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ABSTRACT

In h&ty, 1991, Jade Simulations began work to develop

an implementation of the U.S. Army’s ModSim
simulation language on Jade’s TimeWarp. Incremental
releases of that implementation were subsequently
delivered to the U.S. Army, the most recent in June,
1992. This implementation represents the U.S. Army’s

second attempt to port ModSim to a Time Wzq system.
This implementation is the first involving Jade and
Jade’s TimeWarp.

In conjunction with Jade, the U.S. Army has begun
porting a version of their Eagle combat simulation to the
new implementation with encouraging preliminary
results. Key modules of that simulation, collectively
referred to as Core Eagle, have been ported and executed
with typical speedups between 6 and 10 times on 32
processors, compared with identical, sequential
executions of the same simulation.

This paper summarizes the highlights of the
reimplementation of ModSim and the Core Eagle
performance study.

1 BACKGROUND

Jade’s TimeWarp is a simulation executive for
synchronizing distributed simulations. It is a
commercial implementation of the Time Warp
mechanism invented by Jefferson and Sowizral (Jefferson
1985) and is part of the Jade Simulation Environment
(Baezner, Lomow, and Unger 1991), a C++-based
development and run-time environment for creating and
executing sequential and distributed simulations. The
Jade Simulation Environment supports sequential and
distributed simulations on networks of Sun/3 and Sun/4
workstations, and on the transputer-based Meiko
Computing Surface. It is currently being ported to the
HP-9000 700 series, and will be ported to the IBM RS-
6000 series in the near future.

ModSim is a Modula-2-based object-oriented
simulation language originally developed by CACI
Products under contract to the U.S. Army (west 1985,
West and Mullamey 1988). ModSim refers to the U.S.
Army’s version of ModSim, and not CACI’S sequential
simulation product, MODSIM II, although the two share
a common ancestry and a largely similar syntax. From
its Modula-2 heritage, ModSim inherits strong typing,
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modular decomposition, and much of its syntax. To this
were added support for object-oriented programming and
process-oriented simulation. The ModSim Environment
includes a ModSim-to-C translator and a compilation
manager that automates the compilation of projects.

The original development of ModSim included a
prototype implementation of ModSim on the U.S.
Army’s Time Warp Operating System (TWOS)

developed at JPL (Jefferson et al. 1987), The original
design specified that simulation objects would inherit a
process object and thereby become TWOS processes,
Substantial difficulties in the implementation of that
design resulted in an extreme simplification: each
ModSim object was mapped directly to a TWOS process.
To minimize the potentially significant message-passing
overheads resulting from this simplification, applications
needed to be developed such that only the simulation
objects would be implemented as ModSim objects,
whereas data aggregates would be implemented using
records with associated procedures. Such an approach is
consistent with other TWOS applications, written
directly in C, that achieved significant speedup (Hontalas
et al. 1989, Presley et al. 1989, Wieland et al. 1989).

The first ModSim application developers initiated
their design based on the original distinction between
objects and processes. Early in their design process, the
implementation of ModSirn was changed such that every
object was a TWOS process. Unfortunately, the design
of the application was not modified to reflect these
changes. As a result, the implementation of that
simulation was never able to run on TWOS (Rich and
Michelsen 1991).

In 1990, Jade bid on and won the ModSim Support
Contract to reimplement ModSim for use with Time
Warp. The U.S. Army subsequently selected Jade’s
TimeWarp for the reimplementation of ModSim for
several reasons:

1. Jade’s TimeW~ is a commercial product that
supports numerous users, projects, and
simulation languages. This ensures a wide

range of regular testing and evaluation that
promotes a stable implementation. In addition,
the U.S. Army automatically benefits from
enhancements to Jade’s TimeWarp funded by
other projects.
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2. Jade’s TimeWarp includes direct support for
ModSim’s process view of simulation. This
and other similarities between Jade’s TimeWarp
and ModSim reduced the time required to
reimplement ModSim.

3. Jade’s familiarity with Jade’s TimeWarp
implementation significantly reduced the
learning curve involved in integrating ModSim
with Time Warp, and eliminated the inevitable
difficulties of integrating ModSim with a Time
Warp implementation outside of Jade’s control.

The simulation used to evaluate both the original
implementation of ModSim on TWOS and the

reimplementation of ModSim on Jade’s TimeWarp is a
version of the U.S. Army’s Eagle combat simulation.

Eagle was chosen by the U.S. Army because it is
believed to be representative of the type of simulations
for which ModSim will be used.

2 IMPLEMENTING MODSIM ON JADE’S
TIMEWARP

The key lesson learned from the implementation of
ModSim on TWOS was the need to create an appropriate
fit between the paradigm of the language and the
paradigm of the Time Warp implementation. Like
TWOS, Jade’s TimeWarp distinguishes between
simulation objects, hereafter referred to as en(ities, and
data aggregates, hereafter referred to as objecfs. Entities
are represented by distributed processes, and objects are
dynamically allocated data aggregates owned by whatever
entity creates them. In addition, it is possible to create
objects of global scope during the initialization of a
simulation. These objects are subsequently accessible to
all entities for read-only use. Global data was not
supported in the implementation of ModSim on TWOS.

Given the current state of the art in distributed
simulation, the entity/object paradigm is believed to be
crucial for creating efficient distributed simulations.
Specifically, it is important for programmers to identify
which elements of a simulation should be represented by
distributed processes and which elements should be
represented by objects. It should be noted that the
entity/object paradigm is not solely a distributed
simulation paradigm. The paradigm originates with the
sequential simulation language, Simula (Dahl,

Myhrhaug, and Nygaard 1972), wherein simulation

objects, called processes, are a special type of object

capable of simulating delays and scheduling one another

in simulation time.

Jade’s review of the original implementation of

ModSim on TWOS resulted in the recommendation that

the entity/object paradigm be reintroduced into the

language based on the conclusion that the paradigm

provides the most direct mapping between the language

and the Time Warp implementation (Baezner 1991).

Following is a brief summary of the resulting paradigm.
For a detailed description of the entire ModSim language,
see (Jade 1992).

With the reintroduction of the entity/object
paradigm, ModSim now supports both objects and
entities. Objects are instances of object types and
entities are instances of entity types. The two constructs
are identical in syntax, except for the keywords
OBJECT and ENTITY in the type declarations. For
example,

EngineObj = OBJECT
FuelCapacity : REAL;
. . .
METHOD StartEngineo;
METHOD Refuel (IN amount : REAL);

END OBJECT;

AircraftEnt = ENTITY
Engines : ARRAY [1 ..2] OF EngineObj;
. ..
METHOD TakeOffo;
METHOD Lando;

END ENTITY;

As shown in the above example, Engine O bj is an
object type and AircraftEnt is an entity type. Both
forms of type declaration support common object-
onented programming concepts, including single and
multiple inheritance, dynamic binding, polymorphism,
and private vs. public members. Currently, object types
can only be derived from object types and entity types
can only be derived from entity types,

Whenever a simulation creates an entity, it thereby
creates an independently executing Time Warp process.
Each entity can directly access its own fields and
methods, as well as the fields and methods of any objects
the entity creates. Since all such fields and methods are
local to the entity, accesses to those fields and methods
are implemented as C structure references and C function
calls, respectively. In contrast, an entity interacts with
other entities using TELL and WAIT FOR calls. For
example,

aircraft: AircraftEnC

. . .

CREATE(aircraft);

TELL aircraft TO TakeOffo IN 10.0;

TELL aircraft TO Lando IN 30,0;

In the above example, aircraft is declared to be a
reference (i.e., a pointer) to an aircraft entity. The call to
CREATE creates an aircraft entity and stores a reference
to that entity in aircraft. The calls to TELL schedule
the entity’s TakeOff and Land methods to begin
executing in 10.0 and 30.0 simulation time units,
respectively. Unlike ordinary procedure calls, a TELL
call does not wait for the called method to complete.
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Alternatively, entities can wait for each other’s
methods to complete using WAIT FOR calls. For

example,

WAIT FOR aircraft TO Lando IN 30.0;
. . .

will wait for the scheduled method to return before
executing the next statement following the
WAIT FOR call. In the case of WAIT FOR, the
caller’s simulation time is synchronized with that of the
called method. For example, if we assume that Land
executes in 20.0 simulation time units, the simulation
time of the caller will have advanced by 50.0 simulation
time units when the called method returns. This includes
the time spent waiting for the called method to begin
(30.0) plus the time spent waiting for the called method
to execute and return (20.0).

Conceptually, each method invoked via TELL or
WAIT FOR executes concurrently with all similarly
invoked methods within the same entity. Each such
method is referred to as an activity. In reality, the
underlying entity implementation automatically
interleaves the execution of an entity’s activities in order
of increasing simulation time. This form of concumency
is referred to as modeling concurrency and is distinct
from the true concurrency achieved by Time Warp by
simultaneously executing entities on different processom

The implementation of a typical TELL call requires

a single Time Warp message from the calling entity to
the entity specified in the TELL call. A typical
WAIT FOR call requires an additional message back to
the calling entity so that the called method can return any
OUT or INOUT parameters to the caller as well as
signal the caller to proceed. In cases where the total size
of all parameters in either direction exceeds the
maximum size of a Time Warp message, the underlying
implementation automatically separates the parameters
into multiple messages, and subsequently recombines
them in the receiving entity.

Due to strong similarities between ModSim and
Jade’s Sire++ simulation library, the former is
implemented in terms of the latter. Sire++ is a library
of C++ classes and functions that provides support for
entity creation, scheduling and receiving messages,
multi-part messages, random number generation,

statistics collection, queueing, execution tracing, console
and file input and output, and error handling.
Implementations of Sire++ exist for both sequential and
distributed execution. The use of Sire++ to implement
ModSim eliminated the need to reimplement all of the
above facilities dircctt y on Jade’s TimeWarp specifically
for ModSim. In addition, since Sire++ provides the
same interface for all run-time environments (sequential
and distributed, all architectures and operating systems),
the implementation of ModSim is easily ported to any
run-time environment supported by Jade.

3 CORE EAGLE

Because of differences in the paradigms of the two
versions of ModSim, the original implementation of
Eagle for use with ModSim on TWOS cannot be
executed as is on Jade’s TimeWarp. However, core
modules from that implementation have been converted
for use with the new paradigm. Collectively, these
modules are referred to as Core Eagle.

Core Eagle is a time-stepped, ground combat
simulation consisting of opposing red and blue forces
fighting for control of a given terrain. Each side consists
of one or more military units that scan and move over
the terrain and engage enemy units.

Key attributes of military units include strength,
speed, combat effectiveness, retreat threshold, and
sensing range. Strength is the current strength of a
military unit expressed in terms of tank equivalents.
Speed is the maximum speed of a milirary unit. Combat
effectiveness determines how quickly the strength of a
military unit decreases in combat. When a military
unit’s strength falls below its retreat threshold, the
military unit adopts a retreating posture. When a

military unit’s strength falls to zero, the military unit is

considered destroyed and is removed from the simulation.

The sensing range defines a circular area surrounding a
military unit within which it can detect enemy units.

The terrain is divided into sectors, each of which is
represented by an entity. Each military unit is
represented by an object contained within whatever sector
the military unit is currently located. As military units
change their location, or move from one sector to
another, sector entities inform the appropriate
neighboring sectors, passing along military units and
sensing information as required. Sector entities are also
responsible for updating military unit strengths and
postures as military units encounter enemy units in
combat.

Military units can assume one of three postures:
seeking, pursuing, or retreating. A military unit in a
seeking posture moves over the terrain at random,
scanning for enemy units to engage, When an enemy
unit is detected, the seeking unit assumes a pursuing
posture. A military unit in a pursuing posture engages
all enemy units within sensing range while
simultaneously attempting to overtake the nearest such
unit. If all enemy units move out of a pursuing unit’s
sensing range, the pursuing unit returns to a seeking
posture. A military unit automatically assumes a
retreating posture when its strength falls below its retreat
threshold. A military unit in a retreating posture
attempts to avoid enemy units on the terrain. Once a
military unit assumes a retreating posture, it never again
assumes any other posture.

Military units typically move over the terrain along
a calculated route of mobility corridors connecting a
given origin with a given destination. A mobility
corridor is any area of the terrain through which
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movement is possible. Typically, mobility corridors
form a fully-connected graph on the terrain. To represent
different types of terrain, each mobility corridor has an
associated mobility factor. The mobility factor is the
percentage of a military unit’s maximum speed at which
the military unit is able to move through the
corresponding mobility corridor.

Routes are calculated by the originating sector based
on global mobility corridor data. The global data means
that there is no need for sectors to communicate with one
another to calculate a route, even if the route originates
in one sector and terminates in another. However, this
also means that the entire route is calculated in the
originating sector, with no provision for distributing the
calculation among multiple entities. Currently, the
route calculation modules simply calculate a route, rather

than the shortest route or the fastest route.

4 DISTRIBUTED DESIGN ISSUES

l%ree key design issues have been addressed by the Core

Eagle implementation to maximize performance in the

distributed environmenfi maximize the flexibility of

sectors, minimize entity interactions, and minimize

entity state sizes.

First, the number and size of sectors can be

arbitrary. There can be as little as one sector that

manages the entire termin, or as many sectors as desired,

each of which manages only a portion of the terrain.

With fewer sectors, there is less potential for parallelism

since there are fewer entities, but there is also less need

for interaction among sectors, since the sectors are large,

with fewer sector boundaries across which information

must flow. The optimal number of sectors to use
depends on other input parameters, such as the number of
military units, their speed, their sensing range, and so
on. However, as long as these parameters do not vary
significantly from one run to the next, a single
configuration of sectors was found to satisfy most runs.

Second, entity interactions were minimized to allow
sectors to execute as independently as possible. Most
notably, sectors use a start/stop protocol with
neighboring sectors to moderate the flow of sensing
information about enemy units. Once a sector has been
told to start sending sensing information to a
neighboring sector, it does so regularly until told to
stop. In this way, a sector need not explicitly ask its
neighbors for sensing information each and every
timestep. The sensing information from neighboring
sectors is required to handle cases where portions of the
sensing range of a military unit coincide with portions of
the terrain in neighboring sectors.

Third, entity state sizes were minimized to reduce
the run-time cost of the state saving and rollback
operations used by Jade’s TimeWarp to synchronize a
distributed simulation. Minimizing state sizes was
accomplished primarily by maintaining static data in
global memory. In particular, this includes the mobility

corridors along which military units travel while
crossing the terrain. In this way, a given military unit’s
route is reduced to a simple linked list of pointers to
globally stored mobility corridors.

5 PERFORMANCE STUDY

All experiments were executed in parallel on Jade’s
TimeWarp on 12,24, 32,40, and 48 Computing Surface
nodes with 8 megabytes of memory per node for the 12
node runs and 4 megabytes of memory per node for all
other runs. Approximately 2.5 megabytes of memory
per node is required by the Computing Surface operating
system, the executable object code, and globally allocated
data, leaving as little as 1.5 megabytes for entities, state
saving, and message passing.

Each of the speedup graphs that follows is presented
in terms of actual speedup. Actual speedup is defined as
the total time to execute all entities sequentially divided
by the total time to execute all entities in parallel. The
time taken to execute all entities sequentially is
calculated from runs with 36 sectors. For the input
configurations used in this study, 36 sectors typically
produced the lowest sequential execution times. The
exceptions to this are the results for runs with a military
unit density greater than 0.05 units per square km. The
sequential time for these runs benefited from additional
sectors and was calculated from runs using 100 sectors.

In addition to the actual speedup achieved by Jade’s
TimeWarp, corresponding graphs of the inherent

parallelism of the model are given for 12, 24, 32, 40,
and 48 processors. Although the speedup for any
problem executing in parallel is limited by the number
of processors on which it is run, real problems are
further limited by causal relationships between entities
and communication delays. Inherent parallelism is
calculated by a performance analysis tool based on data
collected by Jade’s TimeWarp during the execution of the
actual simulation. The tool simulates the execution of
the same simulation using global knowledge provided by
the data to ensure that each entity executes its messages
in the exact order that it would in a sequential run, but
on the same number of processors as the actual run.
With its global knowledge, the tool eliminates the
overhead imposed by the distributed synchronization
mechanism, The resulting inherent parallelism is an
upper bound on speedup for a given application on a
given number of processors.

All performance results are compared to the
following basic configuration of the Core Eagle model.
The parameters for this configuration are believed to
represent a typical scenario.

Units per square km 0.05
Sectors per dimension 10
Sensing range 3 km
Military unit speed 3 km/h
Timestep 6 minutes
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All configurations of Core Eagle were run for 50
simulated hours. The number of sectors per dimension
indicates the number of sectors from east to west and
from north to south (e.g., 10 sectors per dimension
would result in a simulation with 100 sectors). For the
results reported here, the terrain was 100 km by 100 km
and consisted of unifomdy distributed mobility corridors,
with each mobility corridor having a mobility factor of
one. A uniform terrain was used to avoid the effects of
bottlenecks possible with a non-uniform distribution of
mobility corridors and mobility factors. Additional runs

using a non-uniform terrain supplied by the U.S. Army
typically reduced actual speedup by 5% to 15%,
depending on the scenario.

Each of the parameters in the basic scenario was
varied individually so that its effect could be analyzed
separately. The list of values chosen for these
parameters is given below.

Units per square km 0.02, 0.05, 0.1, 0.2
Sectors per dimension 6,8, 10, 12
Sensing range 3, 5, 10 km
Military unit speed 3,5, 10 km/h
Timestep 3, 6, 12, 24 minutes

For the sake of brevity, only the graphs for the basic
scenario, the worst scenario, and the best scenario are
shown. A more detailed presentation can be found in
(Robs and Baezner 1992).
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Figure 1 Actual sprdup and inherent parallelism
for the basic scenario.

Figure 1 shows the actual speedup and inherent
parallelism for the basic scenario. The results for the
basic scenario are typical of those achieved for most of
the scenarios tested.
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Figure 2 Actual speedup and inherent parallelism
with sensing range = 10 km.

Figure 2 shows the actual speedup and inherent

parallelism when sensing range is increased from 3 km
to 10 km. This scenario resulted in the lowest speedup
due to an increase in the number of sensing messages
between neighboring sectors.
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Figure 3 Actual speedup and inherent parallelism
with units per square km = 0.2.

Figure 3 shows the actual speedup and inherent

parallelism when the number of military units is
increased from 0.05 units per square km to 0.2 units per

square km. This scenario resulted in the highest speedup
due to the increase in computation from additional
military units.
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As seen in these graphs, Jade’s TimeWarp achieves
between 70% and 80% of the inherent parallelism on 12
processors. The remaining 20% to 30% is the overhead
for distributed synchronization. Due to memory
consuaints on 24, 32, 40, and 48 processors, the
percentage of inherent parallelism achieved drops as low

as 50% as the overhead for executing within limited
memory grows. Nevertheless, this still allows for a near
doubling of speedup behveen 12 and 48 processors. Less
obvious from the graphs is that the inherent parallelism
is typically only 30% to 60?Z0 of the number of
processors. For example, on 48 processors, the basic

scenario has an inherent limit of 14 times speedup, or
30%. Given the intended long-term use of Eagle, further
effort toward improving the model’s suitability for
distributed execution is warranted.

6 ADDITIONAL RESULTS

In evaluating the performance of Core Eagle, it was
found that attrition calculations were not as substantial
in Core Eagle as in the original version of Eagle on
which it is based. Furthermore, it was found that route

calculations typically created momentary bottlenecks in
the sectors engaged in calculating them, For example,
route calculations of one second or more were observed
in some sectors, while the average computation between

timesteps was about 20 milliseconds. It is estimated
that calculation of the shortest or fastest routes will
require up to 30 seconds for a single route.

As a result of these findings, additional experiments
were conducted in which the amount of computation
between timesteps was artificially increased by an
additional 10 milliseconds, and in which military units
skipped route calculations and moved in straight lines.
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Figure 4 Inherent pamllelism with added
computation and no route calculations.

The increased computation is intended to reflect more
substantial attrition calculations. The skipped route
calculations are intended to reflect an implementation
were the routes connecting any two mobility corridors
can be either precomputed or computed on rhe jl’y as
military units move from sector to sector. The extent to
which this is possible is still being investigated.

Figure 4 shows the inherent parallelism up to 200

simulated processors when these assumptions are made
for the basic scenario scaled up to 400 sectors. The
maximum inherent parallelism is 65 when each of the
400 sectors is mapped to its own processor. Since the
computation in this scenario is relatively uniform across
all sectors, the peaks in the inherent parallelism curve
occur when the number of sectors is an even multiple of
the number of processors, Actual speedup in this case
was 14.0 on the 48 processors actually available.

7 SUMMARY

The U.S. Army’s ModSim simulation language has been
successfully implemented on Jade’s TimeWarp. The
implementation includes support for all of ModSim’s

object-oriented programming constructs as well as a

Simula-like, process-oriented modeling paradigm for

sequential and distributed simulation,

Core modules of the U.S. Army’s Eagle model have

been successfully ported to the new implementation,
Tests of Core Eagle show typical speedups of 6 to 10
times on 32 processors, compared to identical sequential
executions of the same simulation. This represents as
much as 70% to 80% of the inherent parallelism of the
model as currently implemented. Additional
assumptions concerning future changes to the model’s
implementation suggest that inherent parallelism may be
as high as 50 on 200 processors or 65 on 400
processors.

Based on these results, the U.S. Army has extended
the ModSim Support Contract until July, 1993. The
additional year is expected to focus on further
development of Core Eagle for use as a production
quality combat analysis tool. This requires replacing
existing Core Eagle modules with ones that implement
more realistic attrition calculations, route calculations,
and decision logic. Additional work to reduce route

calculation bottlenecks are atso required.
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