Check for
Updates

Proceedings of the 1992 Winter Simulation Conference

ed. J. J. Swain, D. Goldsman, R. C. Crain, and J. R. Wilson

BUILDING A SIMULATOR WITH GPSS/H

Douglas S. Smith
Daniel T. Brunner
Robert C. Crain

Wolverine Software Corporation
4115 Annandale Road
Annandale, Virginia 22003, U.S.A.

ABSTRACT

A simulator is a data-driven simulation tool designed
for a specific system or type of system. Combining a
data-entry front-end with a parameterized simulation
model produces a tool which a "non-simulationist" can
use to analyze complex systems. This paper provides an
overview of the classes of simulation tools, describes the
components used to build a custom simulator, details
relevant features of GPSS/H, and discusses Wolverine's
new GPSS/H run-time version.

1 CLASSES OF SIMULATION TOOLS

Over the past decade, numerous discrete-event
simulation systems have emerged. However, "off-the-
shelf" modeling software can still be classified into two
general categories: packages and languages. The
primary differences between simulation packages and
simulation languages are the model-building interface
and the level of detail allowed by the software. The
tradeoff is between ease-of-use and modeling flexibility.
Packages tend to cover a broad range of specific
applications, while languages are usually general
purpose.

A third type of tool, the simulator, has emerged as a
means to provide simulation capabilities to users with
little or no simulation modeling experience. Simulators
are custom-built analysis tools designed by experienced
simulation model builders. They are used to analyze a
single system or a narrow range of specific systems.

Many of the software products that have been
referred to in the past as simulators are more
appropriately called packages. Packages include a
model-building interface which may expedite the
modeling process but still requires the end user to know
how to design simulation models. Simulators, on the
other hand, require no model building by the end user.
The parameterized model that is used in a simulator is

357

designed and built by an expert and is driven only by
data supplied by the end-user.

1.1 Packages

The scope of a package is often limited to a specific
class of applications such as manufacturing,
communications, or transportation. Packages are
characterized by software interfaces that conceal most of
the underlying engine, and sometimes by promotional
claims that "no programming is required."

The goal of packages is to provide the modeler with
a user-friendly interface; however, the interface can
impose some restrictions on the serious modeler. In an
attempt to make a package easier to learn and use, its
developer may implement hidden assumptions. Those
assumptions can render models invalid or unrealistic
without the modeler’s suspecting it. The assumptions
also sacrifice flexibility. This can result in added effort
when programming complex control constructs. The
model must remain within the framework of the
package, as it is very difficult to model beyond the scope
provided (Banks 1991). Models developed with
packages are also sometimes difficult to validate due to
a lack of built-in debugging tools.

1.2 Languages

Discrete-event simulation languages have been in use
for over thirty years and are used extensively today to
model a wide range of systems. The built-in flexibility
in many languages makes them capable of modeling
complex systems in great detail. Virtually any realistic
system can be modeled using a simulation language.
However, the amount of detail allowed often implies
that more time is needed to insure that all of the details
have been captured accurately (Banks 1991).

As simulation products evolve, the distinction
between packages and languages is fading. Languages

http://crossmark.crossref.org/dialog/?doi=10.1145%2F167293.167375&domain=pdf&date_stamp=1992-12-01

358 Smith, Brunner, and Crain

are offering more features previously associated with
packages while many packages now provide some
programming capabilities. Ultimately, packages and
languages will be grouped into a single class of tools
characterized as model builders. Yet, there will always
be a strong distinction between model builders and
simulators.

2 THE SPECIAL PURPOSE SIMULATOR

When using either a package or a language, the user
must build from scratch a model that represents the
physical system. Modeling complex systems requires
intimate knowledge of both the software and the system
under study. However, not everyone who can benefit
from using simulation has the time or the training
necessary to build simulation models.

A recent addition to the family of simulation tools,
the simulator, is growing in use and popularity. The
heart of the special-purpose simulator is a data-driven
model of a specific system or set of similar systems. The
end user is provided with a method to easily modify
model parameters, design experiments, and run tests.
This can be accomplished by combining a data-entry
front end, a simulation engine, and an output browser.
The engine runs a parameterized model which accepts
user-specified data at execution time. This combination
of tools brings the power of simulation analysis into the
hands of the non-simulationist.

Simulators are most commonly developed under
circumstances where: 1) a single model development
effort can benefit multiple users; and 2) modeling
expertise can only be obtained from indirect sources
such as external consultants. In these cases, an
experienced modeler develops the model, frecing the
end user from learning software-specific modeling
skills.

2.1 Data-Entry Front End

The front-end is the means by which the user modifies
the run parameters without changing the underlying
model. This may take several forms, the most basic and
rarely used of which has the user manually edit a text
file. In another approach, the software prompts the user
for input from the keyboard as the model executes.
Other designs require the user to modify data in an
external spreadsheet or database program. No matter
which approach is used, the purpose of the front end is
to produce a data file which can be read by the
simulation model as it executes.

A more refined technique integrates a customized
front end program, a simulation engine, and an output
browser under a single shell, (Figure 1). Typically

created using a general-purpose programming language,
the shell may be menu-driven. Data-entry "windows"
and dialog boxes guide the user through the process of
specifying parameters, running the model, and viewing
the output. The shell may also provide built-in help
facilities and data "range-checking" (e.g. verifying that
all operation times are non-negative before executing).

e A

Menu-Driven

] Front End
Simulation Model

(Enter model parameters
and write data file)

Simulation Engine

(Run parameterized model
and read data file)|

[allenlesiant s,

Output Browser
|| p

(Format and view results)

Contro] returns to "shell” after each component finishes cxecuting)

Figure 1: Components of a Special Purpose Simulator

2.2 Simulation Model

The primary component of the simulator is the
underlying model. Since the end user is generally
prevented from modifying the model, this component
ultimately defines the maximum flexibility offered to
the end user. It must be generic enough to accept a
broad range of inputs and it must be maintained
periodically to insure that the model remains valid.

The simulation model can be generated and its
design frozen when the simulator is initially created, or
model code can be generated "on-the-fly* every time
that the model parameters are modified by the user. In
either case, the user input not only consists of operating
parameter values, but it can also contain data used to
alter logic embedded deeply within the model. For
¢xample, based on a user-specified value, the model can
select one of three different order-picking algorithms
that have been pre-coded into the model.

2.3 Simulation Engine

The simulation engine is usually an "off-the-shelf"
simulation language used to run the model and generate
the output file. There are several features to look for
when selecting the simulation engine.

Building a Simulator with GPSS/H

Most importantly, the language used for the engine
must be flexible enough to handle the demands that a
general model places on the software. This flexibility is
crucial in the areas of file input, file output, and control
logic within the model. Execution speed should also be
a primary concern. The faster, the better; time executing
a model is often down-time for the end user. If possible,
the simulation engine should be invisible to the user.
There are few reasons for the simulation engine to
interrupt the user while it is executing, any error
conditions should be directed to the user from the shell
program,

2.4 Output Browser

The output generated by the simulation can be custom
formatted by the model or by the simulator shell. The
function of the output browser is to display the data
generated by the model to the end-user. Assuming that
the end user has limited experience in simulation
modeling, standard output reports may be difficult to
decipher by anyone not intimately familiar with the
underlying model. Custom formatted output, which
includes summary statistics, should be used to present
simulation results.

Experiment design may be partially defined by the
model builder, but at least some flexibility should be
given to the end user. Access to random number
streams, number of replications, and warm-up period
are essential for sound statistical experimentation. If
these options are unavailable, the end user has no way
to compare systems using common random numbers, to
control run-lengths, or to throw out transient data on a
run-by-run basis.

Statistical analysis of the output can be performed
directly by the shell program or by a specialized
statistical software product. For simulators running
under Windows, SIMSTAT from MC? Analysis Systems
reads and analyzes standard output data generated by
several major simulation software products.

Animation is yet another element of the simulation
output. Animating a generalized model can sometimes
present obstacles. Accounting for variations in resource
numbers and capacities, flow and routing patterns, and
physical layout dimensions makes animating a generic
model more difficult than animating a specific model.
However, a basic animation helps confirm model
validity to the non-simulationist.

3 GPSS/H FEATURES

Wolverine Software Corporation's GPSS/H is an
excellent engine for use in a simulator. Among the most
flexible simulation languages, GPSS/H can be used to

359

model a wide range of applications including
transportation systems, communications networks,
manufacturing and material handling systems,
computer systems, and service-based operations.
GPSS/H runs on a number of platforms ranging from
personal computers to VAX/VMS machines, UNIX
workstations, and IBM mainframes.

GPSS/H Professional is a 32-bit, protected-mode
application which is capable of running large models at
exceptionally fast speeds on the 80386/486 platform.
GPSS/H Professional has no built-in model size
limitations. For very large models, it can access all of
the physical RAM in the machine. In addition, the same
version of GPSS/H can run as a 32-bit DOS application
under Windows 3.x or OS/2 2.0 with full access to
virtual memory capabilities. A customized shell
program can run seamiessly under any of these
environments. To suppress the default screen output and
conceal GPSS/H from the user while it is executing, a
capability is provided which enables GPSS/H to run in
"quiet mode."

3.1 GPSS/H File and Screen /O

The file and screen IO built into the GPSS/H language
provide the modeler and the end user with a variety of
ways to get data into the model and to write custom
output files. GPSS/H can read directly from the
keyboard or from text files, and it can write directly to
the screen or text files. The GETLIST statement and the
BGETLIST Block read integer, double precision
floating point, and character data. Values in the data
file are separated by blanks, and special actions may be
taken for error and end-of-file conditions.

Customized output is generated using the PUTPIC
statement and the BPUTPIC Block. These use a
"picture” type of format specification, which follows the
"what you see is what you get" convention. It is also
possible to read and write character strings using a
similar group of statements. This flexible family of
input and output capabilities provides the essential
interfacing necessary to create a special purpose
simulator.

3.2 Experiment Control

The results produced by a single run of a simulation
model provide only point estimates of random variables.
Experimental design is essential to accurately predict
the statistical behavior of the model outputs. GPSS/H
provides the necessary tools to build a complete
experimental framework into the model.

GPSS/H contains a complete run control /anguage.
Experiments can be automated within the model file

360 Smith, Brunner, and Crain

using DO loops, IF-THEN-ELSE structures, and other
branching constructs. Statistics collected by the model
may be selectively CLEARed, RESET or INITIALized
during execution or between subsequent runs. All of the
experimental specifications can be read into the model
from a data file just like the other model parameters.

3.3 Run-Time Version

A simulator is generally developed for a single
application, but it is frequently intended to be used by
many people. However, each user must have a licensed
copy of the simulation software in order to execute the
model. For a simulator used by dozens or even hundreds
of users, the cost of the simulation software may render
a project economically infeasible. Wolverine's new
product, Run-time GPSS/H, offers a solution.

The run-time version is identical to GPSS/H
Professional except that it can only run models which
have been previously compiled with the Professional
version. The other fundamental difference is the price.
The run-time version allows economical distribution of
GPSS/H based simulators.

The security provided by the run-time version is
another feature. Since it runs pre-compiled models, the
end user cannot change the model "source" code. The
user has access only to the data file; hence, confidential
models can be safely distributed.

SUMMARY

Historically, significant time and training were
necessary to perform a detailed simulation analysis. The
special-purpose simulator allows a non-simulationist to
use simulation without building models. A simulator
consists of four basic components running under a
single shell program: the data-entry front end, the
simulation model, the simulation engine, and the output
browser.

GPSS/H contains many features that are necessary
and convenient for use as a simulator engine. Fast
execution, operating system independence, and
extended file I/O are just a few. Additionally, a run-time
version is available which allows the model developer to
distribute compiled models at reasonable costs.

REFERENCES

Banks, J. 1991. Selecting Simulation Software. In
Proceedings of the 1991 Winter Simulation
Conference, ed. B.L. Nelson, W.D. Kelton, and G.M.
Clark, 15-20. Institute of Electrical and Electronics
Engineers, Phoenix, Arizona.

Banks, J, J.S. Carson II, and J.N. Sy. !989. Getting
Started With GPSS/H. Annandale, Virginia:
Wolverine Software Corporation.

Blaisdell, W. 1991. SIMSTAT for Windows 3.0 User's
Manual. Troy, New York: MC2 Analysis Systems

Brunner, D.T., and R.C. Crain. 1991. GPSS/H in the
1990s. In Proceedings of the 1991 Winter Simulation
Conference, ed. B.L. Nelson, W.D. Kelton, and GM.
Clark, 81-85. Institute of Electrical and Electronics
Engineers, Phoenix, Arizona.

Henriksen, J.O., and R.C. Crain. 1989. GPSS/H
Reference Manual, Third Edition. Annandale,
Virginia: Wolverine Software Corporation.

Schriber, T.J. 1991. An Introduction to Simulation
Using GPSS/H. New York: John Wiley & Sons.

Seppanen, M.S. 1990. Special Purpose Simulator
Development. In Proceedings of the 1990 Winter
Simulation Conference, ed. O. Balci, R.P. Sadowski,
and R.E. Nance, 67-71. Institute of Electrical and
Electronics Engineers, New Orleans, Louisiana

AUTHOR BIOGRAPHIES

DOUGLAS S. SMITH received a B.S. in Industrial
Engineering and Operations Research from Virginia
Tech in 1987, and an M.S. in Manufacturing Systems
from Georgia Institute of Technology in 1988. He joined
Wolverine as an Industrial Engineer in 1992 where his
responsibilities include sales and consulting. Mr. Smith
was formerly employed as a Manufacturing Engineer
with Hewlett Packard and as an independent Simulation
Consultant. He is a senior member of IIE.

DANIEL T. BRUNNER received a B.S. in Electrical
Engineering from Purdue University in 1980, and an
M.B.A. from The University of Michigan in 1986. He
has been with Wolverine since 1986, where his
responsibilities include product marketing, product
development support, and simulation consulting. Mr.
Brunner served as Publicity Chair for the 1988 Winter
Simulation Conference and Business Chair for the 1992
conference, and is General Chair for the 1996
conference.

ROBERT C. CRAIN joined Wolverine Software
Corporation in 1981. He received a B.S. in Political
Science from Arizona State University in 1971, and an
M.A. in Political Science from The Ohio State
University in 1975. Among his many Wolverine
responsibilities is that of lead software developer for all
PC and workstation implementations of GPSS/H. Mr.
Crain is a Member of IEEE/CS, SIGSIM, and ACM. He
served as Business Chair of the 1986 Winter Simulation
Conference and is General Chair of the 1992 Winter
Simulation Conference.

