f~ replaced

by fx . This quantity can be minimized using an iterative

optimization technique. The optimality properties of this

approach are discussed by Hiirdle and Marron (1985).

Wahba proposed another technique for choosing k called
generalized cross validation (GCV). This includes an

adjustment to the sum of squared residuals, and is discussed in

Wahba (1990) and Eubank (1988).

3.6 A Spatial Correlation Model

Sacks, Welch, Mitchell, and Wynn (1989) and numerous

references therein develop a parametric regression modeling

appoach that shares some common features with spline
smoothing and kernel metamodeling. The expected

smoothness of the function is captured in a spatird correlation

function. The model assumption is

y(x) = g(x)+ z(x) . (17)

Z is assumed to be a Gaussian stochastic process with

spatial correlation function

COV(Z(U), Z(v))= R(u,v) = exp( -x9j(uj-vj~). (18)

The value of p is sometimes fixed at 2, and g(x) is usually

approximated by a constant, or a linear function of x. The

values (3. are estimated by maximum likelihood, and are used

/to calcu ate approximate expected values of ( 17) to provide the

metamodel f(x). This metamodel family has been used to

model deterministic simulation models, but Sacks, et al.

suggest the addition of a stochastic term for nondeterministic

simulation metamodeliig.

Currin et al. (1991) discuss the design of simulation

experiments for estimating the p and Et. parametersin(18), and
dkcuss linear model and cubic splineJforms for in(R). Their

examples show a much better fit than linear regression or cubic

splines. Sacks, et al. consider initial Latin hypercube

experiment designs followed by the sequential addition of

points to minimize mean squared error integrated over the

region of interest.

3.7 Frequency Domain Rude Functions

Viewing variations of g over its domain in terms of spatird

correlation leads naturally to the idea of Fourier basis functions

for representing an approximation to g in (1). While such an

approach is possible, it is prone to difficulties (as is the global
polynomial model) because the Fourier decomposition is based

on basis functions with global support. Close approximations

of g by a metatnodel using a Fourier basis depends heavily on

cancellation to achieve the desired form. This results in a

method that fails to satisfy criteria 4 and 6.

This is less of an issue when modeling dynamic

phenomena. Schruben and Cogliano (1987) use Fourier
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decomposition to determine steady state input output structure

by deliberately varying input parameters sirtusoidally. There

have been a series of papers since then d~cussing the design of

experiments for this class of metamodels (see for example

Morrice 1991, Buss 1990, and Jacobson et al. 1992). Yet even

for dynamic models, Fourier basis representation still has the

weakness associated with global basis functions. See Lewis

and Stevens (199 1) for a discussion and example.

Wavelet basis functions provide a decomposition in both

location and frequency, providing 10CSIrather than global basis

functions. The wavelet basis elements have ftite support, and

are adjusted by dilation factors to achieve a good fit

(Daubechies (1988)). This methodology is still in the early

stages of development. At present, applications of wavelet

models have been limited to functions of one or two variables;

in particular, to the construction of a smoothed visual image

from noisy image intensity data. Strang (1989) gives an

overview of wavelet models. While the software and

applications are limited at present, this class of metartmdels

show great promise, since they offer a frequency -bii.sed

interpretation of simulation model response, but do not soffer

the li.tnhations of global basis functions.

4 CONCLUSION

Tlds is an exciting period in metamodeling. Recent and

continuing increases in computing power allow new more

flexible models to be computed and used for prediction and

insight. Graphical representation of metamodel response

contours for up to three variables can be computed and

displayed automatically for the user to examine and adjust.

The weakness of polynomial models is their inability to

provide a global fit to smooth response functions of arbkrsry

shape. This is particularly important for multicriteria

optimization, where the response region of interest will never

be reduced to a ‘small neighborhood’ by optimization.

Alternative models such as kernel smoothing, radial basis

functions, and multivariate splines are robust and provide good

fits to arbitrary smooth response functions. On the other hand,

they are computationally intensive, and in some cases the

estimation problems are numerically ill-conditioned, For some

of these models, the sign and size of the model coeftlcients

provide less insight than a polynomial model. An additional

drawback of the alternative models is that it is not clear how to

select appropriate experiment designs for fitting such models.

The advantage of global polynomial metamodels of the

form (4) is that techniques for experiment design, calculation,

interpretatio~ and assessment are all well developed. We can

expect to see similar developments for alternative metarnodels

in the near future.
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