
222 ACM ECHT CONFERENCE

An Extensible Data Model for Hyperdocuments

Paul De Bra, Geert-Jan Houben

Dept. of Mathematics and Computing Science,Eindhoven UniversiQ of Technology
PO Box 513,5600 MB Eindhoven, the Netherlands

e-mail: debra@ win.tue.nl, houben @win.tue.nl

Yoram Kornatzky

Dept. of Mathematics and Computer Science, Ben-Gurion University of the Negev

PO Box 653, Beer-Sheva 84105, Israel

e-mail: yoramk@bengus.bgu. ac.il

Abstract

We present an extensible data model for hyperdocu-

ments. It is intended to serve as the basis for integrating

hypermedia systems with other information sources,

such as object-oriented database management systems,

information retrieval systems, and engineering CAD

tools. Hyperdocuments are described by means of a

small number of powerful constructs that integrate their

structural and behavioral aspects. The different instan-

tiation and combinations of these constructs yield an

open class of hyperdocuments. Nodes, anchors, and
links are all considered first-class objects and model-

ing constructs are applicable to all of them. These

constructs permit a description of the multiple levels

of functionality of an object within a hyperdocument,

and the packaging of the different views of an object.

Composite objects range over an extensible collection

of structures including networks, sets, time-lines, and

three-dimensional space CAD models.

1 Introduction

Current hypermedia systems are, to a large extent,

closed application-specific systems catering for small

sets of documents and supporting only limited classes

of such documents. In particular, the standard graph

model imposes a “tyranny of the link” [9] that lim-

its hyperdocument structures to directed graphs made

Permission to copy without fee alt or part of this material
is granted provided that copies are not made or distributed
for direct commercial advantage, the ACM copyright no-
tice and the title of the publication and its date appear,
and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise,
or to republish, requires a fee and/or specific permission.
Q1992 ACM O-89791-547-X/92/0011 /0222/ $1.50

of information chunks represented by nodes, and
links representing simple relationships between these

nodes. Recent hyperdocument models have considered

a richer set of structures including relationships (N-ary

links) [15], sets [30], and Petri nets [23]. Other models

have included composite nodes, which are themselves

graphs of nodes and links, in order to model hierar-

chical structures of information [4, 7]. These models

were motivated by knowledge representation, author-

ing, and reading concerns which demand a larger class

of structures for representing interesting information in

a natural way. Industrial applications of hypermedia
systems [16] also point to the need for a much lxger

expansion of the hyperdocument model. In an indus-

trial environment hypermedia systems would serve as

integration tools binding together the information from

a heterogeneous collection of sources such as informa-

tion retrieval systems, database management systems,

expert systems, and CAD tools. Tufte [27] discusses a

rich variety of visualizations of complex scientific and

engineering information, including time charts, maps,

and distance tables. Existing hyperdocument models

ignore this rich variety of composite objects. They hide

the semantics of this varied class of information struc-

tures from the hypermedia system and limit its ability

to serve as integration tool.

One could approach the challenge of enlwging the

scope of hypermedia systems, and in particulw the
need to turn them into open systems, by successively

adding new modeling constructs capturing a series of

increasingly larger classes of hyperdocuments. How-

ever, any fixed class of structures is bound to be found

limiting. The apparent contradiction between having a

fixed set of modeling constructs and achieving open-

ended extensibility, is one of the major problems to be

solved in order to turn hypermedia into a true integra-

tion technology. We suggest an alternative approach

to the development of an extensible data model for hy-

http://crossmark.crossref.org/dialog/?doi=10.1145%2F168466.168530&domain=pdf&date_stamp=1993-12-01

MILANO, NOVEMBER 30- DECEMBER 4, 1992 223

perdocuments. The model is based on a small set of

generic modeling constructs that can be freely com-

bined to define hyperdocuments. The generic nature

of these modeling constructs is based on a separation

of concerns between the fixed aspects of a hyperdoc-

ument that would always be present, and the variable

part that is extensible. Extensible database systems for

advanced applications have demonstrated the feasibil-

ity of isolating a few generic modeling constructs from

which different actual structures could be built.

Accordingly, our data model is made of two layers.

The lowest layer defines the kinds of first-class objects

in a hyperdocument. These objects are nodes, links,

and anchors. Each kind is an open-ended collection of

types defining the variety of thetmsic forms of these ob-

jects. The second layer is that of modeling constructors

that build complex information representations out of

simpler ones. These constructors correspond to three

ways in which complex objects can be built from their

components.

The composite object constructor builds a com-

posite object from its elements. For example, a

composite node, as used in recent work, is built

using a composite network constructor from sets

of nodes, links, and anchors.

The tower constructor packages together themul-

tiple levels at which an object within a hyperdoc-

ument is described. These levels would include,

among others, a structural description level, and a

visuat presentation level.

The city constructor binds together multiple views

(perspectives) of an object. Examples of differ-
ent perspectives for nodes representing program

modules would be the source code and the object

code for every module.

The three constructors can be applied independently

and hence we would have for example cities of tow-

ers (hence the name city) which define multiple views

of the same object where each view includes severat

layers of description of the same object. Note the

difference between towers and cities: a tower gives

different information about one object, whereas a city
gives different descriptions of basically the same infor-

mation.

Our data model is based on the object-oriented pro-

gramming paradigm. Hence, the entities forming a hy-

permedia application are objects with a state and an as-

sociated behavior. while the object-oriented paradigm

is a useful approach for application anatysis and de-
sign, experiences with designing actual applications

in object-oriented languages have suggested that one

needs more than just a library of classes. With only a

library tailored for a specific application area one does

not obtain a coherent framework for application design

and construction. An essentiat part of such a design

approach would be modeling constructs (often called

frameworks or clusters) that describe how individual

classes and instances are tied together. Our data model

provides such constructs for hyperdocuments in order

to serve as a foundation for a high-level design method

for hyperdocuments.

2 Structural Modeling Constructs

We start by identifying three fundamental kinds of ob-

jects: nodes, links, and anchors. Their definition is

based on the hypermedia philosophy as outlined in

many available hypermedia models. The set of classes

of these kinds of objects depends on the application and

our model is extensible with respect to the collections

of classes employed by the application. The modeling

constructs that we will introduce are applicable to atl

three kinds of objects.

2.1 Nod- Link and Anchors

Thetirst kind of object is thenode. Ahyperdocument is

an interlined collection of information chunks. These

chunks of information are modeled by nodes.

Definition 2.1 A node is described by a couple (i, v),

where i is the object’s identification and v is the node’s
value (its contents or state).

We will discuss later what kinds of values we allow,

and thus what kinds of information chunks can be rep-

resented.

The connections between the nodes are modeled by

links.

Definition 2.2 A link is described by a quadruple

(i, n, n’, v), where i is the object’s identification, n

is the linkb source ancho~ n’ is the link’s destination

ancho~ and v is the linkh value (its “meaning “).

An anchor describes the attachment of links to

nodes, by defining the part of a node related by the

link to other nodes. Selecting this specific part in the

source node enables the reader to follow the link to one

of the related nodes.

Definition 2S An anchor is described by a couple

(i, v), where i is the object’s ident@cation and v is
the anchor’s value (its location in a node).

Having anchors as first-class citizens allows for more

complex links than just links relating entire nodes.
Moreover, this allows us to apply our structuring con-

structs described below to anchors, resulting in a more

powerful hyperdocument model than is usually avail-

able. Separating the anchor information from the link

224 ACM ECHT CONFERENCE

List of Parts

boltl

bolt2 ‘

.

.

.

Figure 1: A 3D space composite object.

also has the practical advantage of isolating the link-

ing mechanism from the details of the connected nodes

[19]. Such isolation is important in a hyperdocument

model intended to support the integration of informa-

tion from a heterogeneous collection of sources.

Definition 2.4 Objects can be nodes, linkr, or an-
chors. A value of a node, link or anchor object can
be: a basic value (chosenfrom application-dependent
classes), a composite value, a tower value, or a city
value.

Basic objects are nodes, links, and anchors having a

basic value. The latter three kinds of values are dis-

cussed in the next subsections, as they are used to define

complex higher-level objects.

The value of a node models an information chunk

which, depending on the application, can be either sim-

ple such as a byte string, or complex such as a form.

Thus, we consider an extensible collection of values

for the basic nodes. The contents of a basic node

are opaque to the hypermedia system and are manipu-

lated through node-specific methods (e. g. specialized

editors).

A basic link is a simple relationship between two

nodes in a hyperdocument specifying how one infor-

mation chunk is connected to another one: this con-
nection could, for example, model an order of reading

as intended by the document’s author. The value of a
link specifies the type of the relationship between the

nodes. For basic- links the values are chosen from a

given domain of relationships.

A basic anchor representing the location of a link’s

endpoint in a node can be either of a familiar type such

as a position within a text node, or a location within a

more complex node such as an engineering 3D model

(see Fig. 1), which is a 3D coordinate.

2.2 Composite Objects

A composite object abstracts a collection of objects

into one higher-order object. Thus, a composite ob-

ject models a complex unit of information built from

simpler information objects. Existing hyperdocument

models include only a limited notion of composite ob-

jects [4, 7, 25]: a hyperdocument graph built from a

collection of nodes, links, and anchors. However, just

as composite information chunks arise naturally, lead-

ing to the need for composite nodes, there are many

examples of composite links and anchors, and a pow-

erfi.d hyperdocument model should account for them

too. First, observe that to capture a general notion

of relationship between the objects modeled by nodes

one needs N-ary links ([1 l]). Moreover, a relationship

between objects captured by a link may possess an in-

ternal structure. For instance, in a system in which the

basic nodes are (verbal and factual) statements and the

basic links are logical implications between statements,

a proof of a theorem can be viewed as a composite link

from a set of facts to a conclusion. The theorem is a

composite link which consists of both links (logical im-

plications) and nodes (intermediate facts). A link that

relates several parts of a node to other nodes requires a

composite anchor binding all these different parts. For

example, a link from a part list to points in a design

where that part is used may require a composite anchor

whose elements are the points in the design where that

part is used (see Fig. 1).

To represent these different kinds of complex infor-

mation objects, we introduce the notion of a composite

object, representing a complex unit of information hav-

ing an internat structure. A composite object is built

using a composite constructor that builds a composite

object from collections of nodes, links, and anchors.

Definition 2.S A composite object is an object with

a composite value. A composite value is a 4-tuple

(c, n, 1,a), where c is composite constructo~ andn, 1,a

are the sets of nodes, links, and anchors, respectively
that are usedby the constructor to dejine the composite
object.

The composite constructors that can be used depend
on the application, and we next discuss their nature.

Composite nodes provided by existing hyperdocu-
ment models are essentially graphs. However, tools in

an engineering environment for instance use a wider

class of complex objects besides graphs. CAD tools
use 3D object models composed of elements positioned

within a 3D space. Fig. 1 shows a a composite node

which is a 3D-drawing whose set of nodes include

two nodes representing bolts. Object-oriented database

management systems [1, 14] have an extensible class

MILANO, NOVEMBER 30- DECEMBER 4, 1992 225

of composite objects representing collections of data

including sequenced structures such as arrays and lists.

One should also note that a rich variety of visualiza-

tions of complex information such as maps, time-lines,

3D coordinate systems, and timetables are employed

in engineering and scientific practice [27]. Integrating

these sources of information within a hypermedia sys-

tem implies that the system should be able to regard all

these kinds of composite structures on an equal basis

with the familiar network structure. The alternative ap-

proach taken so far by hyperrneda systems is to regard

these complex structures as the contents of basic nodes

and relegate their manipulation to node-specific tools.

Encapsulating these structures within basic nodes has

severe conceptual and practical disadvantages. First,

observe that the basic hypermedia notions of a hyper-

document as an interlined collection of information

chunks, and the concept of information access through

navigation between nodes across links, are very natu-

ral concepts with which to describe the structure and

access methods for such complex chunks of informa-

tion. Thus, for the engineer manipulating such 3D

space models through a hypermedia system, there is

little conceptual distinction between navigation among

elements of a composite object across links, and be-

tween moving through that 3D space while examining

different elements of the design. Both these activities

are most naturally modeled through a unified notion

of a composite information object in which simpler in-

formation objects are placed. Practicably, unifying all

these different structures as a single notion of acompos-

ite object allows the development of extensible tools

for representing and manipulating hyperdocuments.

Accordingly, we define a composite object as built

from a collection of objects using a composite ob-

ject constructor. Such a constructor defines the struc-

ture of the ensemble of information. For instance,

a three-dimensional space constructor defines a com-

posite piece of information having the structure of a

three-dimensional space (see Fig. 1). Such a general

structure demands a description of how component ob-

jects are located within that structure, for example a

coordinate in the 3D space. Additionally, a compos-

ite object constructor includes global information and

constraints on the collection’s elements. For example,

a network composite may include a constraint demand-

ing the topology of the network to be a DAG.

Definition 2.6 A composite object constructor is a 6-
tuple (k,s, co, /c, CS,gi), where:

1.

2.

3.

k is the kind of object (node, lie or anchor);

s is a structure constructor;

co are the componentsgiven by aI: set of T1, a2:

set of Tz,

4. lC are the locations of the components;

5. m are the constraints; and

6. gi contains global information.

As can be seen from the definition a composite object

as a whole is more than the sum of its parts. Intuitively,

a composite object can be viewed as a template con-

taining holes into which the components are plugged.

The structure of the template is defined by the struc-

ture constructor. Note that a composite link also has

an internal structure containing nodes, links, and an-

chors, organized in a complex structure (which is not

necessarily a network). The link global information

with respect to such a link would include a global

directionality. Note that a composite object may be

included anywhere that a basic node can appear. So,

components of a composite node may themselves be

composites.

The most familiar kind of a composite node is a

hyperdocument which is a network over a given col-

lection of nodes, links, and anchors. Such a node is

built with a network constructor, whose inputs are the

nodes, links, and anchors of the network, and possibly

also a constraint on the topology of the network:

(k: node,s: network, co: (n: set of nodes,
1: set of links, a: set of anchors),
cx topology-constraint)

A familiar example that is encompassed in this def-

inition are webs in Intermedia [28]. These are collec-

tions of links that are overlaid over a common set of
nodes of the same document. A web is hence a com-

posite node defined by means of a web constructor from

a set of links (with anchors), but having no set of nodes

as a component. A document is then a set of nodes,

and applying a web to a document means creating a

new document from the original one together with the

web. Overlaying a web over a document may involve

an enforcement of a constraint that all links are from

and to nodes in the document. So, the web constructor

should include this integrity constraint.

Novel kinds of composite objects that were so far

regarded as the contents of basic nodes can now be

explicitly modeled. For instance, we can formalize

time-lines as built with a time-line constructor.

Our generalization of the notion of a composite ob-

ject within a hyperdocument is powerful enough to

encompass previous models which seem to be based

on entirely different notions than those of the “stan-

dard” hyperdocument model. For instance, the hyper-

media model based on sets suggested by Parunak [30]
is defined by means of sets overlaid over a universe of

nodes. This model can be defined within our frame-

work by having a composite set constructor whose lo-

cation information with respect to nodes contains a

226 ACM ECHT CONFERENCE

reference (identifier) to the nodes in the intersection.

Links between sets are defined with binary links hav-

ing two composite anchors. The elements of the two

anchors are the nodes in the intersection of the two sets.

2.3 Towers

The functionality of the objects within a hyperdocu-

ment is usually multi-dimensional, and hence a com-

plete description of an object within a hyperdocument

usually consists of several levels. For example, anode

has a structural dimension consisting of its contents

(e. g. text) and operations to manipulate them (e.g. a

text editor), and a presentation level describing their

graphical rendering on the screen in terms of presen-

tation attributes and methods. A third dimension or

level is that of attributes attaching a semantic role to

a node, e.g. issue or decision. llrne-dependent nodes

such as video have a temporal dimension defining the

schedule of their presentation [17]. These different di-

mensions correspond to different levels of description

of a hyperdocument and Me defined in terms belong-

ing to different conceptual spaces: the different levels

address different information. All these levels of de-

scription are necessary in order to fully capture the

functionality of an object within a hyperdocument.

We suggest a new modeling construct called a tower
in order to bind together all these levels of description.

Definition 2.7 A tower object is an object with a tower

value. A tower value is a mapping from a set of labels

to a set of objects. Each label is a description level,

corresponding to a separate level of the hyperdocument

functionali~. The domain for the function is~dfor

each class of tower objects. If the levels are always

given in a specijic ordec we may represent a tower as
a tup~eof objects.

An example of a tower for a text node is shown in

Fig. 2.

All kinds of objects are modeled by towers. Thus,

a link tower might consist of a structural level main-

taining the link’s set of anchors and an indication of its

direction, a presentation level indicating that it will be
drawn as an arrow on the screxm with a particular color

and appemnce, and a semantic level indicating the
meaning of the relationship between the source tower

and the destination tower.

An anchor tower would include a description of its
location in the node to which it is attached and its

graphicat rendering on the screen. An anchor for an

N-ary relationship link [11] would also include a a

semantic level giving the role of the attached node in

the relationship.

type

storage

presentation

semantic role

Figure 2: A tower for a text node.

We permit complete flexibility in the number and na-

ture of the levels of different kinds of towers. llms, one

can have towers with only a graphicat rendering level.

These may be usefid to describe graphical overviews

of documents where the contents of individual nodes

are not part of the overview. Such tailorability of the

tower structure permits the integration of information

from outside the hypermedia system.

A tower of a composite object, called a composite

tower, packages together the multiple levels of de-

scription of a composite object. As a composite object

is a collection of objects which would be themselves

towers, a level of the composite tower is built from

the corresponding levels of the elements of the com-

posite. We have previously motivated the need for

composite objects of all kinds and of a variety of struc-

tures but our discussion was purposely not targeted to

any particular level. Now, that we have introduced the

tower construct, it is natural to apply it to composite ob-

jects. One can observe that corresponding to composite

structures arising at the structural level of a composite

object, there are composite descriptions at the other

levels, which are just as varied as its structural level.

Accordingly, we would need presentation constructors

(e. g. menu constructors) that build a composite pre-

sentation from given elements, besides the structural

constructors (e. g. tables) that build a composite data
structure from its elements.

Definition 2.8 A composite tower constructor is a

mapping from a set of labels to a set of composite ob-

ject constructors. Each label is a description level,

corresponding to a separate level of the composite ob-

ject functionality. A composite constructor builds a
composite object of the type of its level from a set of

elements (coming fmm the corresponding level in the

towers of the elements of the composite object).

MILANO, NOVEMBER 30- DECEMBER 4, 1992 227

2.4 Cities

An object in a hyperdocument is often viewed from

different perspectives depending on the way it is ac-

cessed. Thus, an animation node might be viewed as

an animation film by a link referring to it from the text

that it illustrates, and as a code sequence when accessed

from the editor. Similarly, a hyperdocument is often

divided into multiple conceptual spaces. For example,

in an information retrievat application, information can

be divided into two related but separate collections: a

base set of cards, and an index representing a collection

of terms [3].

The important difference between the city concept

and the tower concept is the fact that the different ele-

ments of a city cleat with a different use of an objecc

the information is basically the same, but it is styled

differently for separate users in order to create sep-

arate user views. The different elements of a tower

describe rather independent aspects of an objecc the

information deals with the same object, but in general

the described aspects do not have anything in common

except the fact that conceptual y they describe the same

entity.

The city constructor packages together the different

views of a basic or composite object.

Definition 2.9 A city object is an object with a city

value. A city value is a mapping fmm a parameter

space into a set of tower objects. The parameter space

would be either a set of names or a data type:

City: Parameter type * Tower type.

The elements (in the range) of a city are called views.

Each such view is a tower describing the object from

a particular (user) perspective. These views modular-

ize the information according to the different ways in

which it maybe accessed by different reader groups.

In simple cases these views correspond to different

roles of the same object [21]. Thus, the different con-

ceptual spaces within an information retrieval system

can be modeled as two views in a city: a view includ-

ing the collection of information chunks to be directly

browsed, and a view consisting of the set of terms over

which intelligent search can be performed [3].

While cities occur most often with nodes, they are

also useful for links and anchors. Thus, a link into a
source code node would be a city of two views. The

first view links into the text of the source code, while

the second defines an active link whose traversal causes

an execution of that source code.

3 Behavioral Modeling Constructs

In this section we discuss the concept of virtuality. We

discuss a language for the definition of virtuat strnc-

tnres, and we consider the notion of browsing seman-

tics.

3.1 Virtual Structures

Virtual structures [8], such as virtual nodes, links, or

composites, are described not by explicitly specifying

their components, but by a computation procedure that

is activated whenever these objects are accessed. Many

hypermedia systems support different kinds of virtual

structures that are implicit in the form and the content

of the nodes. Such structures include, for instance,

navigation by query [26], implicit links from a word

to its dictionary entry [31], or virtual hypermedia net-

works for which the structure is entirely constructed by

the system from computed relations among nodes.

Observe that the different kinds of virtuat structures

correspond to the different modeling constructs that we

have defined. For example, the presentation level of

a node tower will often be derived from its structural

level; e.g. a textual node is presented in a simple text

window, whereas an image node is presented in an im-

age window. Similarly, some views in a city will often

be computed from others. Accordingly, we introduce

the notion of virtuality as an orthogonal dimension of

atl modeling constructs. This means that a virtual

object can be used anywhere a stored object can.

Definition 3.1 A virtual object is specijied by supply-
ing afunctiongenerating it from other objects) instead
of actually supplying it as a data object.

The function supplied for a virtuat object is activated

whenever the object is accessed, creating a process to

evaluate it and yielding the object. The language in

which these functions are specified is independent of

the structural modeling constructs.

Let us consider a few examples of virtual objects that

can be defined with our different modeling constructs:

A basic virtual link is defined by a predicate on

the properties of the nodes it connects. For in-

stance, for nodes representing time intervals in

knowledge-base application, their relationships

represented through links are virtuat and speci-

fied by evaluating a predicate on the intervals.

Our generalized notion of a composite object

allows for a composite node which is a three-
dimensional space in which various objects are

located. This is a composite object whose con-

structor builds a three-dimensional space. This

space could be virtual in which case its size and

228 ACM ECHT CONFERENCE

the density of the elements within that space are

computed from the size of the elements.

● Virtual views are often the most natural means

for the definition of a city. In the example for

computing cross sections of a 3D model, views

can be parametrized by the cross section angle

provided by the link to the city. It is most natural

to regard that city as being built from a variable

number of views. Formatly, this means that the

mapping: Angle ~ Cross section, as used

within the city, could recomputed instead of being

stored.

While the programming language used for the defi-

nition of virtual structures could be a general program-

ming language, and hence independent of the other

modeling constructs, it is desirable to use a specialized

limited language integrated within the model. Experi-

ence with database systems has demonstrated the use

of limited query languages (like the relational algebra

and SQL) in which a useful class of programs can be

expressed.

Accordingly, we suggest a limited language for the

definition of virtual structures in our data model. The

language will not define all virtuat structures needed,

but it can be used to define some of them: specifically,

at the level of views within a city.

3.2 A Virtual Structure Definition Language

The virtual structure definition language is an FP-

like language [2] made of two layers corresponding

to the layering of structures into constructors and ob-

jects. The first layer is small set of functional forms

that are higher-order operators (functions), construct-

ing new functions (operators) from given ones. They

abstract useful patterns for manipulating the model-

ing constructs we have defined. These operators are

generic, meaning that they are applicable to all instan-

tiation of a modeling construct. For example, the
filter operator selects elements of a composite object

according to a predicate, irrespective of the actual com-

posite object constructor used to build the object. A

second layer consists of operators specific to particular
types of structures; e.g. set-theoretic operators for set

composite objects [30].

The first three generic operators that we present are

applicable to the values of the objects built by means

of our three modeling constructs: composite objects,
towers, and cities. These operators are defined in terms

of manipulating elements of the values of these objects.

These elements are the components of a composite

object, the levels of a tower, and the views in a city,

respective y. Let us denote by G’(o1, 02, ...) the object

built from elements 01,02, . . . by means of a construct

C’, the application of an operator ~ to an object o by

~ :0, and its application to n objects 01, on by

f:<ol,..., on>.
The operators are

Apply-to-All: Transform all values of elements of an

object’s value by applying a function to each of

them. Such a function is a method defined for the

type of the elements. Formally, the operator gen-

erated by apply-to-all with a function ~ is denoted

by ~t. Its application is defined as:

~f : !O(O1 ,02,. . .) = c(f:ol, f:02,...).

FWe~ Filter a subset of the values of the elements

from an object according to a predicate. Such

a predicate is a boolean method for the type of

the elements. Formally, the operator generated

by filter with a predicate p is denoted by fP. Its

application to an object is then defined as :

3P : C(o,, 02,...) =

C :< o~ I oi satisfies predicate p >.

Enumeration: Construct an object using construct

C for an enumerated list of functions generat-
ing its elements. Formally, this is denoted by

E#~~erateCt f, ,f,,... J :0= C(fl:o, j-z: o,...).

Abstraction: The abstraction (grouping) operator is

applicable only to composite objects and parti-

tions their elements according to a function. Each

such partition contains those elements that yield

the same value for the function, and is abstracted

into anew composite object. Formally, for a func-

tion ~, and a composite object constructor C, we

defina

Abstractj,c : C’(OI, 02, ...) =
C’(c : Sl, c : S2, . . .)’,
where S1,S2 is a partition of 01,02, . . . according

to f and C’ is a composite object constructor.

Example 1: Consider a computer-aided learning

system in which courses are represented by hyperdocu-

ments whose nodes contain (among other information)

collections of exercises and whose links represent pos-

sible transitions. In this application one wants to select

from each node those exercises with a particular degree

of difficulty while maintaining the link structure. This
is done by applying an apply-to-ail to the hyperdocu-

ment with a function (which is a method for this kind

of nodes) that generates from a given node a new node

consisting of those exercises at the required level of

difficulty.
The different views of the hyperdocument con-

sist of its nodes relating to a particular subject.

This is achieved by the application of abstraction:

Ab.W@ttbj ect ,citg. Selecting a particular view in this

city is done via a filter. Cl

MILANO, NOVEMBER 30- DECEMBER 4, 1992 229

Example 2 Consider a composite object represent-

ing a time-line. A filter operation is used to select the

part of the time-line (and the events it contains) that

lies within a specified intervat of time. The interval is

specified by a predicate tl ~ time ~ tz that selects

all events with a time (the location along the time-line)

within the endpoints of the interval. Note that time

is the location component of the time-line composite

object. o

3.3 Browsing Semantia

Users interact with a hyperdocument by means of

browsing through their elements. This behavioral as-

pect of a hyperdocument is an integral part of its func-

tionality. Hence, we need a behavioral modeling con-

struct that defines the browsing semantics of each kind

of hyperdocument that we can define within the modell.

To arrive at the desired general notion of a browsing

semantics, observe that the browsing semantics of the

familiar network hyperdocument is the set of allowed

paths over the network. Hence, the browsing seman-

tics of a particular type of hyperdocument is defined by

the set of allowable paths within thehyperdocument. If

one regards the familiar network hyperdocument as afi-

nite automaton, the set of allowed paths is the language

accepted by the automaton. Thus, a specification of the

browsing semantics is a specification of a language of

paths. Generally this path language would specify tra-

jectories through composite objects. In some cases,

thepossiblepaths can be given extensionally by means

of enumerating actuat paths. However, in general one

would specify the possible paths by giving (intention-

ally) mappings from time to elements of the composite

node (or to coordinates in space).

Accordingly, we generally specify trajectories by

means of space-time axioms. Formally,

Definition 3.2 A trajectory (path) is a mapping:

Time + Tower type, where the tower type is that

of the elements in the composite object. The browsing

semantics of a composite object is a set of trajectories

over its elements. This set is speci$ed through space-
tirne axioms defining properties of the mappings used
in trajectories.
Different strategies for navigation in hyperdocument

networks, depending on their topology [29], can be

regarded as intentional ways of space-time axioms
for particular kinds of composite nodes, e.g. multi-

dimensional movements along coordinate axis for a

multi-dimensional hypercube.

‘We consider just the reading semantics.

4 Related Work

Several recent models for hyperdocuments have con-

sidered a notion of composite nodes which are them-

selves networks of nodes and links [4, 7]. Conse-

quently, the kinds of complex information structures

that these models are able to support is very limited

compaml to our general notion of composite object.

The Aquanet data model, motivated by knowledge rep-

resentation concerns [15] has suggested relations which

are N-ary links. However, they have not provided for

composite links having an internat structure as we do.

This limits the users ability to design a hyperdocument

at a high-level of abstraction in which complex rela-

tionships are regarded as first-class objects.

The Aquanet model [15] and the nested context

model [4] for hyperdocuments have suggested that a

description of basic node should include both its con-

tents and a description of its visual presentation. Our

tower construct carries this idea to its fill generality,

including its application to composite objects which

does not appear in previous models.

The notion of a city binding the multiple views of an

object or even an entire hyperdocument is novel, and

captures a common design method for hyperdocuments
in which their information is divided into multiple con-

ceptual spaces [24].

Several hypermedia toolkits [20, 22] provide a li-

brary of classes to be used for the construction of hy-

perdocuments. However, these classes provide prim-

itive objects without modeling constructs that would

describe the way hyperdocuments are designed from

these.

The HyTime [17] standard for hyperdocuments is a

generat model for describing the graphical presenta-

tion of time-based hyperdocuments. However, it deals

only with their presentation level and just considers ba-

sic nodes of a variety of media, Cruz [6] has recently

suggested an object-oriented data model for specify-

ing visual queries to object-oriented databases. The

type system used to formalize her model could be used

for describing the presentation level of our tower ob-

jects, when implemented in a database programming

language.

In contrast with models aiming at standardization

[10, 13] our model aims at being a basis for imple-

mentation. Our model is on a much higher level than

these other models. Its main goat is to be able to use

hypermedia as a tool for the integration of different
information sources in a heterogeneous environment.

An accompanying object oriented design and analysis

methodology would help in using our model for that

goal. So, instead of as a model suitable for particular

230 ACM ECHT CONFERENCE

application domains the model should be used as a kind

of application generator.

5 Conclusions

We have presented a set of modeling constructs that

make it possible to integrate a wide variety of in-

formation sources into a hypermedia system. These

structures were previously opaque to the hypermedia

system, limiting the usage of the common hyperme-

dia timctionality for manipulating and browsing them.

Such commonality has significant benefits for the user

and the designers of these information sources. Ac-

cordingly, we believe our model could be regarded

as an interface layer that, once supported by differ-

ent information sources, would permit their integration

within the hypermedia system.

We have designed our data model so that its mod-

eling constructs can be implemented with advanced

database programming languages [18, 12]. We briefly

indicate how such an implementation can be done as

a layer on top of such a language. The first layer of

our language, that of the basic objects, including ba-

sic presentation objects, is implemented by defining

a library of appropriate classes [20, 22]. A model-

ing construct is a type constructor building a new type

from the types of its constituents. A composite object

constructor such as a set, or timetable, is implemented

using the complex structure constructors provided in

these languages. Corresponding to the different levels

of composite towers, we would have composite type

constructors building data structures, composite pre-

sentations [6], and composite time schedules from their

elements. Thus, a city constructor constructs a function

type defining the type of mappings from the parame-

ter type into the view type. To impose the required

common functionality on the objects constructed by

a particular modeling construct, we define appropri-
ate classes of composite objeds, tower objects, and

city objects, whose attributes and methods define this

common functionality. In a similar way, we define the

common functionality of the three kinds of first-class

objects: nodes, links, and anchors. Vhtuat structures
are implementable using active vatues as supported

by advanced applications database systems. Such an

implementation of our modeling constructs leads to a

programming environment supporting the integration

of information sources through the hypermedia system.
It atso atlows the construction of such extensible hyper-

media systems using avdlable object-oriented database

systems.

While many approaches have been suggested for

object-oriented analysis and design of software sys-

tems. none haa considered hyperdocuments and their

special features. Existing data models for hyperdocu-

ments have considered the facilities to be provided by

a hypermedia system to support hyperdocuments, but
have not suggested a systematic anatysis methodology

for extracting requirements for large hyperdocuments

and for systematically developing their design. Our

data model is intended to serve as the foundation for

such an object-oriented analysis and design methodol-
ogy for hyperdocuments.

An important direction for future research is the de-

velopment of our data model into a model for describ-

ing virtual worlds [5]. These systems allow their users

to browse through computer-generated worlds consist-
ing of objects embedded in a virtual space. Much of

their functionality is similar to the facilities that hyper-

documents in our model provide, and developing our

model into a virtual reality data model would clarify

and serve as a design method for such virtuat worlds.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

F. Bancilhon et al. The design and implementation

of 02, an object-oriented database system. In

K.R. Dittrich, editor, Proc. oftlze Zntl. Workshop
on Object-Oriented Database Systems,pagea 1-

22, 1988.

J. Backus. Can progr-ng be liberated from

the von Neumann style? A Ii.mctional style and

its algebra of programs. Communications of the

ACM, 21(8) :613-641, August 1978.

P.D. Bruza. Hyperindices: a novel aid for search-

ing in hypermedia. In A. Rizk et al., editors,

Hypertext: Concepts, Systemsand Applications,

Proc. European Confi on Hypertext, pages 109–

122,1990.

M.A. Casanova et al. The nested context model

for hyperdocuments. In Proc. ACM Hypertext
Con., pages 193–201, 1991.

C. Cruz-Neira et al. The CAVE audio visuat

experience automatic virtuat environment. Com-
munications of the ACM, 64-73, June 1992.

LF. Cruz. Doodle a visuat language for object-
oriented databases, In ACM SIGMOD lrzti. Con$

on Management of Data, June 1992.

F. Garzotto, P. Paolini, and D. Schwabe. HDM -

a model for the design of hypertext applications.

In Proc. ACM Hypertext ConJ, pages 313–329,
1991.

F.G. Hatasz. Reflections on notecards: seven

issues for the next generation of hypermedia sys-

tems. Communications of the ACM, 31(7):836-

851,1988.

MILANO, NOVEMBER 30- DECEMBER 4$1992 231

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

F. Httlasz. Keynote speech: “seven issues” revis-

ited. In Proc. ACM Hypertext Con$, 1991.

F. Halasz and M. Schwartz. The Dexter Reference

Model. In Proc. NZSTHypertexl Standardization

Workshop, 1990.

R. Hull and R. King. Semantic database mod-

eling: survey, applications, and research issues.
ACM Computing Surveys, 19:201–260, Septem-

ber 1987.

M. Jarke et al. DAIDA: an environment for evolv-

ing information systems. ACM Trans. on Infor-

mation Systems, 10(1): 1–50, January 1992.

D. Lange. A Formal Model of Hypertext. In Proc.

NISTHyperteti Standardization Workshop, 1990.

D. Maier et al. Development of an object-oriented

DBMS. In Prw. ACM Symp. on Object-Oriented

Programming: Systems, Languages, and Appli-

cations, pages 472-482, 1986.

C.C. Marshall et al. AquaueC a hypertext tool

to hold your knowledge in place. In Proc. ACM

Hypertext ConJ, pages 261–275, 1991.

K.C. Malcolm, S.E. Poltrock, and D. Schuler.

Industrial strength hypermedia requirements for

a large engineering enterprise. In Proc. ACM

Hypertexl ConJ, pages 13-24, 1991.

S.R. Newcomb, N.A. Kipp, and V.T. Newcomb.
The “HyTlme” hypermediahime-based document

structuring language. Communications of the
ACM, 67-83, November 1991.

A. Ohori, P. Bunemau, and V. Breazu-Tannen.

Database programming in Machiavelli — a poly-

morphic language with static type inference. In

ACM SIGMOD Intl. ConJ on Management of

Data, pages 46-57, 1989.

A. Pearl. Sun’s link service a protocol for

open linking. In Proc. ACM Hyperteti ConJ,

pages 137-146,1989.

J. Puttress and N.M. Chtimaraes. The toolkit ap-

proach to hypermedia. In Hypertext: Concepts,

Systems andApplications, Proc. European ConJ

on Hypertext, pages 25–37, 1990.

J. Richardson and I? Schwarz. Aspects: extending

objects to support multiple, independent roles.
Irt ACM SIGMOD Intl. ConJ on Management of

Data, pages 298-307,1991.

M. Sherman et al. Building hypertext on a hy-
permedia toolkit: an overview Andrew Toolkit

hypermedia facilities. In Hypertext.’ Concepts,

Systems and Applications, Proc. European ConJ

on Hypertext, pages 13–24, 1990.

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

P.D. Stotts and R. Furuta. Petri-net-based hy-

pertext document structure with browsing se-

mantics. ACM Trans. on Information Systems,

7(1):3-29, 1989.

N.A. $treitz, J. Hannemann, and M. Thuring.

From ideas and arguments to hyperdocuments:

traveling through activity spaces. In Proc. ACM

Hyperteti Con$, pages 343–364, 1989.

H. Schutt and N. Streitz. HyperBastx a hyperme-

dia engine based on a relation database manage-

ment system. In A. Rizk et al., editors, Hypertext:

Concepts, Systems and Applications, Proc. Euro-

pean Con$ on Hyperteti, pages 95–104, Novem-

ber 1990.

K. Tanaka, N. Nishikawa, S. Hlrayama, and K.

Nauba. Query pairs as hypertext links. In Proc.

IEEE Data Engineering Con$, pages 456463,

1991.

E.R. Tufte. Envisioning Information. Graphics

Press, Cheshire, Connecticut, 1990.

K. Utting and N. Yrutkelovich. Context and ori-

entation in hypermedia networks. ACM Trans. on

Information Systems, 7(1):58-84, January 1989.

H. Van Dyke Parunak. Hypermedia topologies

and user navigation. In Proc. ACM Hypertexl

Con., pages 43-50, November 1989.

H. Van Dyke Partmak. Don’t link me in: set based

hypermedia for taxonomic reasoning. In Proc.

ACM Hyperteti Con., pages 233–242, 1991.

N. Yankelovich, B. Haan, N. Meyrowitz, and S.

Drucker. Intermedia the concept and the con-

struction of a seamless information environment.

IEEE Computer, 21(1):81-96, 1988.

