
Authorizations in Relational Database Management Systems

E l i s a B e r t i n o * P i e r a n g e l a S a m a r a t i * Sushil Jajodia t

Abstract

This paper proposes two major extensions to the authoriza-
tion model for System R relational database management
system. The first extension concerns the revoke operation.
The revised model provides for a new type of revoke oper-
ation, called noncascading revoke, in addition to the Sys-
tem R cascading revoke operation. Unlike cascading revoke,
noncascading revoke operation does not recursivcly remove
privileges from users. The second extension concerns ncgR-
tive authorization. The details related to its application are
specified in the paper.

1 Introduction

In relational database management systems, access
control is usually based on the identity of the users
and the rules tha t specify for each user as well as
table in the system the types of accesses (e.g., read,
write, or execute) the user is allowed on the table.
Whenever a user requests access to a table, the request
is checked against the specified authorizations; if a
positive authorization exists stating that the user can
access the table in the specific mode, the access is
granted; otherwise it is denied.

Authorizations for privileges on tables are usually
administered by the owners of the tables. The user
who creates a table becomes the owner of the table.
The owner is entitled to execute any privilege on
the table and, moreover, can grant (or revoke) other
users' authorizations for any privilege on the table.
Authorizations can be granted with the grant option. If
a user owns an authorization for a privilege on a table

*Dipartimento dl Science dcll'Informazionc, Univcrslt~ degll
Studi di Milano, Via Comclico 39/41, 20135 Milano, Italy.

ICenter for Secure Information Systems and Department of
Information and Software Systems Engineering, George Maso~
University, Fairfax, VA 22030-4444, U.S.A. The work of S. Jajodla
was partially supported by a grant from the National Science
Foundation under IRL9303416.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial edvantsge, the ACM copyright notice and the
title of the publication and its date appear, and notice iz given
that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission,
1st Conf.- Computer & Comm. Security '93-I I193 -VA,USA
© 1993 ACM 0-89791-629-$/93/001 I...$1.50

with the grant option, he can grant the privilege, and
the grant option, to other users.

In this paper, we consider the System R authorization
model [5, 6] that enforces above policies, and propose
two major extensions to this model. The first extension
concerns the revoke operation. Whenever a user
revokes a privilege on a table from another user,
the revoke operation is applied recursively to existing
authorizations: the privilege is taken away not only
from the revokes but from all those users who received
the privilege through the revokee.

The recursive revocation, though useful in some
cases, is not always desirable. For instance, suppose
a user changes his job due to a promotion. This
change may imply a change in the responsibilities of
the user and, therefore, in his privileges. The user
may be granted new authorizations, while some of
his previous authorizations may have to be revoked.
Applying a recursive revocation will result in the
undesirable effect of deleting the authorizations the user
granted and, recursively, the authorizations granted
through them, which will then need to be reissued.
All application programs depending on the revoked
authorizations will also be invalidated [3]. Many other
examples can be found where the effect of recursively
deleting the authorizations upon a revoke request is not
wanted. Therefore, we propose a new noncascading
revoke operation, in addition to the usual cascading
revoke operation. Under noncascading revocation, the
privilege is taken away from the revokee, but not from
others who received the privilege through the revokee.

The second extension concerns negative authoriza-
tions, user. If a user has a negative authorization for
a privilege on a table, the user can neither exercise nor
administer that privilege (i.e., grant or revoke autho-
rizations) on the table. Negation is stronger than ab-
sence of authorization. If a user is granted a negative
authorization for a privilege on a table, then the user
will not be able to exercise a privilege on the table even
though he may have received or will receive in the fu-
ture authorizations giving the privilege. Thus, negative
authorizations provide a mechanism to prevent a given
user from being able to exercise a privilege on a table.
This is particularly impor tan t in environments where
authorization administrat ion is decentralized and other
users, beside the owner of a table, can grant authoriza-

130

http://crossmark.crossref.org/dialog/?doi=10.1145%2F168588.168605&domain=pdf&date_stamp=1993-12-01

tions on the table and, therefore, a user may obtain the
authorization for a privilege on a table against the desire
of the table 's owner.

The rest of this paper is organized as follows. We
begin in the next section with some basic definitions. In
the three sections that follow, we describe the proposed
extensions and provide the correctness proofs of our
algorithms. We conclude the paper with a summary
and suggestions for further work.

2 B a s i c a u t h o r i z a t i o n m o d e l

An authorization in our model can be expressed as a
tuple (s, p, t, ts, g, go) where

s is the user to whom the authorization is granted (i.e.
the grantee);

p is the access mode (i.e., select, insert, delete, or
update);

t is the table I to which the authorization is referred;

ts is the time 2 at which the authorization was granted;

g is the user who granted the authorization (i.e. the
grantor);

go E {yes, no) indicates whether s has the grant option
for p on t.

Tuple (s,p,t, ts,9,9o) states that user s has been
granted privilege p on table t by user 9 at t ime ts. s
is authorized to grant other users privilege p on table t
as well as the grant option on it iff go = "yes." For
example, tuple (B, select, T, 10, A, yes) indicates that
user B can select tuples from table T and grant other
users authorizations to select tuples from table T, and
that this privilege was granted to B by user A at time
10. Tuple (C, select, T, 20, B, no) indicates that user C
can select tuples from table T and that this privilege was
granted to C by user B at time 20. The authorization
does not entitle user C to grant other users the select
privilege on T since C does not have the grant option.

In the following, given an authorization a, s(a), p(a),
t(a), ts(a), 9(a), go(a) denote respectively the grantee,
the access mode, the table, the time, the grantor, and
the grant option in a. For example, 9(a) denotes the
grantor of authorization a.

The sequence of grant operations of a privilege on a
table can be represented by a labeled graph where each
node represents a user. A labeled arc between node
ux and node u2 indicates that ul granted the privilege
on the table to u2. Every arc is labeled with the time
at which the privilege was granted and also with the
symbol "9" if the privilege was granted with the grant
option. An example of a sequence of grant operations
is illustrated in Figure 1.

IA table is either a base or a view relation.
2A timestamp can be represented by a system maintained

counter.

70fl :@

Figure 1: A sequence of grant operations

Every user who has the authorization for a privilege
on a table with the grant option, can also revoke the
privilege on the table. However, a user can revoke only
those authorizations that were granted by him.

The authorizations holding at a given time are the
authorizations which have been granted and have not
been deleted upon revocation. We refer to the set of
authorizations holding at a given time as authorization
state (AS). Since upon every grant operation a new
authorization is inserted, in the following we will refer to
grant sequences and authorization states resulting from
grant sequences interchangeably.

user a authorizations and which could not not been
present are also allowing a privilege to be revoked
revocation of the authorizations for the granted.

2.1 R e v o c a t i o n o f a u t h o r i z a t i o n s

The System R authorization model enforces recursive
(or cascading) revocation. The semantics of the
recursive revocation of privilege p on table t from user
y by user z is defined to be as if all the authorizations
for p on t granted by • to y had never been granted.
Therefore, all the effects brought by the presence of the
authorizations being revoked have to be eliminated.

For example, consider the sequence of grant opera-
tions for the select privilege on table T shown in Fig-
ure 2(a), and suppose that B revokes the privilege on
T from C. According to the semantics of recursive re-
vocation, the resulting authorization state has to be as
if C had never received the authorization from B. If C
had never received the authorization from B, he could
not have granted the authorization to D (his request
would have been rejected by the system). The sequence
of grant requests accepted by the system would have
therefore been as in Figure 2(b). Thus, if B revokes the
authorization from C, the authorization C granted to
D also has to be deleted.

Figure 2: Example of cascading revocation

131

However, not all the authorizations for the privilege
on the table granted by the revokee must be deleted.
Indeed, if the revokee received some authorization for
the privilege on the table, with the grant option,
from some user different from the revoker, some of
the authorizations he granted could have been granted
anyway. For instance, with reference to the example
just mentioned, suppose that C, before granting the
authorization to D, received the authorization for the
select privilege on T with the grant option from user
A as well. In this case even if he had never received
the authorization from B, C could have granted the
privilege to D. Thus, when B revokes the privilege from
C, the authorization granted by C to D does not have
to be deleted.

An algorithm implementing the cascading revocation,
is shown in Figure 3. The algorithm works as follows.
Suppose user z revokes privilege p on table t from
user y. All the authorizations for p on t given to y
by z are deleted. To determine which authorizations
granted by y have to be deleted, all the remaining
authorizations of y for privilege p on table t granted with
the grant option are considered. Let T,, be ' the minimum
of all t imestamps of these authorizations. Then, all
authorizations for p on t granted by y to any other
user before t ime T,, are revoked. The process is then
repeated for every user whose privilege is revoked.

A l g o r i t h m 1
ea sead ing - r evoke (r evokee , privilege, table, revoker)
/* revoker r e v o k e s priv i lege on table from revokee */

b e g i n
r_tm := current-time;
casc-revoke(revokee, privilege, table, revoker, r_tm)

e n d

ease - revoke(use r , priv, tbl, rev, time)

b e g i n
/* Delete all t h e a u t h o r i z a t i o n s for priv on tbl granted */
/* by rev to user before t ime */

delete all authorizations a such that s(a) = user,
p(a) = priv,
t(a) = tbl, ts(a) < time, g(a) = roy from AS;

/* Determine Tu t h e e a r l i e s t t i m e s t a m p of t h e remaining */
/* a u t h o r i z a t i o n s o f user t o grant priv on tbl */

T= := rain ({ts(a) I a E AS, s(a) = user, p(a) = priv,
t(a) = tbl, go(a) = "yes"), r_tm);

/* A s k for r e v o c a t i o n o f the authorizations granted by user */

/* before time Tu */

for e a c h si such that exists a E AS, s(a) : si
pCa) : p v, tCa) : tbl, g (a) : user ,
t s (a) < d o

c a s c - r e v o k e (s l , priv, tbl, user, Tu)
e n d f o r

e n d

Figure 3: Cascading revoke algorithm

3 R e v o c a t i o n of a u t h o r i z a t i o n s w i t h o u t
cascade

In this section, we define the noncascading revoke
operation that allows a user to revoke a privilege on
a table from another user without entailing automatic
revocation of the authorizations for the privilege on the
table the lat ter may have granted. Instead of deleting
them, we respecify these authorizations as if they had
been granted by the user executing revocation.

The semantics of the revocation without cascade of
privilege p on table t from user y by user z has to be as
if user z had never granted privilege p on t to user y but,
instead, granted all the authorizations 3 for p on t that y
granted to other users by using the grant option received
from z. Note that this consists in adding the new
authorizations with z as grantor to the authorization
state, and then applying the recursive revocation.

For instance, consider the grant sequence for the
select privilege on table T shown in Figure 4(a)).
Suppose now that B revokes the privilege from C.
According to the semantics of the revocation, the
resulting authorization state has to be as if B had
never granted the privilege to C but, instead, granted
the authorization given to D by C (grant sequence of
Figure 4(b)).

10a : ~ 30q , ~

Figure 4: Example of noncascading revocation

Again, as in the case of the recursive revocation, since
the revokee (y) may have received the grant option
for the privilege on the table from some other users
different from the revoker (z), not all the authorizations
y granted will be deleted or respecified with z as grantor.
In particular, z will be considered as grantor only of
the authorizations y granted after receiving the grant
option for the privilege on the table from z; y will still
be considered as grantor of all the authorizations he
granted by using the grant option received from some
user different from z.

An algorithm for implementing noncascading revoca-
tion is given in Figure 5. The algorithm works as follows.
Suppose user z revokes privilege p on table t from user
V- The earliest time Tr at which z granted the privilege
with the grant option to V is determined. Then, all au-
thorizations for p on t given to y by z are deleted. Let
T~, be, as before, the minimum t imes tamp among those
of the remaining authorizations of y for privilege p on
table t with the grant option. All the authorizations for

3It is important to notice that this applies to all authorizations
that y may have granted and that still belong to the authorization
state and have not been revoked yet.

1 3 2

p on t granted by y to any other user different from z
and y after t ime 7", are "duplicated" with z as grantor.
In this way, z becomes grantor of all authorizations in
AS that y granted by using the grant option received
from z. Then, all the authorizations for p on t granted
by y to any user before time T,, are deleted. The dele-
tion of these authorizations does not imply any further
deletion of other authorizations which may have been
granted through them. Note that also if the revocation
of authorizations is not recursively called to delete all
the authorizations which would have not existed if the
revoker had never received the authorizations, all in-
valid authorizations are deleted by the algorithm (see
Section 5). Indeed, all authorizations granted by a user
who received some authorization from the revokee would
have been granted anyway if this user, instead of receiv-
ing the privilege with the grant option from the revokee,
had received it from revoker, and therefore do not have
to be deleted.

A l g o r i t h m 2
revoke(revokee, privilege, table, revoker)

b e g i n
r_~m := current- t ime
/* Determine Tr earliest t ime at which revoker granted */
/* privilege on table with the grant option to revokee */
T, := min ({ t s (a) I e AS, s(a) = revoker,

p(a) = privilege, t(a) = table,
g(a) = revoker, go(a) = "yes"})

/* Delete all the authorizations for privilege on table */
/* granted by revoker to revoker */
delete all authorizations a such that s(a) = revokee,

p(a) ---- privilege, t(a) = table,
g(a) = revoker from A S

/* Determine Tu the earliest t imestamp of the remaining */
/* authorizations of revoker for p on t with the grant option */

:= ({ t s (a) l AS , s(a) = revoker,
p(a) = privilege, t(a) = table,
go(a) = "yes"}, r_tm);

f o r e a c h a AS, p(a) = privilege, t (a) = table,
g(a) = revoker do

i f ts(a) > T,, s(a) #revokee, s(a) # revoker
/* the authorization was granted after receiving */
/* the authorization from revoker */
t h e n add (s(a),p(a), t(a), ts(a),x,go(a)) to AS

e n d i f
i f ts(a) < T~, /* ,'~vokee t app grantor */

/* of the authorization any more */
t h e n delete a from AS

e n d l f
e n d

Figure 5: Noncascading revoke algorithm

4 N e g a t i v e a u t h o r i z a t i o n s

In our model, negative authorizations can be issued only
for access privileges, and not for the administration of
the privileges themselves. For example, it is possible to

specify that a user cannot select tuples from a table,
but it is not possible to specify that a user cannot grant
others the authorization to select tuples from the table.
grant option alone. However, the negative authorization
for a privilege on the table implies the denim of the
administrat ion of the privilege itself. For instance, if a
user has a negative authorization for the select privilege
on table T, the user can neither select tuples from table
T nor grant or revoke the select privilege on table T for
other users.

Negative authorizations for a privilege on a table can
be granted by the owner of the table as well as by any
user who owns an authorization for the privilege on the
table with the grant option.

To represent negative authorizations, an authoriza-
tion is now characterized by a tuple (s,p, pt, t, ts, g, go)
where s, p, t, ts, g, go are defined as before in Section 2
and pt E { % - } , indicating whether the authorization
is for a privilege (+) or its negation (-) .

Negative authorizations cannot be granted with the
grant option; therefore, authorizations with pt = ,_n
have necessarily go = "no".

To represent grants of negative authorizations, we
also extend our graphical notat ion by adding, to the
labels of arcs, the sign (+ or -) of the authorization
being granted. Figure g illustrates a sequence of
grant operations including both positive and negative
authorizations.

4 0 - - ~

.q ,@

Figure 6: A sequence of grant operations containing
positive and negative authorizations

4.1 A u t h o r i z a t i o n s o f t h e u s e r r e c e i v i n g t h e
n e g a t i v e a u t h o r i z a t i o n

Negative authorizations introduce the possibility of con-
flicts among authorizations. A negative authorization
states that a user must be denied a privilege whereas a
positive authorization states that a user has to be given
a privilege. It would therefore seem obvious that if user
y has the negative authorization for privilege p on table
t, then 9 should not have at the same t ime the positive
authorization for p on t, and vice versa. This situation,
though desirable, cannot always be satisfied.

Suppose that a user cannot have at the same time
an authorization as well as the negation for a privilege
on a table. If a negative authorization for a privilege
on a table is granted to a user who has some positive
authorizations for the privilege on the table, then either
all authorizations for the privilege on the table of the
user receiving the negation should be revoked, or the

133

grant operation for the negative authorization should
be refused by the system.

Deleting all positive authorizations for a privilege on
a table of a user when the user is granted a negative
authorization is not the correct approach. Indeed, user
y, receiving a negative authorization for privilege p on
table ~ may have previously received an authorization
for p on t from a user different from the user granting the
negation. Therefore, deleting all authorizations of y for
p on ~ would imply that z could revoke authorizations
not granted by himself. Hence, according to the
principle that a user can revoke only the authorizations
he granted, we reject this possibility.

On the other hand, the approach of rejecting the
insertion of the negative authorization would Emit
the power of the user authorized to grant negative
authorizations.

Therefore, we allow the insertion of a negative autho-
rization without affecting possible positive authoriza-
tions the user receiving the negation may have, thus
accepting the presence, at the same time, of positive
and negative authorizations.

The simultaneous presence of positive and negative
authorizations does not have to be interpreted as an
inconsistency. In our model, negative authorizations
override positive authorizations. Hence, if a user has
some positive authorizations for a privilege on a table,
these authorizations will not be usable by the user if
he has some negative authorization for the privilege
on the table. In this case, we say that the positive
authorizations are blocked. Blocked authorizations are
authorizations that cannot be used. Note, however, that
blocked authorizations can be revoked.

For example, consider the grant sequence for the
select privilege on table T shown in Figure 6. Suppose
that at time 50 user B grants a negative authorization
for the select privilege on T to user D. Authorization
(D, select, - , T, 50, B, no) is added. As a result, the
authorization granted by A to D becomes blocked.

Though a revocation of a privilege on a table from a
user is always desirable before granting the negation for
the privilege on the table to the user, the revocation
process itself is not automatical ly executed by the
system upon granting the negation. The reason for not
automatically enforcing revocation is to leave the user
granting the negation the choice of whether requiring
for revocation of the privilege with cascade (therefore
requiring deletion of all authorizations inserted by
using the authorizations being revoked) or without
cascade (therefore becoming himself the grantor of
all authorizations inserted by using the authorizations
being revoked). We discuss this in detail next.

4.2 A u t h o r i z a t i o n s g r a n t e d b y t h e u s e r
r e c e i v i n g t h e n e g a t i v e a u t h o r i z a t i o n

An impor tant issue concerns the authorizations that
have been previously granted by a user who receives
a negative authorization. If a user receives a negative
authorization for a privilege on a table, all his autho-
rizations for the privilege on the table become blocked

and the user will not be able to revoke authorizations for
the privilege on the table he may have granted. There-
fore the problem arises of dealing with the authoriza-
tions that the user may have granted before receiving
the negation. There are three possible approaches:

1. these authorizations are recursively revoked;

2. negative authorizations are propagated thus block-
ing these authorizations;

3. these authorizations are neither revoked nor blocked.

Let us examine the various options in more detail.
Suppose user z grants a negative authorization for
privilege p on table t to user y.

The first solution, i.e., recursively revoking all the au-
thorizations for the privilege on the table granted by the
user receiving the negation, is not the correct approach.
Again, y may have received some authorization for p
on ~ from users different from z. Therefore, revoking
all these authorizations would imply that z can revoke
authorizations not granted by him or by using the au-
thorizations he granted to y.

The second approach, i.e., recursively propagat ing the
negation for the privilege on the table also cannot be
accepted. The fact that y has to be denied a privilege on
a table does not mean that all users who received some
authorization for the privilege on the table from y, the
users who received some authorization from them, and
so on, should also receive a negation for the privilege.
Although it may be claimed that if some users received
the authorization from y it is not desirable that they
continue to use the authorization received, it has to be
noticed that they may have received the authorization
for p on ~ from some user different from y and therefore
giving them a negative authorization would prevent
them from using the authorizations received from the
other users. Therefore, we reject this solution.

The last approach, which we adopt, consists in not
taking any particular action over the authorizations
granted by the user receiving the negation. If the
authorizations of y become blocked, it is not so for the
authorizations that y granted. If z wishes to block an
authorization granted by y to user z, he can always do
so by explicitly granting the negation to z.

Therefore, user y, after having received a negative
authorization for privilege p on table t, may still appear
as grantor of the authorizations for p on t granted before
receiving the negation. Since y received a negative
authorization for p on ~, all his authorizations for p
on ~ become blocked. Therefore, the question arises of
whether y, after having received the negation for p on $,
should be allowed to revoke the authorizations for p on
he granted. The reply is not: even if revoking privileges
can only decrease the authorizations in the system, it
does not seem appropriate to leave some administrat ive
power on a privilege on a table to a user to whom the
privilege on the table is denied.

Note that even if these authorizations cannot be
revoked by y, they are not unrevocable. They will
either be revoked upon revocation of the blocked

134

authorizations, or made revocable upon revocation of
the blocking authorizations.

For instance, consider the sequence of grant opera-
tions illustrated in Figure ?(a) and suppose that , at
t ime 60, user B grants user D a negative authoriza-
tion for the select privilege on table T. Authorization
(D, select, - , T, 60, B, no) is added (Figure 7(b)). As a
result, the authorization granted by A to D becomes
blocked and the authorization granted by D to F is not
revocable by user D any more. This situation will be
solved upon deletion of either the blocked or the block-
ing authorization. The first case (deletion of the blocked
authorization), will occur if A revokes the select priv-
ilege on T from D. The second case (deletion of the
blocking authorization) will occur if either B revokes
the negation for the select privilege on T from user D
or A revokes privilege on T from user B with cascade.

40- ~@

.q ,@ 50+ , ~

4 0 -

50-1- :

Figure 7: Example of negative authorization

Note that also the user who granted the authorization
which became blocked may have received the negative
authorization for the privilege on the table considered,
and, therefore, a chain of blocked authorizations may
exist. However, the fact that the privileges of the
owner of a table on the table cannot become blocked,
ensures that authorizations are always revocable, even
in presence of several blocked authorizations.

4.3 R e v o c a t i o n o f a u t h o r i z a t i o n s

In this section we discuss the revocation of negative au-
thorizations and extend the algorithms for the revoca-
tion of authorizations to the consideration of negative
authorizations.

The semantics of the revocation of the negation for a
privilege on a table from user y by user z is to eliminate
all the negative authorizations for the privilege on the
table that z granted to y. Note that the revocation
of the negation for a privilege does not bring the
authorization state to be as if the authorizations being
revoked had never been granted. Indeed, the presence
of the negative authorizations being revoked may have
had the effect of not allowing grant requests that the
revokee may have submit ted to the system. Therefore,

if negative authorizations being revoked had not been
present, some authorizations could have been added to
the authorization state and were not.

Upon revocation of the negation for a privilege,
producing the authorization state which would have
resulted if the negative authorizations being revoked
had never been granted, would imply reconsidering all
the grant requests rejected by the system submit ted
after the revokee received the negative authorizations,
and possibly inserting the authorizations whose grant
would have been accepted if the negative authorizations
being revoked had never been granted. For example,
consider the grant sequence illustrated in Figure 7(b)
and suppose that , at t ime 70, user D requires to grant
user G the select privilege on T. Since D owns a
negative authorization for the select privilege on T,
his request is rejected by the system, and therefore no
authorization is inserted. Suppose now that , at time
80, user B revokes the negation for the select privilege
on T from D. Producing the authorization state which
would have resulted if B had never granted the negation
for the privilege to D would require the insertion of the
authorization for G whose grant was required by D at
time 70 and was rejected by the system. This approach
is obviously not suitable.

The revocation of negative authorizations is very
simple. The revocation of the negation for privilege p
on table t from user y by user z has the effect of deleting
all the negative authorizations for p on t that z granted
to y. Since no insertion of further authorizations
could have been caused by the presence of the negative
authorizations, there is no need to propagate the effect
of the revocation.

The consideration of negative authorizations also
requires change in the semantics of revocation of
privileges. The semantics of the cascading revocation of
privilege p on table t from user y by user z was defined
to be as if z had never granted p to y. Indeed, i f y
was authorized for p on t with the grant option, he may
have granted other users a negative authorization for p
on t. The presence of this negative authorization may
have caused the rejection of grant requests submit ted
by the user who received the negative authorization.
Therefore, upon revocation of the privilege from y by
z, producing the authorization state that would have
resulted if y had never received the privilege from z
would require the reconsideration of the grant requests
which have been rejected by the system and the possible
insertion of the authorizations that would have been
accepted. As we have already explained, this solution
is obviously not suitable. Therefore, we change the
semantics of the revoke operation.

The new definition of semantics of cascading revo-
cation of privilege p on table t f r om user y by user z
is to eliminate from AS all the authorizations (either
positive or negative) which could have never existed if
z had never granted the privilege to 9. An algorithm
implementing the revocation of privileges with cascade
extended to the consideration of negative authorizations
is illustrated in Figure 8.

The semantics of revocation without cascade is

135

A l g o r i t h m 8
caseade-revoke(revokee , privilege, table, revoker)
/* revoker revokes privilege on table from revokes */

b e g i n
ram := current-time;
case-revoke(revokes, privilege, table, revoker, ram)

e n d

case- revoke(user , priv, tbl, rev, time)

b e g i n
/* Delete all the authorizat ions for priv on tbl granted */
/ * by rev to user before time */
delete all authorizations a such that s(a) = user,

p(a) = priv, pt(a) = "+" , t(a) = tbl,
ts(a) < time, g(a) = rev from AS;

/* Determine Tu the earliest t imestamp of the remaining */
]* authorizations of user
to grant authorizat ions for priv on tbl */

T~ : : rain ({ts(a) [a E AS, s(a) : user, p(a) : priv,
pt(a) = "+" , t(a) = tbl, go = "yes"}, r_tm)

/* Delete all the negat ive authorizat ions for priv on tbl *]
/* graJated by user before time */

delete all authorizations a such that p(a) : priv,
p t (a) = " - " , t (a) = tbl,
ts(a) < Tu, g(a) = user from AS

/* Ask for revocation of the authorizations granted by user */
/* before t ime Tu */

fo r e a c h si such that exists a E AS, s(a) : si
p(a) = priv, t(a) = tbl, g(a) = user,
ts(a) < T= do

casc - revoke(s i , priv, tbl, user, T~)
e n d f o r

e n d

Figure 8: Revised cascading revoke algorithm

changed in an analogous way. The revocation without
cascade of privilege p from user y by user z has to:
(i) specify with z as grantor all the authorizations
in AS granted by y using the grant option given
to him by z, (it) eliminate from the authorization
state all the authorizations which would have not
existed if y had never received the privilege from z.
Note, again, that this corresponds to a revocation
with cascade on the authorization state produced after
the addition of the new authorizations with s as
grantor. An algorithm implementing the revocation of
privileges without cascade extended to the consideration
of negative authorizations is illustrated in Figure 9.

To illustrate an example of revocation of privileges
with the consideration of negative authorizations, con-
sider the authorization state of Figure 7(b) and suppose
that user A revokes the select privilege on table T from
user B. Figure 10(a) illustrates the authorization states
resulting in case of cascade revocation. Figure 10(b)
illustrates the authorization states resulting in case of
non cascade revocation.

A l g o r i t h m 4
revoke(revokee, privilege, table, revoker)

b e g i n
ram := current-time
/* Determine Tr earliest t ime at which revoker granted */
/* privilege on table with the grant option to revokes */

Tr := ({ts(a) l a AS , s(a) = revoker,
p(a) = privilege, pt(a) : "+" ,
t(a) = table, gCa) = revoker, go(a) = Uyes'})

/* Delete all the authorizations for privilege on table */

]* granted by revoker to revokes */

delete all authorizations a such that s(a) = revokes,
p(a) ---- privilege, pt(a) = " + ' ,
t(a) = table, g(a) = revoker from AS

/* Determine Tu the earliest timestarnp of the remaining */
/* authorizations of r e v o k e s for p on t with the grant option */

Tu := ({ts(a) l a AS, sCa) = revokee,
p(a) = privilege, pt(a) = " + ' ,
t(a) = table, go(a) = "yes"}, r_tm)

for e ach a E AS, p(a) = privilege, t(a) = table,
g(a) = revoker do

i f ts(a) > Tr, s(a) # revokee and s(a) # revoker
/* the authorization was granted after receiving */
/* the authorization from revoker */

t h e n add (s(a),p(a),t(a),ts(a),x,go(a)) to AS
e n d i f
i f ts(a) < T~, /* revokes c a n n o t a p p e a r a s g r a n t o r */

/* of the authorizat ion any more */
t h e n delete a from AS

e n d i f
e n d

Figure 9: Revised noncascading revoke algorithm

5 C o r r e c t n e s s o f a l g o r i t h m s

In this section we prove the correctness of our model.
To state what correctness means we need to recall the
definition of authorization chain introduced by Fagin
[5].

An authorization chain is a sequence (ax, a 2 , . . . , an)
of authorizations such that:

the grantor of al is the creator of the table: g(al) =
owner(t (a l))

the t imestamp of an authorization is bigger that the
t imestamp of the authorization preceding it in the
chain: Vi, i = 2 , . . . , n : tCal) > t (~ - x)

the grantor of each authorization is the grantee of
the authorization preceding it in the chain: Vi, i =
2 , . . . gCa) = s (a i_ l)

all authorizations except possibly the last one are
with the grant option: Vi, i = 1 , . . . , n - 1 : go(al) =
" y e s "

An authorization a is valid iff it was granted there
exists an authorization chain (a l , a 2 , . . . , o ~) in AS

136

.q ,® 50+ ~~

60- :@ 504- =~k~

Figure 10: Example of revoke operations when negative
authorizations are present

with aT, : a whether all authorizations a x , . . . , a n are
unrevoked, i.e., their grantors have not required for
their revocation. The consideration of the revocation
without cascade require to consider as granted also the
authorizations whose grant was not required by the
users but which have to be considered as granted as
required by the semantics of the non cascade revocation.

An authorization state is correct if it contains all
authorizations that are valid.

The correctness of the authorization state after a
grant request and after a revocation of a negation is
trivial. We now prove that the authorization state is
correct after revocation of privileges. Theorem 1 and
Theorem 2 prove that the algorithms for the revocation
with and without cascade preserve the correctness
of the authorization state, i.e., applied to a correct
authorization state produce a correct authorization
state, reflecting the revoke operation.

In the following we will denote with VALID the
set of valid authorizations, and with REV the set of
authorizations whose revocation is explicitly required
by users.

T h e o r e m 1 Let A S be an authorization state and
(y , p , t , z) be a request for revocation with cascade
of privilege p on table t f r o m user y by user z .
Authorizat ion state A S ~ resulting f r o m the application
of Algor i thm c a s c a d e - r e v o k e / s correct.

PROOF We prove that VALID = A S ~ by proving that
a E V A L I D ~ a E A S ~

Let us first prove implication a E VALID ::~ a E A S ' ,
i.e., no valid authorization has been deleted. Let us
suppose not and derive a contradiction. Suppose then
that some valid authorizations have been deleted in the
revocation process. Let a be the authorization among
them with the minimum timestamp. Therefore a E
VALID and a ~ A S ~. Since a is valid, there exists
a chain of authorizations (a i , . . . a ,~ ,a) in A S , with
a i , . . . a n , a ~ REV. Since a is valid all authorizations

a l , . . . , a n are also valid. Hence, since a is the valid
authorization with the minimum timestamp that has
been deleted, all other authorizations preceding a in the
chain have not been deleted in the revocation. Therefore
a l , . . . , a,, E A S ' . However, since a was deleted, either
a E REV, or a was deleted in the recursion. By
assumption, since a is valid, it cannot be a E REV,
therefore, a must have been deleted in the recursion.
Since or, E A S ~, and an directly precedes a in an
authorization chain, the minimum timestamp Tu of the
authorizations of user g(a) to grant p on t cannot be
bigger than t s (a~) , i.e, T~ < ts (a~) < ts(a) . Then,
since case-revoke for g(a) was called with t ime = T~,
authorization a could not have been deleted, and we
have a contradiction.

Let us now prove implication a E A S ~ ==~ a E
VALID, i.e., A S ~ contains only valid authorizations.
Since no authorization is added by the revocation
algorithm we need only to show that all non valid
authorizations have been deleted. Suppose not. Let a
be the non valid authorization in A S ~ with the minimum
timestamp. Since all authorizations in REV have been
deleted, a ~ REV. Since a is not valid, there does not
exist an authorization chain (ax, . . . a n , a) in A S , with
a x , . . . a n , a ~_ REV. However since A S was correct by
hypothesis, there existed such a chain in A S . Since a is
not valid, neither is an. Then, since a is the non valid
authorization in A S ~ with the minimum timestamp,
an ~ A S ~. Then, when the last a,~ preceding a in a chain
was deleted by the algorithm the minimum timestamp
of the remaining authorizations for s(a,~) = g(a) to
grant p on t was bigger that ts(a) . Then, T,, > i s (a)
and a was deleted, which contradicts the assumption.

O

T h e o r e m 2 Let A S be an authorization state, and
(y ,p , t , z) be a request for revocation of privilege p on
table t f rom user y by user z . Author iza t ion state A S ~
resulting f rom the application of Algor i thm r e v o k e is
correct.

PROOF We now prove that A S ' = VALID by proving
that a E VALID ¢:~ a E A S ~

We first prove the implication a E VALID =~ a E A S ~.
Suppose the implication does not hold and derive a
contradiction. Suppose some valid authorizations do
not belong to the authorization state resulting from the
application of the algorithm. Let a be the authorization
among them with the minimum timestamp. Since
a ~ A S ' either a should have been added and it was not
or a was in A S and was incorrectly deleted. Suppose
a is an authorization which should have been added
and it was not. Since a should have been added,
a = (s(ai) , p(a i) ,p t (a i) , t (ai) , t s (ai) , z, go(ai)2 for some
a~ E A S such that g(ai) = y ,p (a i) = p, and $(ai) = t
with aj E REV, i.e., such that there exists a chain
(a l , . . . a j , o 4) in A S . Therefore, from the definition
of authorization chain and from how Tr has been
determined, Tr < t s (a i) < ts(ai) , and a was inserted
by the algorithm, which contradicts the assumption.
Consider now the case where a was incorrectly deleted
in the revocation process. Since a is valid, there exists

137

a chain (a i , . . . a , , , a) in A~S, with a i , . . . a , , ¢ REV,
where AS indicates the authorization state resulting
from adding to A S the new authorizations wioth z as
grantor as required by the semantics of the revocation.
Since a is valid all authorizations a l , . . . , a ~ are also
valid. Hence, since a is the valid authorization with the
minimum timestamp that has been deleted, all other
authorizations preceding a in the chain have not been
deleted. Therefore a l , . . . , a n E AS'. However, since
a has been deleted, either a E REV, or g(a) = y and
ts(a) < T,,. By assumption, since a is valid, it cannot be
a • REV. Then, g(a) = y and is(a) < T~. Since a,, •
AS', and there exists an authorization chain such that
an directly precedes a, the minimum timestamp T= of
the remaining authorizations of y to grant p on t cannot
be bigger than is(a,,). Then, T~ < ts(a,~) < t.s(a) and
a could not have been deleted, which contradicts the
assumption.

Let us now prove implication a • AS' ~ a •VALID,
i.e., AS' contains only valid authorizations. Suppose
not and let us derive a contradiction. Let a be the
non valid authorization in AS' with the minimum
timestamp. Since a • AS' either a was incorrectly
added or has not been deleted.

Let us first suppose that the authorization was
incorrectly added. Since a was added, a = (s (a l) ,
p(a~), pt(ai), t(ai), ts(ai), z, go(al)) such that there
exists ai • AS, ts(ai) > T,, and hence there existed
a chain (a l , . . . a j , a i) in AS with aj • REV. Since
a ¢ VALID, either a • REV or there do not exist any
chain (a l , . . . a ~ , a) in A~S, with ai , . . .a ,~ ,a ~ REV.
Suppose a • REV, then s(ai) =- y, and a was not
added, which contradicts the assumption. Therefore a
REV. However, since A S was correct and, by definition,
A S C A[S, there exists a chain (a i , . . . an , ai) in A~S.
Then'~ from how a was obtained, (a l , . . . a,~_i, a) is also
a chain in A~S. Therefore, since a ~ VALID, am •
REV for some am in the chain. Since an-1 precedes an,
in the chain and an • REV, s(an- i) = z. Therefore,

I a~_i ~ REV. Then am # a,,_l. Let am+ i - (s(a,,,+i),
) •

AS be the new authorization inserted with z as grantor.
Since a,,,+l was added by the algorithm, s(a'+~) # y,
am+l ~ REV. Then, (ai, • . . am- l ,am+l , • • • ,an_l ,a) is
a chain in A~S, with a i , . . . a ,~_ i ~ REV. Hence, a is
valid and we have a contradiction.

Let us then suppose that a was not deleted. Since
all authorizations in REV have been deleted, a
REV. Since A S is correct, there exists (a i , . . . an ,a)
in AS. Then, since a is not valid, and since A S C
AS, a/ • REV for some ai in the chain. Let us
suppose than ai ~ a=. Since al • REV, authorization
a~+ i = (sCa,+l),p,t, ts(ai+i) ,z , go(ai+l)) • XS, and
hence (al, . . . , a~_~, a~+i, .. • a,,, a) is a chain in XS, wi th
ax,...a,, ~ R E V . Therefore a is valid and we have a
cont radic t ion . If more than one au thor i za t ion a~ belongs
to REV, ai # a,~, the reasoning can be applied more
than once. Let us then suppose tha t a,, • REV. Since
a,, • REV, s(a=) = g(a) = y. Moreover, since a has

not been deleted by the algorithm, ts(a) > T, , which
implies that there existed ak E AS, ak ~ RE-V such that
ak preceded a in a chain. Therefore, from the reasoning
above a is valid and we have a contradiction. []

6 C o n c l u s i o n a n d o p e n p r o b l e m s

In this paper, we have proposed two extensions to the
System R authorization model for relational databases
[5, 6]. The first extension concerns the noncascading
revoke operation. Although the recent draft of SQL
standard [7] recognizes its need, many details related to
its application have been left unspecified. The second
extension concerns the negative authorization. Its need
is specified for high assurance systems in [4].

There are several open problems that are under
investigation by us. We are working on extending our
model to incorporate views [6] and groups [11]. In our
model, we have assumed that negative authorizations
always override positive authorizations. There are other
policies which could be applied to decide whether a
request of a user to access a table should be granted.
We are investigating some of these alternatives.

R e f e r e n c e s

[1] M.M. ASTRAHAN ET AL., "System R: A relational
approach to data base management," A C M TODS,
Vol. 1, No. 2, June 1976, pp. 352-359.

[2] E. BERTINO AND L. M. HAAS, "Views and secu-
rity in distributed database management systems,"
Proc. First hJternational Conference on Extend-
ing Database Technology (EDBT), Venice (Italy),
Springer-Verlag Lecture Notes in Computer Sci-
ence, Vol. 303, 1988, pp. 155-169.

[3] D. D. CHAMBERLIN ET AL., "A history and
evaluation of System R," Comm. ACM, Vol. 24,
No. 10, 1981, pp. 632-646.

[4] DEPARTMENT OF DEFENSE, Trusted computer
system evaluation criteria, DoD 5200.28-STD,
Dec. 1985

[5] FAGIN, 1~., "On an authorization mechanism,"
A C M TODS, Vol. 3, No. 3, Sept. 1978, pp. 310-
319

[6] GRIFFITHS, P .G. , AND WADE, B., "An authoriza-
tion mechanism for a relational database system,"
A C M TODS, Vol. 1, No. 3, Sept. 1976, pp. 242-255

[7] MELTON, JIM, ED., ANSI X3H2-
90-309, "(ISO/ANSI working draft) Database Lan-
guage SQL2," August 1990.

[8] F. RABITTI, E. BERTINO, W. KIM, AND D.
YVOELK, "A model of authorization for next-
generation database systems," A C M TODS, Vol.
16, No. 1, March 1991, pp. 88-131.

[9] T. F. LUNT ET AL., "The seaview security model."
IEEE Transactions on Software Engineering, Vol.
16, No. 6, June 1990, pages 593-607.

138

[10]

[11]

SELINGER, P.G., "Authorizations and views," in
Distributed Data Bases, I.W. Draffan and F. Pook
eds., Cambridge University Press, Cambridge 1980

P. F. WILMS AND B. G. LINSDAY, "A data-
base authorization mechanism supporting individ-
ual and group authorization," in Distributed Data-
base Systems, R.P. van de Riet and W. Litwin, eds.,
North-Holland, 1982~ pp. 273-292.

139

