
Visual Support for Reengineering Work Processes

Keith D. Swenson

Collaboration Software, Program Products Division
Fujitsu Open Systems Solutions, Inc.
3055 Orchard Dr. San Jose, CA, 95134
+1408 456-7667 kswenson@ossi.com

ABSTRACT
A model for collaborative work process and a graphical
language to support this model is presented. The model
allows for informal flow of communications and flexible
access to information along with a formal flow of responsi-
bility. Work is decomposed into a network of task assign-
ment (actually requests for those tasks), which may be
recursively decomposed to finer grained tasks. The model
includes consideration for authority and responsibility.
Process flow can be dynamically modified. Policies
(templates for a process) maybe tailored to provide versions
of a process customized for different individuals. The visual
language is designed to ease the creation of policies and
modification of ongoing processes, as well as to display the
status of an active process.

KEYWORDS
Visual language, collaboration% work flow, process

modeling, business process reengineering.

INTRODUCTION
Information technology has proven to be a great aid in
automating and accelerating well defined production activi-
ties. While computers have become relatively ubiquitous in
the office setting, there is a lack of conclusive evidence
suggesting that computers have been successful in increasing
productivity of an organization at an aggregate level. There
are undoubtedly a number of reasons for this “Productivity
Paradox’’.[l 8][2] [26][15]

One very promising approach to increasing organizational
productivity through the use of information technology is
termed “Business Process Reengineering’’[30] [3]. Studies
have shown that automating an existing manual work
process will have a very slight effect on productivity [18].
Instead, if the entire process is examined, aud then
redesigned to take into account capabilities provided by
information technology, phenomenal increases in produc-
tivity can be achieved[9]. These increases in productivity
typically arise out of reducing the number of individual steps
to complete a process[8].

Permission to copy without fee all or parl of this material is granted
provided that the copies are not made or distributed for commercial
advantage, the ACM copyright notice and the title of the publication
and its date ap~ar, and notice is iven that copying is by permission

dof the Aaaociatlon of Computing achmery. To copy otherwise, or to
republish, requires a fee and/or specific permission.

The new process is made out of tasks which are less menial
in nature, and the individual is empowered to play a more
influential role in the process. Thus the advantages of BPR
m not only those of improving organizational productivity,
but also as a way to improve individual “quality of work
life”.

Though the benefits of BPR are known, organizations are
iinding it exceedingly difficult to implement. Existing
software (mainly workflow packages) are too inflexible to fit
the needs of all of the different users and groups within an
organization. The actual processes within an organization are
largely unknown to any single individual,

Regatta Project Goals
The Regatta group was formed in 1991 in order to develop
software to support workgroups and to aid in reengineering
work processes[28] [29]. In order to achieve this the Regatta
project has set three specific goals:

1. To make software that supports the coordination of activ-
ities of different members of a group by automating work
processes.

2. To make software that allows every individual in a group
to gain a better understanding of how their group or organi-
zation works. It is not .wfIicient that a work flow tool act as a
black box process. It is furthermore not sufficient for the tool

to assume that the present process is known, it must help in
the discovery of the process.

3. To make software that supports the change of processes,
by explaining the process to users.

Requirements for the Model
Eaxe of Process Dejinitiom. Collaborative processes need to
be defined in such a way that the average user can change
and create process descriptions. Experience with non-

programmers suggests the use of a graphical approach to
describing a process. [25][12]

Ease of Monitoring Proces~ In addition to being easy to

program, one purpose of the graphical representation is to
visually represent the current state of a process to help the

participants in the process understand what has happened
and what may happen next.

COOCS’93 -1 l/93/CA, USA
Q 1993 ACM 0-89791 -627 -1193 /0010 ...$l .50

130

http://crossmark.crossref.org/dialog/?doi=10.1145%2F168555.168570&domain=pdf&date_stamp=1993-12-01

Dynam”c Modification: Once a process has begun execution,
it may be changed due to special circumstances not foresee-
able at the time of definition. A plan (the definition of a
process) must be modified easily on a case by ease basis,
without requiring that the process be restarted at the begin-
ning. Requiring that the process be complete to the n-th
detail before starting would be a barrier to use in most situa-

tions,

Partial DeJnitionx It is important that the user is able to
define partof the plan in order to start the process,, and is

able to add to the plan description as the process advawes. It
has been suggested that it may not be possible to completely
define many processes beforehand due to inconsistent micro-
theories of how the task should be done whose confiicts do
not get resolved until after the process is started.[11]

Individually Tailorable: The model must be designed such
that each person or group ean supply their own policy for a
particular task or goal. A policy is a template t.lhat can
automatically create a plan for a particular situat.hm, The

system must maintain multiple versions of a policy,, poten-
tially one for each person or group. It must “inherit” a group
or organization version of the policy, when no individual
policy exists. When an individual reeeives a reques~ the
system must use the appropriate policy.

Abstraction and Decomposition: Since each person views
what is happening in their own way, it is important that the
plan they define works at the level that they do. Higher level

people use higher level generalizations and “manipulate” at a
more abstract level, while lower level people are concerned
with the details.

Control of plan: Since the system allows the person who is
responsible for a particular result to modify that part of the
plan, it must protect that part from modification by others.
Thus the system must support the idea that different parta of
the process are controlled by different participants in the
pmeess. This assures that the plan belonging to the respon-
sible person is being followed.

Authority: Since steps in a process are real and potentially
lengthy tasks, the system must be clear about the authority of

the origination of the tasks. Any user may create a lprocess,
but it should not be possible for a user to create a task for the
accounting department to produce a large cheek without
following proper procedures. To do this, the system~ should
accurately communicate the authority of the originator of a
request.

Negotiation: While the system automates the assignments of
tasks to people, it is important that users retain the ability to
manage their own work load. An assignee too busy cmother-
wise unable to handle a task may decline the task, and the
system must raise some form of an exception. This mecha-
nism should support a rich free-form communication
between the requester and the assignee within the context of
the process so that the task might be reassigned, or the
pmeess modified so that work can continue. In a complex
system such exceptions might be commo~ and it must be a

feature of the system to support the resolution of such
conflicts.

Delegation: A plan must be able to represent delegation
well, so that when one person delegates a task to another, it
appears as a delegated task, and not as a myriad of detailed

things for the other person to perform.

Automation: Users need to understand not only that the task
exists to be performed, but also some idea of how the task
came to be assigned to them. The system must automate
process so that workers can concentrate upon their special-
ization, and spend less time on coordination issues.

Open: The system needs to support the use of tools that are
specialized to the user’s needs, and not to require that all
work be completed within the system. The model should
anticipate use of external tools and still provide sequencing
support of the various tasks that need to be done with those

tools.

THE MODEL
The model supplies a variety of ways to support the commu-
nications needed to coordinate activities within a group.

Colloquies
Primarily, the model provides a shared collaboration space,
called a colloquy, in which to coordinate a set of tasks that
am performed to accomplish a specified goal. Much has been
said about the benefit of such a shared space for collabora-
tion.[21] [20] ConversationBuilder[13] [14] has shown that
such an approach can be an effective framework for a wide
variety of collaborative activities. L&e ConversationBuilder,
this model provides for active support of collaboration.

A colloquy is composed of a shared data space and a collec-
tion of plans. The plans are composed of stages and roles.
Stages each contain a collection of actions. The shared data
space can hold documents and other artifacts.

The colloquy also defines the group of people who may have

access to the information within the colloquy, thereby
providing a measure of control of the distribution of infor-

mation.

Actions & Mssssges
Users act on the colloquy through actions which are either
built-in or user defined. It is important to remember that the
main design goal is to facilitate communications between the
users of the system. Therefore, with every action users may
include a message with details about what they have done, or
why they have made a particular choice. This is partkxdsrly
important if a non-standard action is chosen, such as a rejee-
tion. The message explaining why a choice was made, or
what needs to be done before a particular action will be
takem is appropriately kept within the context of the
colloquy.

131

History
A record of all actions and their associated messages can be
browsed at any time by any participant of the colloquy. This
is a way for a new participant of the colloquy to catch up on
what has happened up to this point. Since date and time are
automatically recorded for each action it is easy to determine
which tasks are taking the longest and might possibly need
some tine tuning of the process.

Plans
The process is modelled as requests for tasks. Plans are
composed of a network of stages, each stage representing a
task request, commitment, or question as a specific step in
the process. Each stage may be active or inactive indicating
whether the associated task is currently underway.

A stage includes one or more user defined actions, called
options. Each option (with it’s associated message) repre-
sents a declaration that the assignee may make to represent
the results of the task or decision. The chosen option causes
an event to be sent which ultimately activates and deactivates
other stages. Any number of stages may be active at the
same time, allowing work to proceed in parallel.

The person who is responsible for the result of the plan is the
owner of the plan. The plan representa the owner’s point of
view. The owner is usually the creator of the plan, and is the
only person who may make changes in the plan.

Plans are created and modified by using a graphical repre-
sentation called Visual Process Language (VPL). As the
process is enacted, the current status of the process is viewed
with the same graphical representation.

Stages
Strictly speaking stages are not tasks, but rather the commu-
nications needed to coordinate tasks. A stage is always a
request from one person (the plan owner) to another person
(the assignee). In Searle’s taxonomy of speech acts[22][23]
the stages represent either directives (requests to another
person) or commissive (if assigned to yourself). Stages
appear in the VPL plans as ellipses.

The key difference between a task and a request for a task is
that a request may be accepted or declined. A request is
accepted to communicate that the task will be done.
Declining a request is really a message back to the plan
owner that something is wrong. The owner may then choose
to assign the request to someone else, or may choose to
change the request to make it acceptable. In a real world
situation the owner and assignee may negotiate back and
forth several times before coming to agreement on the task to
be done. The user need not plan for such a dialog because it
is built into the collaboration model.

The request may be expressed in any amount of detai~ it is
not constrained to a set of predefine taska. This allows
language to be used naturally for the precise description of
the task, and represents the Regatta philosophy of supporting
communications, not restricting it.

Roles
Each stage has an assigned role, which appears in the upper
part of the stage’s ellipse. A role is simply a container for a
list of names of people or groups. A role is not a quality of an
individual, but rather a relationship between a person (or
group) and a particular colloquy. A given person may play
one, two, or all of the roles simultaneously in one colloquy,
while playing different roles in another colloquy. The role
that is assigned to the stage is said to be responsible for the
stage.

Forms
Each stage has a form which is used to display colloquy
information at the time that stage is active. While many
processes will use the same form for all stages, there are

cases where a special view of the information is desired for
specific stages of the process.

Options
From Searle’s taxonomy of speech acts, a declaration is an
utterance which in the act of speaking it changes the state of

a group. Clearly, declarations are the key to coordinating the
activities of the group. The options on a stage represent the
declarations that the assignee may make as a result of
performing the task. Small circles on the edge of a stage
together with the arrow protruding from it represent an
option. The option is labelled with a letter or a few letters to
indicate the event that is expected to trigger the action. The
actual event may have a longer name. In most cases the
option will complete the stage and cause it to deactivate.
Alternately, options can be set to leave the stage active after
sending its event. This is indicated in VPL by using inverse
coloration of the option.

The declaration may include any amount of detail necessary
to communicate the result of the task. This detail is included
in the message that can accompany any user action.

Each option appears as a menu item to the responsible
person. When the task is completed manually, the assignee
simply selects the menu item. Like a declaration the act of
choosing an option changes the state of the process. It does
this by sending events to activate or terminate other stages.

Though eventa are represented as arrows horn one stage to
another stage, they should not be viewed as carrying data
horn one task to another task. The event is instead an
abstract mechanism that is used purely to coordinate stages.
The information output by a task or needed by a task is
distributed to all active stages simultaneously by the
colloquy mechanism.

Non-stage Nodes
While stages represent the major steps in a process, there are
other kinds of nodes which provide some automated capabil-
ities within the plan. Programmed nodes, represented as a
small circle, can execute a user defined script when
activated. Condition nodes send an event depending upon
whether an expression evaluates to true or false. Tmer nodes
send events a specified number of days or weeka after being
activated, or at a specified time in tie future. Start node:

132

(hexagons with “start” in them) are automatically activated
when the plan is initialized. Exit nodes are used to send
events horn a subplan to its parent plan. Exit nodes are
represented as hexagons labelled with the event they will
send to the parent.

When two or more event arrows are pointing into n stage it
means that the fist activate event from any one of tlhem will
activate the stage. This OR-like behavior is comrncn for all
VPL nodes except for the AND-node which has the propefiy
that it receives all expected events before it sends any event.
The AND-node is represented by a small circle with a “plus”
symbol in it.

All non-stage nodes can send any number of events upon
completion. This allows any non-stage node to stant parallel
tracks in a plan.

Split Stage
A split stage is a special kind of stage that makes a,copy of

itself for ever person assigned to its role. This allc)ws each
person in the list to respond uniquely and in any orcler to the
request. An AND-node placed after a parallel split will cause
the process to wait until the last person takes their action
before continuing.

SubPlans
If the request is not to be completed manually, the assignee
may create a subplan to accomplish the task. The assignee
becomes the owner and creator of the new subplan and may
make requests to others by creating stages within the
subplan.

The subplan is ended by activating an exit node, when sends
an event to the parent stage. If the event sent by the exit node
matches an option on the original stage, then that option is
triggered just as if the assignee had selected the corre-
sponding menu item.

Subplan provide more than just hierarchical decomposition
of tasks into subtasks. Since the subplan is owned and can be
modified by a different person than the parent plaq it allows
people to collaborate in the specification of the planning.
The result is a collaborative planning tool.

Built-In Actione
In order to simpl@ the construction of mmningful
processes, certain common actions and interactions are built
into the stage. They help facilitate the process of coming to
agreement about a particular task or questio% ancl help to
resolve exceptions.

The stage starts out inactive in a state called unstarted. Upon
receipt of an activate event the stage becomes offered. When
offered, it is the responsibility of the assignee and appears on
the assignee’s task list. The built-in actions decline causes
the stage to become unassigned which is the responsibility
of the owner. The owner may then change the request or
change the assignee and by choosing the action reassign but
the stage back into the offered state. The accept action will

but the stage in the manual state. Choosing sub-plan will
create a subplan and put the stage in automatic mode.

These states work a little differently when the stage is
offered to a group. An individual accepting the task has the
effect of removing the rest of the group ffom the responsi-
ble list, thereby reserving the task to himself. ‘l%e~ after
acceptance, that individual’s policy might be used to create a
sub-plan. Finally, the decline option for a group causes that
individual to be removed from the list of names in the role.
Only when everyone has declined the task, and the role is
empty, does it go to the unassigned state thereby signaling
the owner to get involved. An approximate state chart for a
stage is shown in Figure 1. See [10] for a thorough treatment
of state charts.

Finding Your Tasks
Assigning an active stage to a user is not complete until that

user has been made aware that the task exista. The pending
list functions as a to-do list, listing all of the colloquies
within which that users currently has a pending action. As
new requests are made to an individual, they appear on their
task list. A actions are taken that complete stages, they
disappear from the list. When a task is automated by a
subplan, it disappeam from the list.

scripts
The Vkual Process Language is a coordination language. Its
capabilities are orthogonal to the procedural language
needed to automate simple tasks. For this reason the inter-
preted scripting language called TCL (Tool Command
Language)[19] is included. TCL can be extended by user
defined commands and procedures. External programs can
be called.

The purpose of a programmed node is to provide a place to
put a user defined script that is executed when the node is
activated. Stages has scripts that are evaluated when the
stage is activated and when deactivated. Options placed on a
stage have two scripts, one that is evaluated on the client side
ad one evaluated on the server side,

active /

Figure 1. State chart diagram for a stage

133

EXAMPLE PLAN
An example plan which is used within a software develop-
ment team to handle and prcwess bug report is shown in
Figure 2. It represents a Project Manager point of view on
the way that a software development bug report is handled.
This plan was invoked as a request from the submitter to the
project team (fulfilled here by the project manager) to handle
a particular bug report. The first step in the process is for the
submitter to input the details about the bug. This information
is kept in the colloquy’s shared data area.

After the submitter submits the report, the Test Lead is
responsible to “reproduce” the bug, that is, to verify that the
anomalous behavior can be reproduced from the instructions
in the report. Failing to reproduce the bug usually means that
the report is missing some detail and is therefor sent back to
the submitter to supply the missing information and to
submit it again. Notice that the use of loops like this make
the plans non-deterministic and a better fit to the real world.
The capability to construct such quality loops answers many
of the problems discovered with linear oriented work flow
systems.[16]

The request to reproduce the problem comes from the
Project Manager to the Test Lead. Notice that this happens
without the Project Manager needing to be aware that the
bug has been submitted. This is because the submitter has
followed the policy set up by the Project Manager. This is
how the model assures that proper authority is presented
when the proper process is used.

No subplan - Manual Operation
When the “Can Problem be Reproduced?” stage is activated
without a subplan, the user must respond manually. The
colloquy appeam on the Test Lead’s “pending” lis~
indicating that the Test Lead has responsibility for some
action within the colloquy.

In the colloquy window, the Test Lead must respond to the

request from the Project Manager by selecting either a menu
item that says “Can not reproduce” or “Reproduced.” These
menu items were generated automatically from the VPL
description of the plan. “Accept” & “Decline” built-in

actions are also available in any stage so that the Test Lead

. ..
; Quality A8wmnce PlOn -- Proj Mgr

Figure 2. An example plan: quality assurance

can communicate whether the task will be done or not. Note
that declining at this stage will bring the Project Manager
into the colloquy for the first time, to resolve the problem.
Eventually the Test Lead determines whether the problem is
reproducible or not, selects the appropriate menu option, and
the plan takes its course.

Automation through Subpians
Responding to this request may take a complex process, so
the Test Lead may wish to create a subplan. When starting to
create a subplan for “Can Problem Be Reproduced?” a
screen sirdar to that shown in Figure 3 will appear. The
possible options that the parent stage expects appear in the
exit nodes on the right, The plan is built by adding in stages,
and assigning them to roles. The plan need not be complete
before enactment can start, kecause editing on the fly allows
it to be completed after starting. Ultimately, activating an
exit node will cause the corresponding option in the parent
stage to be taken.

Automatic Subpians from Poiicies
The Test Lead may find that he often receives the request
“Can Problem Be Reproduced?’ Manually creating the plan
every time could become quite tedious. Instead he will save
one of his plans as a policy. The policy will create a
complete plan automatically when it is invoked. The policy
is just a template for a plm, it is the starting configuration for

the plan, which may then be ffeely modified to fit the needs
of the instance.

The policy can be set to be invoked automatically when the
request is offerea or to wait until the assignee has accepted
the task before creating the subplan. The latter option is so
that the person might have a chance to review the details
before accepting what might be a very complex task. If
automatic invocation is chose% then the assignment of
subtasks could be passed on to others without the Test Lead
being involved at all.

incremental introduction - Key to Success
Allowing incremental automation is a key to acceptability of
the model and the system. Wh.bout automation the system
works like e-mail: a request is sent from one person to
another while retaining the benefit of the shared space and
the history mechanism. Then, as users become more sophis-
ticated, or tasks more repetitive, users may automate their
own tasks, by creating plans and finally policies using VPL.
Tasks that are rare and are not worth the trouble to automate
do not need to be automated.

--- ,
~ canproblem be Reproduced? - Test Lead I

$

QCan Nc4
Rq)mduce

o
stall

,

a
Repfcduced

t --- f

Figure 3. An empty subplan diagram

134

.. ...
* QuaIity Assurance Ph. –– Proj Mgr

.:- -.-”-

*-
.-.””

-.-”-
.---”

-.-”-
$’

-:
.---”

::=%’j?$%kid FD=%:%?F~~d V = CIose_Fixed
-.-”-

1%\l R = ResoIve_~ejected N = Fh_Not_Vert~ed f
----- I ..-”-

. ..,,.,,,..,,y*
!

. ,,,, ,,, ,,,., ,,, . ,., ,#--
.>

It is also critical that the person who does the automating is
the same person who sees the benefit from this. You
automate your own tasks. the more time you put into i~ the
more benefit you receive. Lack of observation of this
principle is cited as a reason for failure of many groupware
systems. [6] [7] A similar plea for empowering user is made
in [1]. VPL empowem users to have control over their

individual parta of the process, allowing them to experiment
with, mod@, and evaluate the processes, leading to real
business process reengineering.

PAlTERNS OF USAGE OF SUBPLANS
In order to illustrate the ad-hoc flexibility and expressiveness
of VPL, a number of commonly occurring cases have been
included in this section. All cases are examples of hc)w a Test
Lead named John might automate the answer to “Can the
Problem be Reproduced’?” These are examples of policies

that he might write to be automatically invoked.

Delegation: Figure 4 shows a simple, end probably commorL
usage of a subplan to delegate the task by requesting that
someone else handle it. This is the way that requests would
be automatically routed to a person who specializes in that
task. This is done by drawing in a stage with the same

~ Can Prcbbm be Repaxluced? - John

,

--

,-------
g : caflnOt&@ce

----------------------------------J

Figure 4. Simple delegation of identical task

Diagram 1. The upper plan,
owned by the Project
Manager, represents his
view of the process, and only
he may modtfy that plan. The
highlighted active stage
represents a request from the
Project Manager to the Test
Lead. The subplan has been
created by the Test Lead In
order to satisfy this request.
The Test Lead holds exclu-
slve right to modify the
subplan. Results in the
subpian effect trensltlons in
its parent.

question and optiorm, and assigning a different person
(Albert) to it.

The start box is connected to the stage so that when the plan
is started, the stage will be activated. The effect is that Albert
is now responsible to answer the questio~ and this colloquy
will appew on his pending list. When he does answer it, his
answer causes the conclusion of the subplan by activating
the appropriate exit node.

Rephrase the Question: The request “Can Problem Be
Reproduced?” comes from the Project Manager’s point of
view of the project. It is often the case that within a different
team, different terminology may be used. [5] John may
decide to handle the request by requesting a diiTerent task,

one more tuned to the way the test team works. For sake of
example shown in Figure 5, this team considers a problem
report to be valid if it is reproducible, and invalid if not. The
question that Albert will see is “Is this problem report
Valid?’ The answer is a simple “Yes” or “No.” The yes or no
response is translated to the “Can Reproduce” or “Can not
Reproduce” response by comecting them with an action
line. The project manager is not required to learn the special
terminology of the team. This rephrasing ability allows for a
matching of the way that different groups work and view the
task.

Serial Decomposition of Task What maybe a single step at
one level, may be several steps at another. The example in

---,
I Cen Prdiem be Reproduced? - John

I

~

l -- ;

Figure 5. Delegation with rephrasing the question

135

Figure 6 show linear decomposition of the task into three
distinct steps. These steps could be assigned to different

people, or to a single person as a simple sequence reminder.
As each stage completes, it activates the next stage. When
the final stage completes the entire plan is completed, and
the result is reflected to the higher level. Each stage also
involves a YesfNo choice; at any point if the “No” option is
chosen, the subplan is exited without activating remaining
stages.

Parallel Decomposition of Request: The example shown in
Figure 7 shows two separate tasks started in parallel. Two
different testers see this colloquy appear on their pending
lists simultaneously. They are both requested to perform the
test on two different systems, and they both make a decision.
If either of the testers can positively reproduce the bug, this
conclusion immediately causes the completion of the plan.
This OR condition is denoted by having the action arrows

point directly to the exit node, which terminates all stages
within the plan if there are any left active. The AND-node is
used to prevent the subplan from Wing terminated when
only one tester can not reproduce the problem. They must
both conclude that the problem can not be reproduced before
the plan is terminated sending a “Can Not Reprcduce” event
to the parent.

Parallel decomposition allows for several tasks to be started
without any sequencing constraints upon them. The people
(or teams) are able to work concurrently.

I Can PrcMem be ReWcduced? - John 1
#

,-- !

Figure 6. Decomposition of task into 3 serial tasks.

~ Can Problem be Reproduced? - John
1
t
,

,

,,,--- J

Figure 7. Two tasks activated in parallel

Conditional Branching: Figure 8 shows an example where
the plan tests the value of the “system” attribute entered by
the submitter. If system is set to Unix, then Albert is
requested to validate the report. If system is set to MSW the
Jce is requested to validate the report. Only one of them will
see the colloquy appear in their pending list, and the answer
that they give will become the result of the subplan.

If neither of the conditions is true, then the plan is set to
automatically return that the problem can not be reproduced,
presumably because these are the only two systems that John

can test. “Can Not Reproduce” routes the responsibility back
to the submitter, who may change or correct the value for
“system” and resubmit the problem report.

Delegation with review: Many people will feel uncomfort-
able with blind delegation, especially when the result is to go
back to their superiors. Figure 9 shows an example where
John requests Albert to handle the request, and his answer is
reviewed by the John before the final conclusion of the plan
because the Alberta actions trigger stages (that are, in effect,
a request from John to himself) that inform Johu of the
result. He can choose “OK’ to make the answer official, or
ask Albert to reexamine the problem report again. Keep in
mind that with each action, a message can be added to
explain the reasons for the action, in this case why John feels
that the problem should be looked at in more detail, or
perhaps just to ask Albert to include more evidence to
support his conclusion. Albert and John can continue in the
loop until they are both satisfied with the result.

Delegation to anyone in a group: If the stage is assigned to a
group, then anyone from that group may accept the task.

--- ,,
! Can PvMem be RepKxIuc&d? - John

,
$

1 ,
— ,

7
I

system. UNIX

,
I system. MSW
I
I
,
I deiauh (all eke)
I
I
,
1
I
,
I

,---_________ ---___ ---- ____ -_________ f_______ --f

Figure 8. Conditional branching before delegation.

, --- ,,
! Cen Prob+em be Repwd wed? - John

,
$

#,,
I
,
t
1 O=OK
! R . Reexemine
,--

Figure 9. Delegation with review

136

Figure 10 shows an example of this. While the stage is in the
“offered” state, until it is accepted by someone, the colloquy
will appear on every member’s pending list. Anyone in that
group may take accept the task, acting as that group’s repre-
sentative. A good example of where this behavior is needed
is in a customer support group where customer requests
come in asynchronously, and the bt available person picks
up the task. As soon as one person accepts the request, the
stage becomes the responsibility of that person, and the
colloquy will disappear from the pending lists of the rest of
the group. Alternately, if the request is a sufficiently simple
one, any member of the group may immediately take the
action, and the result will send an event to the exit node,
causing the plan to be terminated,.

Delegate to everyone in a group: Figure 11 sh~ows an
example where a request is made to each and every member
of a group through the use of a parallel split stage. Internally,
the system will make a copy of that stage for every person in
group, and then start them all in parallel. The behavior here
is that when one person takes an action, it does not affect the
copies of the stage for the others; they may still take their
actions independently. But as soon as one person answers
Yes, the entire plan is completed, and the reruainin g stages
are terminated thereby removing their option to respond.

This plan is just like that of Figure 7 except that the number
of parallel tasks is not determined until the stage is activated.
Similarly, the AND node has been used to avoid termination
on “No” answers unless all people answer “No”. On the
other hand, as soon as one person answers “Yes” the plan is
completed and the result communicated to the parent stage.
Other behaviors can be programmed if desired.

Delegation with reminder,x Figure 12 shows an application
of the timer-nod~ a request is delegated to Albert, lbut John
has set it up so that if the task has NOT been completed after

,---
I Can Problem k Reprcdused? - John

I
1

- ‘“

,
#

#
I

t k..J
~ testers= Aberl, Joe, Srii, Carl, Gewge ,
I
1-- .

Figure 10. Assignment to anyone in a group of people

-- .. .
~ Csn PrdI!em be Repminxl? - John

,

: teetere = Aberl, Joe, Bcian, Cert, Geage
, --- -.

Figure 11. Assignment to every individual in a grouip

1 week, a reminder to “Check into Progress” stage is
activated. This stage will b activated in parallel with the one
assigned to AlbeIz but since it is assigned to John, it will
make the colloquy appear on John’s pending list, making

him aware of the colloquy so he can call it up to be displayed
on his screen. Remember Albert may have a subplan that
delegated the task to someone else. John can browse the
records of the activity so far. By being able to see what has
been happening, much of the “Why isn’t this done” commu-
nication is avoided. John has given himself two choices. He
can “Reset” the clock and wait another week, or possibly
“Abort” and give up the search for the problem.

DYNAMIC MODIFICATIONS AND SYNCHRONIZATION
The previous section gave some examples of the expressive-
ness of VPL in typical ad-hoc situations, yet each of the
examples has plans that were essentially static. This section
gives examples of how a user might modify the plan while it
is in process in order to handle exceptional situations. The

previous examples showed how the assignee, or recipient of
the request is able by creating a subplan to add stages to or
change the flow of the process without modifying the parent
plan. This section deals with how the requester, or owner of
the plan, might modify plan to make it fit better to the
instance.

The VPL / script combination can be considered to be reflec-
tive in that scripting commands embedded within the VPL
structure can create new stages, delete stages, add or delete
actiona from existing stages, and programmatically modify
the plan in many ways. Plans that modify themselves are
difficult to visualize and understand. This is contrary to our
goals of making processes visible and easy to understand. If
the exception is known ahead of time, it is wiser to incorpo-
rate the handling into the plan in a more visible fashion.
Nevertheless, it is worth noting that the all of the actions
discussed below could be incorporated into scripts that might
be operated by the user as macros to simplify the task of
responding to unforeseen situations.

Exception Handling Regardless of how good one tries to

make a policy, there will always be real life cases that do not
fit.[27] The process might be progressing fine until the user
unexpectedly finds that before the currently active stage can
be performed, some extra task must first be completed. If
that user owns the policy, or if the user involves the owner
by declining the task, a new stage can be added to the
executing plan dynamically. In Figure 13 Jeanette wishes to

r ---
{ Can problem tM Repmdused? - J&n
,,
1
#
,
I

1
,
,

,
(
,# ~ R = Reetarl ,

1 week A= AIxuI
,
,
--

Figure 12. Delegation with delayed review

137

see if the same problem exists in, say, Xl 1R5. As an alterna-
tive to sending this request by e-mail, she creates a stage
asking for the work to be done. This not only communicates
the request, but also gives Brian access to all the information
about the problem report and the process up to that point. In
doing this, the active stage is put into a state that waits for
the result of the new stage and, in this state, no longer
appears on Jeanette’s pending list. Then, when the new stage
is completed the original stage is reactivated and it reappears
on her pending list so that she can see the response and go
about handling the original task.

Wait for a stage to complete: Figure 14 shows an example
where a new typesetting system has been ordered by the
company. All documentation people have been asked to use
this system for all future work. A document going through
the process geta to the stage to be typeset. Since this stage
can not be performed until the equipment is received, there is
little point in having this task wait around in someone’s

pending list. It should disappear, and then reappear when the
equipment arrives.

Instead of creating a new stage, this is done by placing an
obligation on a stage in another colloquy (in this case the
purchase order colloquy). The active “Typeset Document”
stage is set to wait until it receives the event from the other
stage. The obligation on the other stage will send the event
when the stage it is placed on deactivates, which will happen
when the equipment is received (or the purchase order
process is cancelled) This has the effect removing the

--
Probiem Repml Harding? - Prcj MW

D = Dcne

--

Figure 13. Addition of new stage to a plan in process

Figure 14. Wait for another stage to be completed Figure 15. Wait for result of another stage

138

event, the events can be translated into the expectecl events,
In Figure 16, the Leader of a group has reached a point
where a decision needs to be made about whether to call a
meeting. He realizes that Alex is conaiderhig going to a
conference, but Alex has not yet made up his mind. Further-
more, there is no point in having the meeting if Alex will not
attend. Since he has already decided that the meeting should
be called if and only if Alex does not go to the conference,
he wishes to make this happen automatically. He cxeates a
translation stage that will receive whatever event deactivates
the conference question stage. Then, on receipt ctf a Yes
eveng a No is sent to the original stage, and vice versa. The
meeting will be automatically called if Alex decidm not to
go.

COMPARISON TO OTHER SYSTEMS
Workflow packages typically model work as documents
which travel from person to persoq each person clhanging,
consuming, or producing such documents and sending them
on to others. One of the key benefits that information
technology gives us is fast concurrent access to information
regardless of locaticm modeling a system as moving data
horn one point to another works contrary to this benefit. The
Regatta approach is to allow data to be ubiquitously avail-
able to all members of a colloquy. The completion of a task
is not accompanied by a loss of access to the data manipu-
lated by that task. Thus the flow of data is far less important
allowing Regatta VPL to concentrate on coordination of
behavior.

Systems which model work using Data Flow diagrams are at
a disadvantage because Data Flow diagrams give insufficient
clues as to the sequencing of the events. Furthermore, it is
dif%cult with data flow to describe different tasks being
performed on the same artifact in parallel. Rather than data
flowing from place to place, the analogy for Regatta is that
the colloquy provides a shelf where all the documents are
placed, and are concurrently available to all participim~.

A prccess modelling system needs a way to break large steps
into smaller steps when more detail is needed. Work break-
down structures and outline representations are common.
The difference that Regatta brings is how tasks arc broken

Figura 16. Wait for result of stage and then translate it

into subtasks. If the process tool has a task orientatio~ then

divisions of tasks into subtasks are made along functional
lines. This is a problem because there are many different
ways to decompose a task and it is problematic to come to
agreement within a group. Just as business processes are
unknown, so are the individual discrete elements of a
task.[31] In order to implement a task-oriented decomposi-
tion an analysis of the entire processes needa to be done
before automating it. Decompositions appropriate for a large
group, may be completely inappropriate for a small group or
a single person. Instead, Regatta breaks stages into substages
along the lines of speech acts, that is, requests from one
person to another. While subtasks may or may not be observ-
able, speech acts are always external observable behaviors.
Though different workers within an office may not be able to
agree on the steps to a task, they can however still agree on
the meaning of a request. Beyond providing a way to decom-
pose that a group can agree upon, it also divides the process
into separate pieces which different people are responsible
for. Regatta has made ample use of this advantage by
allowing each user to have individual versions of a layer of
decomposition.

There are similarities to the Action Workilow ‘“[17] by
Action Technologies, especially with respect to the offer,

accept, completion cycle. Them are some distinct differences
that should be pointed out. VPL diagrams allow the user to
specify several different results, which result in different
process paths. Action Workflow only allows graphically a
single resuk Done. Branches must be implemented in a non-
graphical way. The satisfaction phase appeam to be super-
fluous because from the diagram it is not clear what happens
if the requester is not satisfied. Action Worldlow places both
ends of the request/response cycle in the same process
model, while Regatta uses the request/response cycle to
bridge different levels of responsibility, and therefor
different plans. Request/response becomes what ties the
parta of the process together, instead of the central elements
of a single level of process itself. While Action Workfiow
diagrams are useful as descriptions of the process, they do
not show the complete process, since branches, multiple
responses, and exceptions must be implemented in a hidden
way.

The pending list can also be compared to the in-box of a mail
system for those companies that use e-mail to coordinate
tasks. The e-mail based approach has two disadvantages.
First, the e-mail in-box is private and there is no way for the
others in the collaborative process to know whether a request
has been handled, whether a user has passed the request on
to others, or whether the task has started a series of sub-
tasks. One of our goals is to let others know this information
which is useful for coordination. The other significant disad-
vantage is that once a message is placed in an in-box it can
not be removed except by that user. This means that you can
not ask a question to a group of people then retract it when it
is answered. Regatta allows tasks to be cancelled or
reassigned, thereby moving it from one person’s pending list
to another.

A lot of interesting work has been done in the area of
software process definition and improvement. Much has

139

been done with state charts. State charts provide a powerful
way to model complex mechanical systems, but they were
not designed to model human interaction. (For example, turn
on a light switch and the light may fail to turn on, but it never
declines to turn on.) Speech act orientation makes Regatta
technology more suited for collaborative work.

CONCLUSION & PROJECT STATUS
A system that implements this model is in beta test. The
server and client both run on a Unix workstation (SPARCsta-
tion for now) with an XWindows user interface. An MS
Windows supported client is expected in 1994.

Experiments with the existing system have shown that the
visual formalism is sufficiently powerful to model a wide
variety of business processes. Inexperienced users are able to
read the diagrams after only a few minutes of explanation
about how they work.[28] [29]

When building new policies, users were generally able to
create single level policies without trouble. Users typically
implemented “flat” policies that included all of the details of
the process at a single level, which because of the demands
of a real world process got fairly large. Yet after some expe:
nence, users were able to allow parts of the plan to be
defined and controlled by other parts of the organization in
sub plans. The recognition of the fact that part of the plan
was the responsibility of another group was not initially
obvious; users started out to be what can best be described as
rather “control-oriented”. It is important to keep in mind that
the computer can never force someone to do something --
only the social conventions intluence a person’s behavior. To
be useful, the system must be a credible conveyance of such
conventions.

The Regatta Vision
In summary, the model and visual language are appropriate
to accomplishing the three goals:

1. Coordination: business processes may be automate+
users can find tasks that are waiting for them to dq excep-
tions can be handled in an efficient manner.

2. Understanding Processes: discovery of the process is
supported by allowing activation of incomplete plans that
may be later modified on the fly; a history mechanism
records what actually happened the plan in its current state
is depicted in a graphical form, with the roles, tasks, and
responsibility made cleaq built in help system explains new
processes or changes in a process to users.

3. Change: VPL enables a greater number of users to
program processe$ processes are partitioned into plans at
different levels to allows each user to plan their part of the
process from their viewpoint, and to allows different people
to control different parts of the process.

Goals two and three are complemen~, while an under-
standing of the process helps point out areas of potential
improvement, it is imperative that after a modification the
system help explain the change, so that people can work

effectively within the new process. A continual cycle of
experimenting with new processes and observing the results
will lead to what has been called a “Learning Organiza-
tion’’[24]. This is a new breed of organization transformed
by information technology to be truly dynamic, highly effi-
cient, and able to respond quickly to today’s increasingly
unpredictable external pressures.

ACKNOWLEDGEMENTS
The author would like to thank Robin Maxwell, Toshikazu
Matsumoto, and Bahrain Saghti for help in developing and
retlning these ideas, and for developing the system which
implements this model; Bill Talone for his critique of an
early draft of this papeq Simon Kaplan and the Conversa-
tionBuilder team for discussions about the usability of the
model, and for implementing an early prototype in Conver-
sationBuildeq Robert Hotchkiss & Jim Larson for proof-
reading the final draft and providing suggestions to make
things clearer, and to many people who actually tried to use
the system and responded with helpful comments.

REFERENCES

1.

2.

3.

4.

5,

6.

7.

8.

9.

10.

11,

Andrew Clement, Computer Support for Computer
Work: A Social Perspective on the Empowering of End
Users, CSCW 90 Proceedings, ACM Baltimore MD,
1990

Thomas H Davenport, James E Short, The New Indus-
trial Engineering: Information Technology and Busi-
ness Process Redesign, Sloan Management Review,
Summer 1990.

Gartner Group, Inc. Business Process Re-engineering
SPA-210-590, August 7, 1991

Saul Greenburg, Computer Supported Cooperative
Work and Groupware, Harcourt Brace Jovanovitch,
Academic Press, 1991

Ray Grenier and George Metes, Enterprise
Networking: Working Together Apart Digital Press,
1992.

Jonathan Grudin, Obstacles to user involvement in soft-
ware product development with implications for
CSCW, reprinted in [4]

Jonathan Grudiq Why CSCW Systems Fail, Proceed-
ings of the 1988 Conference on Computer Supported
Cooperative Work, ACM, p85-93, Portland Grego~
1988

Keith Hales, Mandy Lavery, Worlg70w Management
Software: The Business Opportunity, Ovum Ltd.
December 1991

Michael Hammer, Re-engineering Work Don’t Auto-
mate, Obliterate, Harvard Business Review, July/
August 1990

David Harel, On Visual Formalisms, Communications
of the ACM, 3 1(5):5 14-530, May 1988

Carl Hewitt, Offices are Open Systems, ACM Transac-
tions on O@ce Information Systems, 4(3):271-287, July
1986

140

12. Robert J. K. Jacob, A State Transition Diagram
Language for Vkual Progr amming, IEEE Computer,
18(8):51-59, August 1985

13. Simog M Kaplan, Wdliam J. Tolone, Douglas Bogia,
and Celsina Bignoli, “Flexible, active support for
collaborative work with Convemation Builder”,
Proceedings of the 1992 Conference on Computer
Supported Cooperative Work, ACM, 1992

14. Simon M Kaplan, Alan M Carroll, Kenneth J
MacGregor, Supporting Collaborative Processes with
ConversationBuilder, Proceedings ACM Conference on
Organizational Computing Systems, p69-79, Ncwember
1991

15. Simon M Kaplan, Keith D Swenson, Operating System
Support for Collaborative Work, Proceedings for the
Second International Workshop on Object Orientation
in Operating Systems, September, 1992

16. Thomas Kreifelts, Elke Hinrichs, and Karl-Heinz
Klein, Experiences with the Domino Office Procedure
System, Proceedings of the Second European Confer-
ence on Computer Supported Cooperative Work
(ECSCW ‘91), pl17-130, Amsterdam, September 1991

17. Raul Medina-Mora, Terry Wmograd, Rodrigo Flores,
Fernando Flonx, The Action Workflow Approach to
Worktlow management Technology, Proceeding of the
1992 Conference on Computer Supported Coo,verative
Work, ACM, 1992

18. Michael S Scott Morton, The Corporation of the 1990s,
Information Technology and Organizational i7-ansfor-
rnation, Oxford University Press, New York, 19191

19. John K. Ousterhout, Tel: an Embeddable Command
Language, Computer Science Departmen4 UC
Berkeley. Information on this can be retrieved from the
Sprite Project, at sprite.berkeley.edu.

20. Sunil K Sarin, Kenneth R Abbott, Dennis R McCarthy,
A Process Model for Supporting Collaborative Work,

Proceedings ACM Conference on Organizational
Computing Systems, Novemt!e.r 1991

21. Michael Schrage, Shared Minds: The New Technolo-
gies of Collaboration, Random House, New York, 1990

22. John R Searle, “A classification of Illocutionary acts”,
Language in Society, 5 pi-23, 1975

23. John R Searle, Expressions and Meaning: Studies in the
Theory of Speech Acts, Cambridge University,
Cambridge, 1979

24. Peter M. Senge, The Fifih Discipline: The Art and
Practice of the Learning Organization Doubleday/
Currency, New York, 1990

25. Nan C. Shu, FORMAL A Forms-Oriented Visual
Directed Application Development System, IEEE
Computer, 18 (8): 38-49, August 1985

26. Paul Strassman, Information Payoff: The transforma-
tion of work in the electronic age. Free Press, New
York 1985

27. Lucy Suchman, The role of common sense in UI
design, Highlights on the International Conference on
Ojice Work& New Technology, Cleveland 1983

28. Keith D Swenson, The Regatta Project, Proceedings of
the First International Conference in Technologies and
Theories for Human Cooperation, Collaboration, and
Coordination, Applica ’93, March 1993

29. Keith D Swenson, A Visual Language to Describe
Collaborative Work, Proceedings of the International
~;;~hop for Visual Languages, Bergen. Norway, Aug

30. Work.tlow, Groupware, and Re-engineering:, IT Hori-
zons, 1(3): 1-11, September 7, 1992

31. Shoshana Zuboff, in the Age of the Smart Machine,
Basic Books, New York, 1988.

141

