
Proceedings of the 1992 Winter Simulation Conference

ed. J. J. Swain, D. Goldsman, R. C. Crain, and J. R. Wilson

REQUIREMENTS FOR A REPOSITORY-BASED SIMULATION ENVIRONMENT

Tuncer I. Oren, Douglas G. King, Louis G. Birta

Computer Science Department
University of Ottawa

Ottaw% Ontario KIN 6N5, Canada

ABSTRACT

Simulation tools and environments can provide sev-
eral types of computer assistance. It is envisaged that
this functionality is going to increase. Even though this
increase of functionality is highly desirable, it is antici-
pated that there will bean interface problem between the
simulation tools and environments, similar to the inter-
face problems in computer-aided software engineering
(CASE) tools and environments. The problem is diag-
nosed and a solution is proposed.

1 INTRODUCTION

Simulation environments already provide several
types of assistance to the user in modelling, model-base
management, specification of the simulation experi-
ments, program generation based on high level specifica-

tions, execution and monitoring of simulation runs,
other types of behavior generation, such as qualitative
simulation, optimization, statistical and rule-based infer-
encing, as well as symbolic processing of models for
model analysis and transformation Oren 1992a, b).

Simulation which contributed to other fields also
benefits from the synergistic effects of their develop-
ments. Accordingly, knowledge-based simulation envi-
ronments and other “intelligent” or “cognizant” simula-
tion environments came into existence. In the first
knowledge-based simulation environments the emphasis
was on modelling and experimentation. The following
generation is comprehensive simulation environments

where more model-based functionalities are (or will be)
provided. Integrated simulation environments provide (or
will provide) functionalities germane to several fields of
study such as computer-aided design(CAD), computer-
aided software engineering (CASE), expert systems,
computer-aided system theory (CAST), computer-based
systems engineering (CB SE), qualitative simulation, and
symbolic algebra.

Integrated simulation environments, though very de-
sirable, will have two fundamental limitations: (1) They
will be closed systems and therefore installation of new
tools and/or environments will be difficult, if not impos-

Martin Hitz

Institute for Statistics and Informatics
University of Vienna

Vienna, Austria

sible. (2) The complexity of the interface among several
environments will increase with the number of existing
tools and environments.

The relief of the user from the complexity issues
raised by the use of application specific tools by individ-
ual users in an integrative simulation environment is the
goal of this work. Systems engineering tools available
today are dominated by those designed and built for the
networked UNIX-based workstation market. As such,
any proposed solution must be applicable to such an en-
vironment.

2 REPOSITORY APPROACH

A repository is a database system that supports the
integration of CASE tools (Barton 1991, ECMA 1990,
Thomas 1989). Already several repositories exist
(Soufflet 1990, Blum and Kastner 1990). The integration
of CASE and other tools can occur at two main levels of
abstraction, In either case, the means by which the inte-
gration is realized should be hidden from the user. The

tool interactions should be seamless and transparent.
The tools could be integrated at the presentation level.

This means that they would be able to use the same pre-

sentation management system. This is easily accom-
plished if the tools are implemented using the same win-
dowing system, e.g., X Windows, in such a way that in-
terfacing with other tools is not prohibited.

The tools must be integrated at the application level.

This means that they are able to share data, exchange
messages, and otherwise cooperate to provide an inte-
grated system. Ideally, the impact on existing source
code should be minimal.

3 PROPOSED APPROACH

The proposed (and prototype) system is based on the
Platform Reference Model as described in the IEEE
P1 175 report (IEEE 1989, Poston 1989). The underlying
architectural basis is as shown in Figure 1, with a plat-
form consisting of hardware, an operating system, and
various platform services (Xwindows, repository,... )

747

http://crossmark.crossref.org/dialog/?doi=10.1145%2F167293.167697&domain=pdf&date_stamp=1992-12-01


748 Oren et al.

TOOL TO PLATFORM INTERFACE

Interface
Manager

STANDARD
A@ication-
Oriented

PLATFORM
Objeets
of a View

Simulation Manager
SERVICES Repository

Database
Manager

OPERATING SYSTEM

HARDWARE

Computer Aided Software Engineering

Tools for:
Processing Simulation Results

Knowledge Bases and Databases

Figure 1: Platform Architecture for Repository-Based Environment



Requirements for Repository-Based Simulation Environment 749

(Hitz et al. 1992, Oren et al. 1991). The tools which are
to be integrated are considered as forming a layer which
communicates with the platform using well-documented
procedures, and communicate with each other via the
platform.

This architecture implies that the Platform should
provide the repository service. In our system the reposi-
tory forms part of the high-level services provided by the
platform.

The main advantage of our proposed architecture for a
repository-based simulation environment, is its ability to
provide multiple views for each managed object in the
repository. Each tool which is installed in the repository
defines its own representation of the objects which it
will store/share by depositiotdextraction into/from the
repository. Each query to the repository is interpreted
based on the identity of the requester tool. The request is
processed with the identities of the receivers controlling
the transformation from internal storage format into the
toll-specific form.

In this way, tools and environments gain a significant
advantage form automatic, transparent, seamless, view
translation. The complexity of integration is greatly re-
duced.

The Platform Reference Model can be interpreted so
that the layer of tools can be distributed throughout a
network, and the underlying platform can also be dis-
tributed. This means that two or more users working at
separate locations can work in a “you cut, I’ll paste” rela-
tionship in which one user produces output and stores it
in the repository, while another user takes the input from
the repository and uses it, The storage associated with
the repository could beat a third location.

The distribution mechanisms are provided in the
Prototype so that the addresses of all participants are
Internet Domain TCP/IP addresses. ThN allows com-
plete transparency of the distribution.

This elegant distribution mechanism is provided us-

ing an underlying communication mechanism based
upon the Client/Server model, The communication
mechanism is provided such that each tool using the
repository is considered a client with a unique identity.
The client participates in a message passing protocol

with one or more servers. Each of the servers can main-
tain storage, and each of the servers could be physically
resident on separate machines. The client can start sev-
eral overlapping sessions with various servers. In effect,
the tool has connected to severat repositones at once.

Each repository maintains a knowledge base with in-
formation about each tool which has been installed.
Tools can be installed to each repository independent of

the other repositories. Each tool is identified by a unique
Tool ID which is used by the repository management

system to determine the individual tool’s representation
of the objects it uses. Each access to the repository
(deposit, extract, or query) is interpreted based on the
identity of the requester.

Every effort has been made to allow easy installation
of tools into the repository. The impact on source code
is minimal. There is a requirement for changes to the

source code which correspond to opening a session with
a particular repository, the accesses themselves given by
a single procedure calls, and the ending of the session
with the repository. Typicat source code changes are de-
pendent on the number of objects to be managed using
the repository. Accesses are explicit and are not trans-
parent to the tool builder.

The definition of each tool’s representation of objects
is accomplished using schemas for the individual tool.
The mappings between schemas (for data sharing of
otherwise incompatible types) is provided using a set of
view translators. The view translators are created during
installation based on a specification provided by the in-
staller (with on-line human-meditation). The view trans-
lators are used by the view manager together with the
knowledge base of data schemas. The identity of the

tools is used to trigger transformations between the in-
ternal storage format and the tool-specific forms. This is
a very nice application for an embedded expert system.

The internally stored format is transparent to the user.
The prototype uses the “first installed” form for each
conceptual data type as its definition of internal format.
All subsequent definitions require generation of view
translators between the new forms and the internal for-
mat. This keeps the complexity level low. Future en-
hancements may provide buffering of data in a cache be-
fore translation to internal storage, version management,
keeping of statistics on how many accesses are made us-
ing each schema, and performance of restructuring opti-
mization of the internal storage format.

5 CONCLUSION

The main advantage of the repository management
system described herein is its ability to provide multiple
views for each managed object in the repository. This
allows automatic, transparent, seamless, view translation
which can greatly aid in the production of integrative en-
vironments.

The complexity of integration of complex tools is
greatly reduced, encouraging reuse of existing tools.
Fine granularity of tool functionality is encouraged,
thereby enhancing reusability of future tools by not en-
couraging the building of huge, monolithic, closed envi-
ronments.

The next generation of simulation environments
should be built using an integrative approach. This can
be accomplished by using a repository integration mech-

anism with multiple views for each data object.



750 Oren et al.

ACKNOWLEDGMENT

The work reported in this article has been carried out
as part of a broad project funded by Bell Canada. The au-
thors wish to express their appreciation both for this fi-
nancial support and the encouragement and cooperation
of Mr. F. Coallier and Mr. O. Tamr of Bell Canada. The
support of the Austrian Research Council (Fends zur
Forderung der wissenschaftlichen Forschung) under con-
tract number J0521 -PHY made the contributions of Dr.
Martin Hitz possible.

REFERENCES

Barton, R. 1991. Linking CASE tools with a repository.
CASE Trends, 3:2, 14-15.

Blum, O. and A. Kastner. 1990. The ATMOSPHERE
architecture. PCTE Newsletter, 3 (Feb.), 5-8.

ECMA. 1990. A reference model for frameworks on
computer-assisted software engineering environments.
ECMA TR/55. European Computer Manufacturers
Association, Genewa, Switzerland.

Hitz, M., D.G. IGng, and T.I. Oren. 1992. A prototype
of a UNIX-based repository management system.
Technical Report TR-92-21, Dept. of Computer
Science, University of Ottawa, Ottawa, Ontario,
Canada.

IEEE. 1989. A standard reference model for computing
system tool interconnections. IEEE P1 175 Draft 4.4.

Oren, T.I. 1992a. Advances in knowledge-based simula-
tion systems. In Proceedings of the Symposium on

Advances in Simulation ‘92., ed. A.R. Kaylan, M.
Draman, and T.I. Oren. July 6-7, 1992, Istanbul,
Turkey. Bo~azigi University, Department of Industrial
Engineering, Istanbul, Turkey.

Oren, T.1, 1992b. Simulation environments: Challenges
for advancement. In Proceedings of the 2nd

International Conference on System Simulation and

Scientific Computing, Oct. 20-23, 1992, Beijing,
China.

Oren, T. I., M. Hitz, D.G. King, L.G. Birta, and O.
Abou-Rabia. 1991. A repository based simulation
environment: Rationale and a prototype architecture.
Technical Report TR-91 -17, Dept. of Computer
Science, University of Ottawa, Ottawa, Ontario,
Canada.

Poston, R.M. 1989. Proposed standard eases tool inter-
connection. IEEE Software, 6:11, 69-70.

Soufflet, D. (1990). Emeraude V 12, PCTE Newsletter, 3
(Feb.), 4.

Thomas, I. 1989. PCTE interfaces: Supporting tools in
software engineering environments. IEEE Software,

6:11, 15-23.


