
Rounding Errors in Certain Algorithms
Involving IVlarkov Chains

WINFRIED K. GRASSMANN

University of Saskatchewan

A number of algorithms involving Markov chains contain no subtractions. This property makes

the analysis of rounding errors particularly simple. To show this, some principles for analyzing

the propagation and generation of rounding errors in algorithms contammg no subtraction are

discussed first. These principles are then applied in the context of a simple recursive algorithm

involving the transient solution of discrete-time Markov chains, Jensen’s algorithm, and state

reduction. Jensen’s algorithm, also known as randomization or uniformization, is an algorithm

for finding transient solutions of continuous-time Markov chains. State reduction 1s a method for

finding equilibrium probabilities for discrete-time or continuous-time Markov chains

1. INTRODUCTION

There are a number of algorithms arising in Markov chain analysis that

contain no subtractions. These algorithms tend to be resistant against round-

ing errors because they avoid subtractive cancellation. They also simplify the

analysis of the generation and propagation of rounding errors considerably,

as is shown in this paper. Specifically, Section 1 presents a methodology for

analyzing rounding errors in algorithms containing no subtractions. Section 2

then applies this methodology to analyze the rounding errors arising when

calculating transient probabilities in discrete-time Markov chains. The theory

of discrete-time Markov chains is essential for the implementation of Jensen’s

method, also known as randomization, which is discussed in Section 3.

Section 4 then presents an error analysis of the state reduction method, a

method that Finds the equilibrium probabilities of discrete-time and continu-

ous-time Markov chains.

We hope that our effort is also of interest to researchers outside the area of

stochastic processes. We feel that by restricting ourselves to algorithms

containing no subtractions we gain a new perspective that may help in the

analysis of rounding errors, in general. In particular, we complement the

traditional analysis of error generation and propagation by what we call
long-term analysis. Specifically, we identify a number of cases in which the

Author’s address: Department of Computational Science, University of Saskatchewan, Saska-

toon, Canada S7N OWO.

Permission to copy without fee all or part of this material m granted provided that the copies are

not made or distributed for direct commercial advantage, the ACM copyright notice and the title

of the publication and its date appear, and notice is given that copying is by permission of the

Association for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or

specific permission.

0 1993 ACM 0098-3500 /93/’ 1200-0496 $3.50

ACM TransactIons on Mathematical Software, Vol. 19, No, 4, December 1993, Pages 496-508

http://crossmark.crossref.org/dialog/?doi=10.1145%2F168173.168416&domain=pdf&date_stamp=1993-12-01

Bounding Errors Involving Markov Chains . 497

effect of earlier errors decreases with the number of iterations, reaching zero

in the limit.

2. THE COMPUTATIONAL MODEL

This section lays out the basic techniques to be used later. Many of the

techniques are, of course, known, but since we use results from many

different sources with often widely different philosophies, it becomes unavoid-

able to state our basic assumptions explicitly. First, we assume that we have

two different algebras, namely, the infinite precision algebra and the com-

puter algebra. Both algebras are algebras over %, the set of nonnegative

reals. The infinite precision algebra, which we refer to as the ideal algebra,

contains the operations +, x, and :, whereas the corresponding operations

of the computer algebra are denoted by $, ~, and $. The set {+, X , + } is

denoted by @, and ~he set of the corresponding computer operations is

similarly denoted by cD.

If o e @ is an ideal operation and : is the corresponding computer

operation, we require that the following relation holds: There is a value of u

such that

=<x:y<(xoy)(l+ u).
l+U

(1)

The formulation that we use is thus somewhat like the rounding-error

analysis introduced by Wilkinson [1963], complemented with some ideas of

Kulisch and Miranker [1991]. Moreover, we make use of an improvement

suggested in De Boor and Pinkus [1977] and in Higham [1990], and we

replace the value 1 – u used by Wilkinson [1963] by 1/(1 + u). In this

approach, u must be set slightly higher than in Wilkinson’s approach.

Specifically, if UC is Wilkinson’s unit error and if u is the error underlying

(l), then

u:
u=uc+—

l–uc”

The difference between u and UC is so small that it is irrelevant for all

practical purposes. For simplicity, instead of (1) we write

x:y=(x”y)(l+u)il. (2)

As is well known, computer algebra is no longer associative. In order to

avoid parentheses, we assume that the normal priority rules of algorithmic

languages, such as Pascal, are followed. For instance, x $ y $ z is to be

understood as (x $ y) ? z. Neither x o Y nor x ~ Y can be zero unless One Or

both operands are zero. In other words, the algebras in question are also

closed if we restrict the domain of the algebra to the position reals or to the

set @ – {O}.
When using $ instead of o, one generates rounding errors. Once an error is

generated, it may propagate; that is, it may affect further results, even if the
ideal algebra is used. In the short-term analysis, we investigate the error

ACM TransactIons on Mathematical Software, Vol. 19, No 4, December 1993.

498 . Winfried K. Grassmann

propagation only for a finite and usually small number of steps. Classical

error analysis tends to be restricted to short-term analysis. Here, we also

introduce a long-term analysis; that is, we investigate whether or not errors

committed earlier decrease and eventually fade out, or increase and thus

restrict the size of the problem for which reasonably accurate results are

obtainable.

To do the short-term analysis, we assume that we are given intermediate

results ?2 and ~ that may deviate from their true values x and y. Specifi-

cally, we assume that there are two values eX and eY such that

As in (2), the expression .T = xeXj 1 “indicates that z is between x/e Z and xe%,

and the same holds for all other equations. From (3) and (4),

I Xj = (x Xy)(exey)*l, (5)

2 +7 = (x =y)(eIeY)*l, (6)

Z+ J=xeXtl+ye$l. (7)

In the domain of 9, (7) implies that

I+~=(x+y)(eley)*l. (8)

Hence, in .$, we always have

Ioj = (x Oy)(ezey)*l. (9)

In the general case, one can improve the bounds given by (9) only if” o” =” +”.

We now generalize the error propagation to general expressions. This

generalization is easily done by complete induction. For this purpose, we need

the following recursive definition of an expression (see, e.g., Andrews 1986):

Definition 1. Let A be a string consisting of numerical constants, of

variable names, say VI, Uz, of operators o G CD, and of parentheses. Then,

A is an expression iff either one of the following conditions applies:

(1) A is a numerical constant or a variable name.

(2) A is (Al o Az), o E 0, where Al and Az are themselves expressions.

If no ambiguity arises, parentheses may be omitted.

We also define val(A) to be the value to which A evaluates if all U, are

assigned the given values xi. Moreover, we assume that there are approxi-

mate values 2, = xtezi 1, where e, is given. If the U, are assigned the values

2,, then A evaluates to val(A).

ACM TransactIons on Mathematical Software, Vol. 19, No 4, December 1993

Bounding Errors Involving Markov Chains . 499

THEOREM 1. If v, occurs r,, i = 1,2,3,..., times in A, then

ucd(A) = ual(A) H e,* ‘L.
~=1

Moreover, this bound is tight, unless the expression contains additions,

PROOF. The theorem is correct for expressions of length 1, which must be

numerical constants or variables. If the theorem holds for the subexpressions

Al and Az, then (2) implies that it also holds for Al o Az, which completes

the inductive case. The inductive case is tight unless “ 0” is “ +”. This

completes the proof. ❑

Ifl, =xle*l, i=l,2,..., n, where e is given, the theorem implies that

Z10Z2 O“”” 02-= (x10x20 .“” Oxn)e*n. (lo)

Equation (10) holds for any operator, that is, for +, x, and =, and the order

in which the operations are carried out is irrelevant. One can even group the

x, into subexpressions, such as (x ~ o x ~) o(X3 o X4), and one still has the error

en, or e4 for this specific case. If o = +, (10) can be strengthened consider-

ably, as can be proved from first principles.

21+12+ . . . +?in = (X1 +X2 + . . . +xn)e*l. (11)

Since (11) is much stronger than (10), it pays to treat summations separately.

The next theorem combines error propagation and error generation:

THEOREM 2. Let A be an expression in P, and let_op(A) be the number of

operations in the expression A. Furthermore, let A be the expression one

obtains by replacing all operators by their computer approximations. Then,

Ual(A–) = ual(A)(l + u)~OP(A). (12)

Moreover, this bound is tight, unless the expression contains additions.

PROOF. The theorem is obviously true for expressions containing no opera-

tors. We now do complete induction. To do this, we assume that A = Al o Az,

with A—,= AL(l + U)* OP(AL), i = 1, 2. Because of (9), xl o A–z becomes

Al o AZ(I + U) f(0p(AI)+0p{A2)), and because of (2), the error of Al ~ Az is (1 +
U)+(OP(A1)+ OP(AZ)+l) C&.mce the exponent of this expression is equal to op(A),

the inductive case is established. It is easy to see that the bound is tight

except for additions. This establishes the theorem. ❑

Theorems 1 and 2 can be combined to yield

. .

~(~) = val(~) ~e,*r~ = val(A)(l + u)t Op(A)~e,*r.
icl ~=1

In the case where there is only one type of operator, say, o, Theorem 2

specializes to

z10z20”””0zn =(x10 x’20”””0xn)(1+ u)*n-l. (13)

ACM Transactions on Mathematical Software, Vol. 19, No. 4, December 1993.

500 . Winfrled K. Grassmann

In the case of additions, Theorem

given by (13). One has [Wilkinson

xl +X2 + . . . +Xn

2 allows for tighter bounds than the ones

1963]

=Xl(l + u)i(n-1J+x2(l + U)+(’-l) +X2(1 +U)+(n-z) + ““”

+Xn(l – u)il

(14)
~=1

As before, the priority of operators decreases from left to right. Note that the

last line is less tight than the previous one. According to Wilkinson, this

equation suggests that one shoald add the smallest terms first. In the case of

the nonnegative reals, this is always true. Otherwise, there are exceptions to

this rule [Grassmann 1989; Wilkinson 1963].

In computer programs, one does not normally use explicit formulas. Specifi-

cally, if a formula contains the same subexpression several times, one would

tend to evaluate it only once. For instance, the expression

(X+y)x(x+y)

would be programmed as

Z=x+y,

result = z * z.

Of course, op((x + y) x (x + y)) = 3, even though

operations. Hence, in order to apply Theorem

the program has only two

2, one has to count the

operations needed, given that the program has been expanded into a closed

form formula. In some cases, the operations count of these expansions is

huge, and the resulting error bounds are poor. For instance, state reduction is

similar to Gaussian elimination. If a program doing state reduction is con-

verted into explicit expressions, one essentially obtains Cramer’s rule. Since

the number of operations in Cramer’s rule is huge, the bound given by

Theorem 2 is poor, and more elaborate methods are required (see, e.g.,
Stewart and Zhang [1991] or Bunch [1987]). On the other hand, in the case of

calculating the probabilities of the Poisson distribution, Theorem 2 gives

quite satisfactory results.

In algorithms with many iterations, the short-run analysis should be

complemented by a long-run analysis. Some notation is needed to define what

we mean. Clearly, the state of the system at the end of an iteration is a
function of the state at the start. Hence, if S is the state at the beginning of

the iteration and if f is the function implemented by one iteration, then the

state at the end of the iteration is ~(S). Here, S includes all variables that

affect the iteration. The state after n iterations is, of course, f’(S), where f“
is the n-fold functional composition of f with itself. Normally, we are

interested in a particular measure, such as an equilibrium probability, and

this measure can be interpreted as a function g, which maps a state into the

set of reals. After iteration n, this measure is obviously g . ~“(S), where

ACM TransactIons on Mathematical Software, Vol 19, No. 4, December 1993

Bounding Errors Involving Markov Chains . 501

denotes functional composition. In many cases of interest, g” f“(S) becomes

independent of the initial state S; that is,

limg. ~’(S) = limg”~”(~),
~+. n+=

where t$ is an arbitrary state. This means that any error made in regard to

the initial state S becomes irrelevant after a sufficient number of iterations.

We express this by saying that the error is transient in respect to g. Errors

that are not transient are called persistent. Note that transience and persis-

tence are based on absolute, as opposed to relative, errors. If the result is

bounded to be greater than some positive value, then the fact that an error is

transient means that its relative error also goes to zero. However, if the

measure g “ f ‘(S) converges to zero as n ~ ~, nothing can be said about the

behavior of the relative error.

3. DISCRETE-TIME MARKOV CHAINS

In this section we assume that we are given the transition probabilities p,,,

i,J”=l,2, ..., N, of an N-state Markov chain, together with the initial proba-

bilities n-to, i = 1,2,... , IV, and the problem is to determine the transient

probabilities w.*, .j = 1,2, . . . N. Assume that the m,n are calculated recur-~..
sively according to the following formula:

rr: = g ?r:-’pl,.
~=1

Let Z: be the value found after replacing the operators by their computer

equivalents. We now want to determine values e. such that

By Eqs. (2), (11), and (13),

A A
‘n-lXpzj$.-.+~N–n-~ xplJ+ rr2

A
rr~ ~–n-lxpN1=

Thus, the error increases by the factor (1 + u)~

e. = eo(l + u)~” N.

in each iteration. Hence,

0. If the initial values are accurate, e. = 1. It mayHere, e. is the error of n-,

the case that the pi~ are also afflicted by errors. To account for this, let

F,J = p,jy*~.

In this case, one obtains

be

?in = 7rJ’(1+ u)*n Ny *’.J
(15)

If the matrix in question is a sparse matrix, the above result can be improved.

In particular, if there are never more than u entries per column, the error is

(1 + u) ’”y ’, rather than (1 + u)nNy”.

ACM TransactIons on Mathematical Software, Vol. 19, No. 4, December 1993

502 . Winfried K. Grassmann

In ergodic Markov chains, the equilibrium probabilities are independent of

the initial probabilities. This implies that the errors in W,n are transient in

respect to the measure Sm = IT~rn/X~ fi~m. Note, however, that the relative

errors in respect to the nonnormalized expression Tjm are persistent because

an error in one of the w]’ will cause the sum of all the m; to deviate from

unity, and this deviation will not disappear.

Even though errors in n,’ are transient only after normalization, normal-

ization does not, in general, reduce the relative errors committed. Indeed,

normalization only decreases the relative error if rrjn > 0.5. To show this, we

derive an upper bound for Z: /Zk77~. Such an upper bound is obtained by

assuming that ii-,’ 1s at its upper bound, while all other tijn are at their lower

bound. To do this, let hn = en – 1.Since e. > 1, hn >0. Hence,

= T,”(1+ 2h~ + h:)/(1 + n,”(2h. + h:)).

This bound has to be compared to e. = 1 + hn, the error bound for w;. Since

h. is small, all terms h: can be dropped, and one has to compare

1 + 2hn

with 1 + h.. For small hn, the above expression is approximately equal to

1 + 2hn – 2~;hn, and it is easily verified that this expression is smaller

than 1 + h. iff mtn >0.5. If relative errors are to be minimized, one should

normalize as late as possible. In fact, one should normalize only the final

results.

4. JENSEN’S METHOD

Consider a continuous-time Markov chain with n states and with transition

rates a~~, i#J”, i, J”=l> 2,..., N. The initial probabilities w,(O) are given, and
the problem is to find the m-l(t), t >0, j = 1,2,. . . . N, which are the probabil-

ities of being in state ~“ at time t.The following algorithm, due to Jensen

[1953], Grassmann [1977], and Gross and Miller [1984] yields the m-J(t).

1. a, = .I~=l,, FJaLJ

2. f= max, a,

3. a,, =f–a,

4. p,, = a, J/f, i,j=l,2,N

5. m~=mL(0), i=l,2,..., N

6. wln~l = z~=lw,np,l, n = 0,1,2, . . .

7. q==fxt

8. w~(t) = Z:. ow;p(n; q)

ACM TransactIons on Mathematical Software, Vol 19, No. 4, December 1993

Bounding Errors Involving Markov Chains . 503

Here, p(n; q) = e‘~ q ‘/n,! is the Poisson distribution, which is calculated as

p(n; q) = p(n – 1; q) X q/n, n = 1,2,..., starting with p(O; q) = e-g. We

now assume that the a~~ are integers, which implies that a,, f, and a,, are

accurate. Consequently, ~,j = ptj(l + u)+ 1. We can thus use (15) with y = 1

+ u. Hence,

tin = Tj’(l + u)i(N+l)n.J (16)

Next, we consider the error of p(n; q). For simplicity, we assume that t is an

integer, which means that q is an integer as well and, therefore, accurate.

Since p(O; q) = exp(– q), the accuracy of p(O; q) is equal to the accuracy of

the exponential function provided by the computer. Here, we assume that the

approximation F(O; q) equals p(O, q)ro+ 1. It is now easily verified that (see
also Fox and Glynn [1988])

>(n; q) =p(n; q)(ro(l + U)z’)tl. (17)

Define

sn = n-~nXp(n; q).

By using (16), (17), and (2), we get

Zn = Sn(l + u)+(n N+3n+1)r:l.

Clearly,
.

f-r](t) = ~ Sn.
~=o

We now define

7fJ~(t)= ~ Sn.
~=o

If we do the summation in reverse order, starting with Sn, (14) yields

We can now let m go to infinity to obtain

tij(t) = (ro(l + U)2)*1 ~ m-~p(n; q)(l + u)* ’(~+4). (18)
~=o

This use of (14) allows one to deal with infinite sums, provided the summa-

tion is done in reverse order. Of course, a sum can never be formed with an

infinite number of terms. However, no matter how many terms one uses, (18)

provides a bound. The addition having to be done in descending order of the

subscript is not as crucial as it seems. If the sum is symmetric, the summa-

tion generates the same rounding error, no matter whether one forms the
sum starting with the first or with the last term. Since the Poisson distribu-

tion becomes symmetric as q increases, the s. are also approximately sym-

metric, and (18) is a good approximation, even when starting with so.

ACM Transactions on Mathematical Software, Vol. 19, No. 4, December 1993.

504 . Wmfried K. Grassmann

Now determine the upper and lower bound of (18) separately. To determine

the upper bound, let

8= (1 + U)N+4.

With this definition,

(ro(l + U)z) : m;p(n; q)(l + U) ’(N+’)
~=()

-,.

= (ro(l + u)’) ~ ‘-”:8)’7T;
~=~

x ‘-qs(qa)”

= ro(l + u)ze”qeqa ~ 7T1°
~=() ~!

= ro(l + ~)’eqtd-l)~j(t~).

The lower bound can be obtained in a similar fashion, as

1
‘a/~-l)m(f/~).

ro(l + u)’

Consequently,

1
eq(l’*-1)77J(t\8) < fij(f) < 7-.(1 + u)2eq(a-1)mJ(t L3). (19)

7-.(1 + U)z

The precision of the results thus depends on 6, or on (1 + u)~+ 4. If the

matrix in question is sparse, the exponent IV + 4 can be reduced. In particu-

lar, if each column of the transition matrix contains at most u elements, one

can replace N by U. Moreover, the effect of rounding seems to be stronger if

nj(t) changes strongly with t.

5. STATE REDUCTION

A number of people have used the state reduction algorithm, or, as it is also

known, the GTH algorithm [Grassman et al. 1985; Heyman 1987; Heyman

and Reeves 1989; Kohlas, 1986; Stewart 1993; O’Cinneide 1993]. An algo-

rithm closely related to the state reduction algorithm was recently analyzed

by Stewart and Zhang [1991]. In the state reduction algorithm, we consider a
discrete-time Markov chain with states 1,2,... , N, and the problem is to find

the equilibrium probabilities m-,, given the transition probabilities p,j, i, j =

1,2,..., N. We also assume that the chain has one recurrent class and that
there are no transient states. This involves solving the steady-state equation,

given as

N

n]= ~ T,p,,, J=1,2,N. (20)
~=1

ACM Transactions on Mathematical Software, VOI 19, No 4, December 1993

As usual, one has to

eliminate ~~, TN_ ~,. .

cients obtained after

definition,

It is easy to verify

formula:

It is known that

[Grassmann et al.

Bounding Errors Involving Markov Chains . 505

require that the sum of all rr~ is unity. From (20),

,, m.. ~, and use the symbols p; to denote the coeffi-

the elimination of these variables. Because of this

n

that the p,; can be calculated recursively by the following

P,: P;ln-l=p,~+ l–p~n”
P,] (22)

the pl~ define a Markov chain with the states 1 to n

1985; Kohlas 1986]. In fact, the ~~. describe an embedded. ,J

Markov chain. It is the Markov chain obtained by using visits to states i < n

as regeneration points. This implies that 1 – p:. = E;::p:l. In state reduc-
tion, we now rewrite (22) as

P,: P:]
“-l= p;+

PIJ (23)
E;:;p,: ‘

After all the p~l and p~j are calculated, one can use (21) to perform the

normal backsubstitution step. Since the analysis of the backsubstitution is

similar to the one presented earlier for discrete-time Markov chains, we do

not discuss it here. We merely note that in order to simplify the backsubstitu-

tion step, and also the evaluations of (23), one normally defines new variables

CLnj = p~J/EJZ~p~J.

We now perform the error analysis of (23). A similar analysis is given in

O’Cinneide [1993]. Let ~~ = p~e~ 1, where the e. are to be determined. By
counting the operations in (23), one finds that

en-l = e~(l + u)’+l.

If the p,~ are accurate, e~ = 1, and one finds that

‘N-1 = (1 + U)N+l,

eN_, =(l+u) 3(N+’)(1 + U)N=(l + U)’N+’,

eN_, =(l+u) 12N+9(1 + U) N-l=(l + U)13N+8,

and so on. Notice that the term (1 + u)’+ 1, which represents the error

generation of iteration n, is small compared to the term e:, which accounts

for the error propagation. If one ignores the error generation after the first

iteration, one finds that

eN_~ > (1 + .u)(N+l)x3m. (24)

These error bounds increase rapidly. Still, they are adequate for small

matrices. However, as N increases, these bounds become unacceptably large.

ACM Transactions on Mathematical Software, Vol. 19,No 4, December1993

506 . Winfried K, Grassmann

In fact, if e. is calculated according to (24), one can construct matrices such

that p,: e. exceeds 1 for some values n, i, and ~“. One merely has to choose

large enough values for N and m. Note that the approximate bounds given by

(24) are entirely due to error propagation. To find better bounds, one there-
fore must concentrate on the propagation, rather than on the generation of

errors. Traditionally, this has been accomplished by backward analysis and

perturbation theory. For further details on this in the context of state

reduction; see Stewart [1993] and Stewart and Zhang [1990].

We now show that if we change the probabilities p,] in the original matrix

such that the row sums change by at most ~ then all pL~ must remain

between O and 1 + e. To see this, note that (23) leaves the sums of the p;

unchanged.

Since the p,: cannot become negative, this implies that

This result also holds if the matrix we perturb is not [p,]], but is [p;]. In

particular, after the first iteration, [p ‘-1] is perturbed in such a way that

‘+ 1 Hence, no error propagation from thatthe row sums are at most (1 + u) .

point onward can ever result in a value ~,~ > (1 + U)N + 1. Consequently, the

error bounds given in (24), which increase exponentially, cannot be tight for

large m.

In many cases, the errors seem to be transient. Some experimental results

reported in the literature can be interpreted in this way [Grassmann et al.

1985; Heyman 1987; Heyman and Reeves 1989], and for special types of

matrices, this can even be proved mathematically. In particular, Grassmann

and Heyman considered transition matrices that are banded, irreducible, and

positive recurrent. Moreover, for all i, j between a certain lower limit c and

an upper limit N – d,

P,J ‘P, -k]-h> i,j=c, c+l,d–d. (25)

In this case, N can be increased as much as needed to investigate what

happens to the error bound of p:- m as m gets large, It was shown that in
this case, the probabilities p,;- m become independent of the probabilities

pr~, r, s > N – d. In other words, if m and N are large enough, then any

error committed for r, s > N — d is transient. Numerical experimentation

showed that the errors propagated decay geometrically with m. Now consider

the matrix [p;]. Since the original matrix is banded, there is some value g

such that pzj = O for Ij – il > g, which implies that p; = pLJ for i, j < n – g.

As a consequence, the matrix [pfl] satisfies the conditions given by (25),

which implies that the errors commited in the calculation of pt~ are also

ACM TransactIons on Mathematical Software, Vol. 19, No 4, December 1993

Bounding Errors Involving Markov Chains . 507

Table I. Comparison between Gauss and State Reduction

e Gauss State reduction Condition number

0.01 + 0.00000095 0.00000000 211

0.001 + 0.00001287 0.00000000 2,011

0.0001 + 0.00014406 0.00000000 20,011

0.00001 + 0.00135624 0.00000000 200,011

transient. In fact, if the decay is geometric, and numerical experiments

indicate that this is true, then all errors together will remain within con-

stants bounds, as is easily verified.

Finally, we investigate the consequences of the error bounds being relative

bounds. Norms, and, with them, condition numbers, are based on absolute

rather than relative changes. Hence, they may not be appropriate in the

context of state reduction. To test this, we applied both state reduction and

Gaussian elimination to solve the following problem:

[

0.4 0.6

0.6 0.4 – e ●

E

)

0.5 – e 0.5 “
0.5 0.5

Since the matrix is doubly stochastic, the solution of the problem is always

n-, = 1/4, i = 1,2,3, 4, no matter what value e happens to have. We then

solved the problem by both state reduction and normal Gaussian elimination

for ● = 0.01, 0.001, 0.0001, and 0.00001, and we calculated the condition

number. The norm chosen was the infinity norm. All calculations were done

in single precision on a Sun 3/50 workstation. The probabilities were left

unscaled, which means that the correct results were n, = 1, i = 1,2,3,4.

Table I gives the differences between T4 and 1, and also shows the condition

number. It can be clearly seen that in Gaussian elimination the precision

deteriorates as the condition number increases. No such effect is noticeable in

state reduction, which always gives the correct result with a precision of eight

digits.

REFERENCES

ANDREWS, P. B. 1986. An Introduction to Mathematical Logic and Type Theory. Academic

Press, Orlando. Fla.

BUNCH, J. F. 1987. The weak and strong stability of algorithms in numerical linear algebra.

Linear Algebra Appl. 88-89, 46-66.

DEBOOR, C., AND PINKUS, A. 1977. Backward error analysis for totally positive linear systems.

Numer. Math. 27, 4, 485-490.

FOX, B. L., AND GLYNN, P. W. 1988. Computing Poisson probabilities. Commun. ACM, 31, 4

(Apr.) 440-445.

GRASSMANN, W. K. 1989. A probabilistic analysis of rounding errors of floating point numbers.
Congr. Numeratium 68, 171–182.

GRASSMANN, W. K. 1985. The factorization of queueing equations and their interpretation. J.

Opl. Res. Sot. 36, 11 (Nov.) 1041-1051.

ACM TransactIons on Mathematical Software, Vol. 19, No. 4, December 1993.

508 . Winfried K. Grassmann

GRASSMANN, W. K. 1977. Transient solutions in Markovian queueing systems. Comput Oper.

Res. 4, 47–53.

GRASSMANN, W. K., AND HEYMAN, D, P. 1993. Computation of steady-state probabilities for

infinite-state Markov chains with repeating rows ORSA J. Comput. 5, 3 (Summer).

GRASSMANN, W. K., TAKSAR, M. I., AND HEYMAN, D. P. 1985, Regenerative analysis and steady

state dmtributions for Markov chains, Oper, Res. 33, 5 (Sept.–Ott.), 1107–1116.

GROSS, D., AND MILLER, D. R. 1984. The randomization technique as a modelling tool and

solution procedure for transient Markov processes. Oper Res. 32, 2 (Mar, –Apr.), 343–361

HEYMAN, D, P, 1987. Further comparisons of direct methods for computmg stationary distri-

butions of Markov chains. SIAM J. AlgebraLc DLscrete Methods 8, 2 (Apr.), 226-232.

HEYMAN, D. P., AND REEVES, A. 1989. Numerical solutions arising in Markov chain models

ORSA J. Comput 1, 1 (Winter), 52-60,

HIGHAM, N, J, 1990. Bounding the error in Gaussian elimination for tridiagonal systems

SIAM J. Matrix Anal Appl.

JENSEN, A. 1953, Markov chains as an aid in the study of Markoff processes. Stand. Actuar.

36, 87-91,

KOHLAS, J. 1986 Numerical computation for mean passage times and absorption probabilities

in Markov and semi-Markov models. Z. Oper. Res. 30, A197–A207.

KULISCH, U. L,, AND MIRANKER, W. L. 1981. Computer Arithmetic m Theory and PractLce.

Academic Press, New York,

KEMENY, J. G., SN~LL, J. L., AND KNAPP, A. W 1966. Denumerable Markou Chains, Van

Nostrand, Princeton, N.J.

O’CINNEIDE, 1993. Entrywise perturbation theory and error analysis for Markov chains, iVu -

mer. Math. 5, 1 (May),

STEWART, G. W. 1993. Gaussian elimination, perturbation theory and Markov chains, In

Linear Algebra, Markou Chains, and Queuelng Models. C. Meyer and R. J. Plemmons, Eds,

Springer-Verlag, New York, 59-69

STEWART, G. W., AND ZHANG, G. 1990. On a direct method for the solution of nearly uncoupled

Markov chains. Numer. Math. 59, 1 (Apr.), 1-11.

WILKINSON, J, H. 1963, Roundzng Errors [n Algebraic Processes. Prentice-Hall, Englewood

Cliffs, NJ.

Received April 1991; revised and accepted February 1993

ACM Transactions on Mathematical Software, Vol. 19, No 4, December 1993

