
MILANO, NOVEMBER 30- DECEMBER 4, 1992 63

UNIX Guide: lessons from ten years’ development

P. J. Brown

University of Kent at Canterbury

Computing Laboratory, The University, C’anterbuy, Kent CT2 7NF, England

pjb@ukc. ac.uk

Abstract

Development of the Guide hypertext system has

been progressing at the University of Kent since

1982. The paper looks back over the mistakes and

successes of the last ten years, with a view of draw-

ing some lessons for the future development of hy-

pertext. The reader is not assumed to be a Guide

user, and the lessons learned apply to hypertext

systems in general.

1 Introduction

Development of Guide began, using the UNIXl op-

erating system and PERQ hardware, in 1982. The

aim wss not to build a hypertext system per se —

I was unaware at the time of the work and ideaa of

such people as Engelbart and Nelson — but sim-

ply to produce a system which aided the reading

of documents from computer screens. Documents

to be read at computer screens were then largely

direct reproductions of paper documents. (They

still often are.) It would be a huge coincidence if

the ideal form for a graphics screen was the same

as that for paper.

This application-oriented aim of Guide has been

a healthy influence throughout. It is one of the

reasons Guide stands out as different from the

mass of hypertext systems. The differences are,

of course, sometimes positive and sometimes neg-

ative, but the more there are different species to

cross-fertilise, the better it is for the overall devel-

opment of a subject.

1UNIX is a trademark of Bell Laboratories

Permission to copy without fee all or part of this material

is granted provided that copies are not made or distributed

for direct commercial advantage, the ACM copyright no-
tice and the title of the publication and its date appear,

and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise,

or to republish, requkws a fee and/or specific permission.

@1992 ACM O-89791-547-X/92/0011 /0063/ $1.50

2 OWL involvement

This paper is based on the development of Guide

at the University of Kent, but the most significant

event in Guide’s development was the involvement

of OWL (Office Workstations Ltd) from 1985 on-

wards. OWL developed the original ideas in order

to produce Mac and PC products. These have

had wide market penetration and this has led to

a continuous flow of new ideas.

Work at Kent has continued in parallel with

OWL’s work. The focus at Kent has always

remained as UNIX workstations; in the rest of

this paper we will refer to this implementation as

Guide-u.
t

3 The same or different?

A difficult choice for any software developer is:

(a)

(b)

to base the software on ideas that are already

familiar to the reader, in order that the soft-

ware will be readily ‘accepted.

to base the software on the ideaa that are the

natural ones for the application.

The book metaphor in hypertext systems is a

prime example of case (a). It has been widely

adopted by hypertext systems designed to cater

for a lot of casual use, such as the excellent sys-

tem at the London National Gallery[5]. For longer

term usage paper-based metaphors such aa books

are almost certainly losers, but for short term us-

age they are winners.

The software developer faces an exactly similar

choice at a lower level, that of the style of user

interface. The safe choice is to follow the house

style of a particular platform. The house style is
particularly strong on the Mac, but until recently

has not been strong on UNIX. The radical choice

is to change the accepted user interface style to fit

the perceived needs of hypertext.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F168466.168492&domain=pdf&date_stamp=1993-12-01

64 ACM ECHT CONFERENCE

Two key elements of the user interface style

are the menu and the scroll-bar. Both Guide-u

and OWL’s Guide have been cautious and have

adopted a conventional scroll-bar in order to fit in

with the accepted style. It is not a disaster, but it

is certainly not the right mechanism. A scroll-bar

is designed for a linear document that is largely

static. The Guide model of hypertext has’ a scroll

that contains replace-buttons when the user se-

lects a replace-button it is replaced by the text

(and/or graphics) folded behind it. For instance

the following Guide document contains a replace-

button (shown in bold-face) called Example:

.. useful feature.

Example

Moreover, ..

If this replace-button was selected the text docu-

ment might appear as

.. useful feature.

<A 10-line example>

Moreover, ..

Generally, select ing a replace-button causes the

scroll, as the reader sees it, to grow in size; indeed

most Guide hyperdocuments initially appear as a

small scroll, and the reader selectively expands it.

The effect is that the scroll-bar behaves erratically:

a point that was half-way through the scroll as dis-

played may, if a big replacement is unfolded in the

latter part of the hyperdocument, suddenly ap-

pear to be only one quarter the way through the

scroll. Instances such as this play havoc with the

scroll-bar; nevertheless there has been no serious

candidate to replace it.

Though cautious and unimaginative with its

scroll-bar, Guide-u’s approach to its menu is one

of its more radical and more successful features.

Guide-u haa complete flexibility: any Guide docu-
ment can be-selected to act as the menu. (Here is

not the place to go into elaborate detail, but a key
point is that Guide buttons can have actions,, such

as Quit, attached to them. These figure promi-

nently in documents used as menus. Indeed the

standard menu consists only of a sequence of such

actions, but user-defined menus often use a subset

of the standard actions, interspersed with explana-

tory text, pictures, logos, and other buttons.) This

has two consequences:

. each application can have its own menu de-

signed for the task in hand. All serious

●

Guide-u applications have used their own

menu rather than relying on the standard all-

purpose one.

Guide-u is self-compatible: the menu behaves

in essentially the same way as the document

that the user is reading. The downside is

that the Guide-u menu is not compatible with

styles such as Motif.

Menus are particularly important in scroll-based

systems such as Guide. In a card-based system,

many of the functions of the menu can be taken

over by buttons that appear in each card (e.g. go-

to next card, go-to some base point). In a scroll-

based system, where such buttons could move

around the screen or even off the screen as a result

of scrolling, such an approach is undesirable, and

thus the true menu is more important.

In summary, if you want your system to be used

for real applications, you can probably only afford

to be radical in one element of a user interface.

Guide-u’s radical approach to the menu has been

a success (though with some downside), but was

there a bigger wasted opportunity with the scroU-

bar?

4 Using what is there

“As well as fitting in with existing metaphors and

an existing user interface style, a hypertext system

will be under pressure to fit with existing tools,

too. To survive, any hypertext system needs to

interact with and to use other tools[4]. A choice

facing the designer is which of these alternatives

to select:

(a)

(b)

to use what is there already, i.e. to use the ex-

isting command languages, editors for various

media, spelling checkers, printing programs,
searching tools, etc.

to provide a framework by which others can

plug extra tools, specially written to certain
conventions, into the hypertext syst em.

An example of case (b) is Quill[8], which is a

novel document editing system. Quill consists of

a number of co-operating editors, co-ordinated by

the Quill ‘shell’, which maintains a consistent user-

interface across the editors. Each editor needs to

be specially written to fit in with Quill.

Clearly approach (b) is more attractive for a re-

searcher keen to escape from the dreary current

world into a brave new world. However it requires

MILANO, NOVEMBER 30- DECEMBER 4, 1992 65

writing enough supporting tools to make the sys-

tem viable. Then, with luck, the system will take

off, and users all over the world will add ~upport-

ing tools to it.

For a small project, the developer or researcher

needs to grit his teeth and adopt approach (a): fit-

ting in with the current imperfect world and mak-

ing use of it. Hypertext is an applied topic, and it

is vital for researchers that their new systems find

real authors who will write hyperdocuments that

find real use. There are many research-oriented

hypertext systems whose only use haa been a few

hyperdocuments produced at the site where the

system was developed — in numerous research pa-

pers these same examples are quoted again and

again.

Guide-u therefore adopted approach (a).

5 Influence of UNIX

The philosophy of UNIX is that you do not build

huge monolithic tools, but instead rely on collec-

tions of smaller tools, all good at their own thing.

Although this philosophy may have weakened over
the years, it remains a reason for the success of

UNIX.

An early mistake of Guide-u was to encode

source files in an opaque form, with lots of embed-

ded binary codes. The result was that other UNIX

tools could not work with Guide files. The mistake

was rectified by going to a textual mark-up. The

chosen format wss similar to trofl requests. For

example a button is encoded aa

.Bu <attributes of button>

Button-name

.bU

(An enduring mistake is that pictures, which

can be embedded in Guide-u documents, do still

contain binary codes. In Guide-u’s mark-up, these

pictures have been made to look like troff com-

ments, so that they do not confuse any utility (e.g.

spell) which uses deroff to strip out t rofl mark-up.

The embedded binary codes can, however, confuse

utilities such as the vi editor and the mail system.)

This mark-up has been a success of Guide. One

can, of course, argue whether an SGML style
would be better than the troflst yle, but the role of
the trofistyle as something of a standard for UNIX

tipped the balance. An example of its value is that

if one wanted to analyse the style of a Guide-u doc-

ument by counting the number of occurrences of

each hypertext feature, it could be done with a

short UNIX shell-script involving commands such

aa grep, sort and uniq.

A similar example is a script to perform a sys-

tematic edit such aa prefixing some fixed symbol

to all button-names of a certain type.

Embedded mark-up such as Guide’s haa its lim-

itations, and the current fashion is to keep the

structuring information separate from the mate-

rial to which it applies. Nevertheless it is not

something I feel keen to change, as, in conjunc-

tion with the current array of UNIX tools, it offers

simplicity and power.

6 WIMP interface

When you start building a hypertext system, you

imagine you will spend your time creating hyper-

text functionality. In fact you spend most of the

time working on aspects of the WIMP interface. In

a recent talk, Bob Anderson of Xerox EuroPARC

said that the user-interface proportion of a modern

application program was 8570 and rising. Though

others make more modest claims than this, the

consensus figure is still over 50%.

It is particularly important in a hypertext sys-

tem to encourage readers to explore, but if they

are to do this they must have a natural and pain-

less way of going backwards, and undoing the ef-

fect of anything that turned out to be a false step.

They must also be able to abort operations half-

way through, with no harm resulting.

As anyone who has implemented such systems

will know, this requires lots of planning, careful

implementation, and, if the user is to be prop-

erly informed about what is going on (with subtle

graphic effects, etc.), lots of lines of implementa-

tion code.

A mistake in the design of Guide-u, which still

shows scars, is that Guide tried to cater for two

interface styles at once. There were hugely more

‘glass teletype’ screens than graphics screens in the

world in 1982, and many remain today. Guide-u

tried to cater for both: the idea was to have a

display module that could be written either for a

character-array screen with function-key input, or

a graphics screen with a mouse. You cannot do

both well. The designer has to make the tough

decision to go for a particular configuration and
make sure his software is right for this.

An example of a scar from Guide-u’s attempt to

have its cake and eat it, is that there is no facil-

ity for dragging the mouse to select a sequence of

66 ACM ECHT CONFERENCE

characters (e.g. as the subject of a cut or copy):

this was felt unsuitable for a glass-teletype termi-

nal. The philosophy of no multiple selection haa

become engrained in Guide-u’s design and is now

hard to change. (OWL Guide avoided this trap.)

7 Communication and pipes

UNIX’s simple primitive for communicating be-

tween tools is the pipe. A pipe allows a one-way

communication of a stream of bytes between one

tool and another.

There is no equivalent of a pipe to allow two-

way communication between tools in a highly in-

teractive environment. Guide-u hss gained hugely

from working with other UNIX tools but all the

successful examples have involved communication

that is not highly interactive.

Guide-u allows UNIX shell-scripts to be at-
tached to buttons: when the button is selected,

the script is run and the output is piped back

into Guide and becomes the replacement of the

button. To the user the button appears like any

other, and the user can be unaware that a program

has run. This facility has been successfully used to

provide active documents, e.g. a button might run

a report-generating program which, say, returned

a summary of items currently in stock.

The shell-script facility, at a stroke, added in-

finite programmability to Guide-u. In addition

Guide-u has its own small programming language,

like HyperTalk in HyperCard, or Logiix in OWL
Guide, but much weaker. This language allows

most of the actions that the user might do (se-

lecting a button, using the menu, typing text) to

be reproduced. For example a ‘program’ in this

language might say ‘Find the string XX and then

Type the string Y’Y’: such a program could be at-

tached aa an action to be done when a button wss

selected. The language is so small that it does not

merit a name, but, for convenience, we will call

it P here, Shell-scripts initiated from Guide can

use a utility called callguide which passes Guide a
P program to execute. Thus a shell-script might

take the form

if XXX

callguide with program PI

else

callguide with program P2

The mistake in the design of Guide-u wss to

assume that the existence of P, plus the infinite

programmability y provided by shell-scripts, was a

short cut to making Guide-u fully programmable.

The problems are two-fold.

The first and lesser problem is notational. Inter-

mixing P programs with bits of shell-scripts leads

to poor readability since two separate notations

are closely inter-twined., At the lowest level there

are often several levels of nested quotes, which are

hard to get right.

The larger problem concerns communication. If

one looks at the condition XXX in the above ex-

ample, the author might well want this condition

to be ‘if the Guide-u user has selected button BB’.

In other words, the shell-script needs to know inti-

mately about Guide-u’s current state. The prob-

lem is that it does not: Guide-u provides a small

amount of information through environment vari-

ables and the like, but it only provides a tiny pro-

portion of the information that may be needed. It

is simply not possible for two independently writ-

ten programs, in this case Guide-u and a shell-

script written by a user, to examine each other’s

internal states.

To summarise, it is moderately easy to accept

existing tools as helpful friends, but it is desper-

ately difficult to make them intimate colleagues.

8 Constraining authorship

Certain user interface toolkits are described as

‘policy-free’, meaning that they do not impose a

style on the user-interface. I believe that hyper-

text systems should be policy-free in that they do

not impose a style of authorship. We are a long

way from finding out what the best hypertext au-

thorship styles are, and any system that restricts

authors is holding back development.

Guide set out from the start to be policy-free,

but has not always realised its aim successfully. A

success has been the enquiry (now called a group

in OWL Guide). This allows the author to spec-

ify an arbitrary source region, i.e. a region sur-

rounding a replace-button; when the button is se-
lected, the source region is replaced by the but-

ton’s replacement. At one extreme the author can

design enquiries so that the region is always the

whole screen: in this case Guide behaves like a

page-bssed system such as HyperCard. At the
other extreme, the author who does not use en-

quiries at all will have a pure scroll model — what

is replaced when a button is selected is just the

button-name. There is plenty of scope in between

these extremes: one of the most successful Guide-

MILANO, NOVEMBER 30- DECEMBER 4, 1992 67

u applications, the LOCATOR project [6], uses en-

quiries to present information so that the first part

of the screen gives a historical trail and the lower

part, an enquiry, gives the current information.

The enquiry is a good example of a construct

that aids a policy-free style. Other constructs

in Guide-u have unfortunately allowed policy to

creep in. For example the glossary-button in

Guide-u allows the user to select a button that
places information in a separate sub-window called

the glossary. This is reasonable, but what was

wrong was to attach a policy that said the glos-

sary was always put in alphabetic order. Thus if

the user selects three glossary-buttons in sequence

the three items are placed in the glossary in al-

phabetical order. Generally the screen is not big

enough to see the whole glossary, and the effect

to the user is that the glossary leaps about in an

apparently random way. Readers — and even au-

thors — often have to be told after the event the

alphabetical-order rule, as an explanation of what

has been happening.

Another failure was a tendency to bundle fea-

tures together in packages rather than to provide

the underlying primitives. For example two az-

pects of buttons are;

(a) where the replacement of a button is to go

(e.g. in-line or in the glossary, or perhaps in

a separate window).

(b) how the replacement is generated (e.g. us-

ing a fixed piece of text, using a separate file,

using a definition from the library, using the

output from a shell-script — here a success

of Guide-u is that it insulates the reader from

the details of how material is stored, or indeed

whether it is stored at all).

Guide-u provides various button-types that

cover certain combinations of (a) and (b); some

combinations are not available. The problem arose

because of piecemeal additions of various button-

types to cater for perceived authorship needs,

rather than a proper analysis of underlying prim-

itives.

The moral is that if you really do not know what

authors need, stick to primitive operations, and if

you get something wrong do not try to patch your

way out of it. ,.

9 Logical structure

We have argued for a set of primitive operations

below the policy level. Such primitives need to

be complemented by a high-level logical approach

that captures the nature of a document in a man-

ner above and independent of the policy for hy-

pertext presentation. This logical structure can

be mapped into a style of hypertext presentation

by a table or similar mechanism. For each logical

object a table entry specifies, in terms of the primi-

tive operations, how to display it. For example the

logical object could be ‘refinement of detail’, and

this could be represented by a hypertext button.

The same considerations apply to document

preparation in general. It is, for example, the

accept ed wisdom that documents for a word-

processor or formatter should be marked up in

terms of their logical structure rather than their

appearance.

The problem is that, although standards and

models for documents (SGML, HyTime, Dexter,

etc.) apply at the logical level, most systems that

are in use in the field allow or even encourage au-

thors to think in terms of appearance rather than

logical structure.

Guide-u is still partly guilty here. On the plus

side, authors cannot specify documents at the level

of fonts, character sizes, colours, etc. Instead they

are constrained to use logical objects[2]. For ex-

ample, the author says ‘this is a book title’, not

‘this is italic text’; a table entry for ‘book title’

might specify that tables are to be represented in,

say, italic text, and in a certain colour if it is avail-

able.

On the negative side, there are no logical ab-

stractions above the ‘button’ level. For example
the Guide author creates hypertext structure at

the level of, for example, a replace-button. In cre-

ating a replace-button the author says ‘this is a

button to be replaced in-line by XYZ’. Logically

the button may represent, for example, a refine-

ment of detail, a division of a management struc-

ture or a report (generated by running a program).

This information is never captured. The loss is

huge. For example the lost information would be

invaluable to:

● any author who was maintaining a document

written two years earlier by another author.

To do a decent maintenance job, you need to

understand the logical structure: the ‘why’

rather than the ‘how’.

● anyone charged with the task of producing a

program to take a hyperdocument and pro-

duce a paper document that captured the hy-

perdocument at its lowest level of detail.

68 ACM ECHT CONFERENCE

readers. Although, in most instances, it is

better if the logical structure only manifests

itself to the reader through the appearance of

the document (e.g. areader should recognise

a heading without being told ‘This is a head-

ing’), there are cases where a direct awareness

of the document’s structure helps the reader’s

understanding. In some hypertext systems,

for example, readers are made aware of dif-

ferent types of links.

a user who wanted to perform a structural

search (see later discussion of the Find com-

mand) to show all instances of buttons that
represented reports.

No go-tos

Primitives do not have to be at the lowest level,

even though they need to be policy-free. A link

in a hyperdocument is a go-to, and go-tos are
harmful[3]. Guide-u has always attempted to find

higher-level primitives than the go-to. It has

never had direct links embedded in its source file.

Instead objects are linked together by matching

names, in the same way as the name of a variable

in a programming language links to a declaration

of the variable[l]. (KMS and the Symbolics sys-

tem are other hypertext systems that use name

matching.) To take an example, assume that the

hyperdocument is a reference work on birds and

that the information on habitat for both the willow
warbler and the chiff-chaff is the same. The way

that this information is shared is that the Guide

author would create the habitat information as a

definition and give it a name, say ‘willow warbler

habitat’. The chiff-chaff entry would contain a

button that uses this definition, i.e. the button’s

replacement would be specified as the definition

called ‘willow warbler habitat’. When the user se-

lects this button the definition is copied so that

it forms the replacement of the button (a ‘come
from’ rather than a ‘go to’). This gives the user

an illusion of a hierarchy, rather than a jump to

a different place in the hyperdocument. There is

reasonable circumstantial evidence that this ap-

proach lessens the getting-lost problem.

Initially the no-go-to principle was extended to

a ban on any form of Find command. A Find

command was thought to be a particularly insid-

ious form of go-to since it cuts across the struc-

turing of the hyperdocument provided by the au-

thor. Nevertheless banning a Find command was

a big mistake, as it pre-supp osed an omniscient au-

thor who would provide a hypertext structure that

would allow all readers to find exactly what they

wanted without resorting to a Find command. Hu-

man nature being as it is, I did not admit the

mistake and quickly correct it. Instead there has

been a slow lessening of the wrong principle until

today there is a reasonably powerful Find com-

mand (adapted to hypertext use since it covers

both content and structure, though it could prof-

itably be fitted into a general mechanism for com-

puted links). OWL, being driven more by market

needs than by dogma, have always had a good

Find command in their Guide.

What the thinking should have been is: infor-

mation retrieval shows that readers find it hard to

extract the information they need from a mass of

documentation, and all existing ntechanisms are

far from perfect. Therefore the reader should have

all the tools that can be reasonably provided, and if

these tools are orthogonal to one another, all the

better.

11 Testing and maintenance

As hyperdocuments increasingly go into produc-

tion use the cost of testing and maintenance will

dominate the original authorship cost. Guide-u

provides two simple mechanisms to help testing

and maintenance:

(a)

(b)

a mechanism for testing that all required defi-

nitions exist (thus, for example, that selecting

the button that represents the habitat of the

chiff-chti does not lead to the error: ‘defini-

tion not found’).

a way for authors to insert comments into a

document in order to explain what they have

done and why they have done it.

This is better than most hypertext systems pro-
vide (though the Symbolics Concordia system is

one honorable exception), but it is pitifully inad-
equate: it is like saying that all problems of soft-

ware engineering will be solved by (a) providing a

syntax checker and a linkage checker for programs,

and (b) allowing authors to put comments in their

programs.

12 Tailoring

One of the benefits often claimed for hypertext is

that, unlike paper, a hyperdocument can automat-

MILANO, NOVEMBER 30- DECEMBER 4, 1992 69

ically adapt according to the nature and needs of

the reader and the environment. An example is

a tutorial where the user states his level of exper-

tise and the tutorial changes accordingly. Another

example would be a hyperdocument about office

procedures: the hyperdocument could change so

that a salesman in subsidiary A saw a different

hyperdocument from a director of subsidiary B.

I have never seen these benefits realised in prac-

tice except in simple ways. This is because it is

hard enough to author a good document in the

first place —irrespective ofwhetherit is a paper

document or ahyperdocument — and the extra

overhead of providing a smooth adaptation over a

wide spectrum of users is just too much.

Guide-u contains a lot of tailoring methods to

cater for the perceived need. Two of these are:

(1)

(2)

buttons can be automatically selected, either
by the user, or by the system, or according to

some Boolean expression (e.g. if file X exists).

If such buttons are embedded in enquiries

then this can act as a multi-way switch: show

text 1 if otherwise show text 2 if...; oth-

erwise show text 3.

a feature for procedures with arguments.

These, particularly (l), have seen good use, but

mainly for limited tailoring, done behind the user’s

back. They are used, for example, in the Xtutor

hyperdocument [7], which is a guide for beginners

to X windows. This product is portable to dif-

ferent sites and can adapt to cover differences in,

say, the use of X windows mouse-buttons or file

names. Xtutor wisely does not, however, try to

adapt itself radically according to the expertise of

the user.

My conclusion in this area is that too much

effort has been devoted to tailoring facilities in

Guide-u, and a few simple facilities is all that au-

thors can reasonably cope with.

13 Conclusions

This paper has covered wide areas but its messages

can be presented, in somewhat simplified form, as

the following guidelines to developers of hypertext

systems.

Do:

● design source formats and interfaces so that

the system will work well with existing tools.

More generally, try to work with the world ss

it is, rather than the world as you would like

it to be.

provide foundations that are above the go-to

level.

allow — even constrain — authors to work at

the logical level, independently of the hyper-

text presentation.

decide the style of hardware/software plat-

form needed and stick with your choice.

decide whether the system is for casual use,

and thus needs familiar metaphors, or for pro-

fessional use, and thus probably needs new

metaphors.

expect most of the implementation work to

be concerned with the user-interface.

Do not:

●

●

●

set out to build a hypertext system; instead

set out to create a system to help authors and

readers of on-line documents.

impose a style of authorship.

devote much effort to tailoring mechanisms.

expect hypertext facilities to be enough to

meet all the user’s needs to extract informa-

tion from hyperdocuments.

And, finally, Do:

● expect to enjoy the whole undertaking.

14 Acknowledgements

I would like to thank all the many people who have

contributed to the development of Guide over the

last ten years, especially at OWL and the Univer-

sit y of Kent.

References

[1] P. J. Brown, A hypertext system for UNIX,
Computing Systems, 2, 1, 1989, pp. 37-53.

[2] P. J. Brown, Using logical objects to control

appearance, EP—odd, 4, 2, 1991, pp. 109-117.

70 ACM ECHT CONFERENCE

[3] L. De Young, Linking considered harmful,

in Rizk, Streitz and Andr6 (Eds.), Hypertezt:

concepts, systems and applications, Cambridge

University Press, 1990, pp. 238-249.

[4] N. Meyrowitz, The missing link: why we’re all

doing it wrong, in Bartlett (Ed.), Tezt, contezt

and hypertezt, MIT Press, 1989.

[5] B. Rubinstein, The micro gailery at the iVa-

tional Gallery, International Conference on hy-

permedia and interactivity in museums, Pitts-

burgh, Pa., 1991.

[6] G. W. Rouse, Locator — an application of

knowledge engineering to ICL’S customer ser-

vice, ICL Technical Journal, 7, 3, 1991, pp.

546-553.

[7] W. Strang and G. Tardivel, Xtutor hyper-

document, in the public computer archive:

uk. ac. hensa. uniz, 1992.

[8] Y. Wolfsthal, Style control in the Quill docu-
ment editing system, Soflware-Pratt ice and

Experience, 21, 6, 1991, pp. 625-638.

