
High Assurance Discretionary Access Control for Object Bases

El i sa Be r t i no* P i e r a n g e l a S a m a r a t i * Sushil Jajodia t

Abs tr a c t

Discretionary access control, based on checking access re-
quests against users' authorizations, does not provide any
way of restricting the usage of information once it has been
"legally" accessed. This makes discretionary systems vul-
nerable to Trojan Horses maliciously leaking information.
Therefore the need arises for providing additional controls
limiting the indiscriminate flow of information in the system.
This paper proposes a message filter complementing discre-
tionary authorization control in object-oriented systems to
limit the vulnerability of authorization systems to Trojan
Horses. The encapsulation property of the object-orlented
data model, which requires that access to objects be possi-
ble only through defined methods, makes information flow in
such systems have a very concrete and natural embodiment
in the form of messages and their replies. As a result, infor-
mation information flow can be controlled by mediating the
transmission of messages exchanged between objects. The
message filter intercepts every message exchanged between
objects to ensure that information is not leaked to objects
accessible by users not allowed for it.

1 In troduc t ion

Data protect ion is an important requirement for any
system managing information. Two kinds of policies can
be used for providing information protection: discre-
tionary and mandatory. Discretionary policies restrict
access to information on the basis of the users' identity
and on authorizations stating the accesses that each user
can execute on the objects of the system. Mandatory
policies restrict access to information on the basis of
classifications assigned to subjects and objects in the
systems and relationships that must be satisfied on the

*Dipartimento d] Scienze dell'Informazione, Universit/~ degll
Stud] d] Milano, Via Comelico 39/41, 20135 Milano, Italy.

?Center for Secure Information Systems and Department of
Information and Software Systems Engineering, George Mason
University, 4400 University Drive, Fairfax, VA 22030-4444, U.S.A.
The work of S. Jajodia was partially supported by a grant from
the National Science Foundation under IRI-9303416.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.
1st Conf.- Computer & Comm. Security '93-11/93 -VA,USA
© 1993 ACM 0-89791-629-8/93/0011...$1.50

flow of information in the system. The main drawback
of mandatory policies is their rigidity which makes them
unsuitable for many application environments. There-
fore, most general purpose commercial DBMSs only pro-
vide protection through discretionary authorizations [9].
However, discretionary access controls do not provide
an~" form of control on the usage of information once it
has been "legally" accessed. This characteristic makes
the discretionary control vulnerable to Trojan Horses
embedded in applications. In particular, a malicious
user can embed in some user's program, a Trojan Horse
that, once the program is invoked, surreptitiously mod-
ifies data in the user's file or writes them in files ac-
cessible by the malicious user. If the user running the
program has the necessary authorizations, this hidden
and malicious function is considered as legitimate by
the discretionary authorization control. Discretionary
controls can therefore be easily bypassed and hence do
not provide a real assurance on the satisfaction of the
protection requirements stated through the authoriza-
tions.

In this paper we present an approach for dealing
with Trojan Horses in object-oriented systems. The
paper is organized as follows. Section 2 summarizes
previous researches on complementing discretionary
access control to cope with the Trojan Horse problem.
Section 3 outlines our approach. Section 4 illustrates
the object-oriented data model to which the control
is applied. Section 5 introduces formal definitions
and notations. Section 6 presents the authorization
model which enforces the access control and discusses
its weaknesses. Section 7 characterizes the flow of
information inside the system. Section 8 discusses
different control policies and presents the message filter
algorithm. Finally, Section 9 presents some conclusions
and outlines future work.

2 P r e v i o u s w o r k

The need for additional controls complementing the
checking performed by discretionary authorization sys-
tems has been pointed out by other researchers and
some work has been done on this issue. Some research
efforts have been aimed at complementing access control
with forms of access restriction that cannot be expressed
in the discretionary authorization model [13, 8, 16]. In
[13], the control is enforced by having all objects cre-

140

http://crossmark.crossref.org/dialog/?doi=10.1145%2F168588.168606&domain=pdf&date_stamp=1993-12-01

ated during the execution of a process inherit the ac-
cess control list of the objects read in the execution of
the process itself prior to their creation. A similar pro-
posal is made in [16] where each object has associated
with it two protection attr ibutes: the current access
and the potential access. The current access a t t r ibute
describes what can be done to whom on a particular ob-
ject, and the potential access a t t r ibute describes what
can be done by whom to the information in this object.
Hence, potential access provides a mean of propagating
possible access restrictions to the information once it
has been released.

Other research efforts on complementing discretionary
control have been specifically aimed at eliminating, or
at least limiting, the vulnerability of such a control to
Trojan Horses [18, 4, 12]. Walter et al. [18] propose the
application of a strict need to know policy for limiting
information flow during process execution in operating
systems environment. A process is allowed to copy in-
formation from an object to another object only if the
set of users allowed to read the second object is a subset
of the set of users allowed to read the first object. The
main drawback of this solution is the complexity and the
rigidity of the control. Boebert and Ferguson [4] pro-
pose the use of a dynamic linker that compares the name
of the user who invokes a program with the name of the
originator of the program, and the name of the owner
of the da ta files. If a user invokes a program owned by
someone else and the program tries to t amper with any
of the user 's file, the dynamic linker wiU recognize the
name mismatch and raise the appropriate alarms. This
approach has two main drawbacks. Generally, no one
user owns his own copy of an application program, and
in a system there exists only one copy of the application
program to be shared by all the users. Therefore, for the
application program to be used by a user, the applica-
tion program may need to be allowed to read and write
the user's files. The second drawback of this approach
is that it does not cope with Trojan Horses embedded
in a program owned by the user running the program,
which will therefore be allowed to freely exploit their
effects. Note also that this solution may help in cop-
ing with Trojan Horses whose effect is to tamper the
files of the user whereas it does not control the leakage
of information. Another approach, proposed by Karger
[12] consists of limiting the files accessible by the ap-
plication programs on the basis of some knowledge on
the program themselves. The control requires the spec-
ification of pat terns of names describing the objects to
be accessed by an application. When an application is
run, a name checker compares the names of each object
to be accessed against the specified pat tern. If the ob-
ject 's name satisfies the pat tern the access is granted,
otherwise the user running the program is queried about
the access requested. For example, a latex compiler can
have as input, besides the tex library files, only files
whose name ends with ".tex" and can write only files
whose name ends with ".aux", ".log", or ".dvi". Note
that this solution may prevent copying information in
objects outside the scope of the application, but it does
not guarantee complete protection. In particular, a Tro-
jan Horse embedded in an application can leak the in-
formation to files which satisfy the name checker control

but which are accessible to users not allowed to access
the input files.

3 O v e r v i e w o f o u r a p p r o a c h

In this paper we deal with the problem of Trojan Horses
in object-oriented systems. Object-oriented systems are
characterized by the fact that every entity of the system
is seen as an object. Every object has a set of at tr ibutes
(properties) and a set of methods, i.e. procedures
executable on the object. The at t r ibutes of an object
can be accessed only through methods specified for the
object which can be invoked by sending proper messages
to the object. Thus, messages are the only means
through which information flow between objects can be
enacted. Due to this characteristic, information flow in
object-oriented systems has a very concrete and natural
embodiment in the form of messages and their replies.
This makes it possible to control information flow by
mediating the flow of messages exchanged between
objects.

In our approach, messages are not allowed to be freely
exchanged between objects. By contrast, every message
and its reply are intercepted by a message filter, which
decides how to handle them according to the security
policy. The message filter may either let the information
be t ransmit ted unaltered, block it, or take some other
actions, such as restricting the execution of the invoked
methods. The task of the message filter is enforcing
the strict need to know policy, therefore ensuring that
information does not flow to objects accessible from
users not authorized to read the objects from which
the information has been read. The modular i ty of
object-oriented system, where operations on objects
are with objects as methods, makes it possible to
isolate specific operations and provide flexibility in the
application of the policy which may otherwise prove to
be too rigid. In particular the strict need to know
policy control can be executed either at the level of
each single elementary operation (i.e., read or write),
not allowing the operation to be executed if this may
cause unsafe information flow, or at the level of the
information produced by a method, therefore restricting
the transmission of messages (an their replies) between
objects.

In the paper, we discuss different interpretations
of the strict need to know policy in object-oriented
systems. We illustrate how different ways of enforcing
the strict to know policy may have different effects on
computat ion and how they all can be useful in some
respects. To allow flexibility in the application of the
policy, we then consider method executions that can
run under different modes. Each of such modes has
different effects on the type of control to be applied by
the message filter.

In particular, we allow method executions to run syn-
chronously or asynchronously. Indeed, the strictly se-
quential relationship between operations may unneces-
sarily limit the execution of some operations. The ad-
vantage of considering asynchronous executions, in ad-
dition to synchronous ones, is that it allows us to express
independence between operations, therefore increasing

141

the computat ions executable without generating illegal
information flow.

Moreover, we consider method executions that can
run under restricted or unrestricted modes. If a method
is executed under restricted mode, the strict need to
know policy is enforced on the reply generated by the
method. In particular the reply may be blocked if the
object waiting for it is accessible by users that are not
allowed to access the information contained in the reply.
By contrast, if a method is executed under unrestricted
mode, no constraint is enforced on the reply; therefore,
information is freely t ransmit ted between objects. In
this case, the verification of the strict need to know
policy will be ensured by restricting possible write
operations on objects accessible from users not allowed
to read the objects where the information has been
taken. Tha t is, write operations are forbidden in an
object if this object receives some information from
another object, and the set of users authorized to read
the object to be written is not a subset of the set of users
authorized to read the object in which the information
has been read.

In summary, our model supports synchronous and
asynchronous message exchanges, and restricted and
unrestricted method execution modes. By combin-
ing these possibilities, executions can therefore run:
(i) asynchronously, (ii) synchronously under restricted
mode, and (iii) synchronously under unrestricted mode. 1
Those different options that we provide as part of our
model decrease the intrinsic rigidity of the strict need
to know policy therefore making it more flexible and
adaptable to different application environments.

4 T h e o b j e c t - o r i e n t e d d a t a m o d e l

An object-oriented system is a collection of objects
communicating via messages and their replies.

To formalize the model we consider to have a finite
set of domains D1, D 2 , . . . , D,~. Let D be the union of
all the domains together with a special element, nil, i.e.,
D = D z U D 2 , . . . U D ~ U {ni l} . We refer to every element
of D as a primitive object. Moreover, let A be a set of
symbols called attribute names, I a set of identifiers,
M a set of finite strings called methods, and V a set of
values defined as V = D t2 I . Then, the elements of the
object oriented model can be characterized as follows
[10].

D e f i n i t i o n 1 (O b j e c t) An object is either a primitive
object or a quadruple o = (i, a,v,/~) such that i E I ,
a = (a l , . . . , a n) , a j E A for all j = 1 , . . . , n , v =
(V l , . . . , v k) , v j E V for all j = 1 , . . . , k , and # _C M.

Definition 1 states that an object is characterized by
its identifier, which uniquely identifies the object in the
system, an ordered set of at tr ibutes, an ordered set
of values associated with the attr ibutes, and a set of
methods corresponding to procedures associated with

I T h e execut ion m o d e (e i ther res t r i c ted or unres t r i c t ed) s t a tes
how to filter the execut ion reply. T h e n , it canno t be appl ied to
asynchronous executions whose replies are not returned to the
invokers.

the ob j ec t s . . I n the following. . i(o), a ()o, v (o~), and. /i()o
denote respectively the Identifier, the sets o f at tr ibutes,
the set of values, and the set of methods associated with
object o.

D e f i n i t i o n 2 (M e s s a g e) A message g is a triple g =
(h , p , r) where h is the message name, p = (P l , . . . , P k) ,
with Pi E V , j = 1 , . . . , k , is an ordered set of values
called message parameters, and r = (r l , . . . , r n) , r j E
V, j = 1 , . . . , n is the set of return values.

Similarly to the notation used for objects, in the
following h(g) ,p(g) , and r(g) denote respectively the
name, the set of parameters , and the reply of message
g.

The set of messages an object can respond to is
called the interface of the object. The interface of
the object determines which particular method, out of
the set of methods p(o) defined for the object, has to
be executed upon reception of a given message. The
interface fo of object o is formally defined as a function
fo : H ---, # (o)U{void} where H is the set of all possible
message names. Object o responds to all the messages
h such that fo(h) # {void} .

When an object receives a message, the corresponding
method is executed. The execution of the method can
imply having the object send a message to itself or to
another object, reading or writing any of its at tr ibutes,
and/or creating a new object. A reply is eventually
returned to the object which sent the message.

Access to the internal a t t r ibutes of an object and cre-
ation of objects are enforced by having the object send-
ing special predefined messages to itself. These mes-
sages cause the execution of built-in methods providing
the desired operations. The predefined messages an ob-
ject o can send itself are as follows:

• A read message, denoted by g = (READ, (aj), r),
returns the value of a t t r ibute a i i f a i E a(o), failure
otherwise.

• A write message, denoted by g = (WRITE, (aj , v i) ,
r), assigns value v i to a t t r ibute aj and returns
success if aj E a(o), does not produce any effect
and returns failure otherwise.

• A create message, denoted by g = (CREATE, (vz,
. . . , v =) , r) , creates a new object which inherits
a t t r ibutes and methods from o and whose at t r ibutes
have the values passed as parameters of the message.
The message returns the identifier i of the new
object, if the creation succeeds, returns a failure
otherwise.

5 N o t a t i o n s a n d d e f i n i t i o n s

In this section we introduce notations and definitions
that will be used later on in the paper.

Each activity is s tar ted by having a user sending a
message to an object. The execution of the correspond-
ing method may cause the object to send further mes-
sages to itself or to a different object. The messages the
object can send to itself include read, write, and create.

142

We refer to the set of all method executions invoked
(directly or indirectly) as a consequence of the reception
of a message from a user as a transactionfl Therefore a
transaction consists of the execution of some methods.
We refer to the user sending the message as the owner
of the transaction.

In the following t (o ,m) denotes the execution of
method rn on object o during a transaction. 3 For sake
of simplicity we will indicate with t a method execution
when the method and the object involved are not of
interest for the explanation. We will explicitly refer to
the method being executed and the object on which
the method is executed as re(t) and o(t) respectively,
when needed. We will use r ,w, and c, instead of t,
to denote execution of read, write, and create methods
respectively.

We consider that methods can be executed either
synchronously or asynchronously. In the first case the
sender of the message waits for the invoked execution
to complete and the reply to return. In the lat ter case
a nil reply is immediately returned to the sender which
therefore proceeds independently from the execution
invoked. By default, executions are synchronous.
However, in some cases 4 we require executions to run
asynchronously. Note that asynchronous executions
may raise the problem of dealing with concurrent
executions accessing the same object. We refer the
reader to [17] for this.

In the following, ti -*, t~. denotes the invocation of
the synchronous execution tj by ti, whereas ti ---*= tj
denotes the invocation of the asynchronous execution t i
by ti. We will use ti --4 ~i to denote either one of them.

The following definitions characterize the relation-
ships between executions belonging to the same trans-
action.

D e f i n i t i o n 3 (I n v o c a t i o n d e p e n d e n c y) Given two
method executions ti and tj in a transaction T, we write
ti---~, t i if there exist t l , . . . , t,~ E T, (n > 0), such that
$i --% t l ---*~ . . . ---*= $n --% $j.
We write f i - % t~ if there exists t z , . . . , ~,~ E T, (n > 0),
such that ti --, t l --4 . . . --, t,~ --~ fj, and at least one
execution is asynchronous.

D e f i n i t i o n 4 (I n v o c a t i o n o r d e r) Given two method
executions fi and ti , invoked by the same execution ~k,
we say that ti is invoked before t j , written tl <i t j , if
the message requiring the invocation of ti is sent before
the message requiring the invocation of $~'.

Note that since executions can run asynchronously,
invocation order between executions does not necessar-
ily corresponds to their execution order. I n particular,
if an execution is to be performed asynchronously it
cannot be considered as preceding any of the execution

~ N o t e t h a t i t is n o t a t r a n s a c t i o n i n t h e c o m m o n sense
o f t h e t e r m . T h e u s e r c a n r e c e i v e a r e p l y a n d t e r m i n a t e a
t r a n s a c t i o n e v e n i f s o m e o f t h e m e t h o d s i n v o k e d a r e s t i l l e x e c u t i n g
(a s y n c h r o n o u s c o m p u t a t i o n) .

3 N o t e t h a t a m e t h o d c a n b e i n v o k e d m o r e t h a n o n c e o n a g i v e n
o b j e c t d u r i n g a t r a n s a c t i o n .

4 W e wil l e l a b o r a t e o n t h i s is S e c t i o n 8.

invoked after it. This is formalized by the following def-
inition.

D e f i n i t i o n 5 (E x e c u t i o n o r d e r) Given two method
executions ti and tj, ti precedes tj , written ti <e t i ,
iff ti <i t i and there exists tl such that tz ---*, ti or
tl --*, tl, t~ <i ti.

Definition 5 states that execution tl precedes execu-
tion tj if and only if ti is a synchronous execution and
either is invoked before tj or ti depends, through a chain
of invocations of synchronous execution, on a f t preced-
ing t j .

Note that if all executions are synchronous, i.e., the
sender of a message blocks waiting for the execution
invoked by the message to terminate, for any two
executions in a transaction, either one is dependent or
precedes the other. By contrast, if executions can be
asynchronous, there may exist no relationship between
two executions. If two executions are neither in a
dependency nor in a precedence relationship, we say
that they are independent.

To graphically represent the relationship between
method executions in a transaction, we define a method
invocation tree as follows. The root of the tree is
the method execution invoked upon reception of the
message from the user. If, during execution *i, execution
ty is invoked, tj" is inserted in the tree as a child of
ti. To respect the order between invocations, for any
two executions th and tk, if th <i tk, ti will appear
on the left of ~h in the tree. To distinguish between
synchronous and asynchronous executions, invocations
of asynchronous executions are represented with thick
lines.

Note that , since no message can be sent as par t of the
execution of any of the built-in (read, write, and create)
methods, built-in method executions are always leaves
of the tree.

E x a m p l e 1 Consider transaction T illustrated in Fig-
ure 1, the following relationships hold:

- - , = (tl, t2), (t2, (tl, (tm, (q, ts),
(,1, t0), (t4, ts)

--o = (*2, t4), (tl, t,), (tx, ts), t,)

< , -- (*2, t,), (*2,*s), (,2, tg), (t3, t,), (t3, ts),
(*3, (t3, (*3, ts>, (t3,,9>, tg), (is,*9)

6 T h e a u t h o r i z a t i o n m o d e l

In this section we describe the authorization model
by means of which access control is performed. The
authorization model states how access authorizations
are specified and how access decisions are taken on the
basis of the specified authorizations. It is outside the
scope of this paper to propose an authorization model
for object-oriented systems. Many authorization models
have been proposed and are still under study [1, 2, 3, 6,
7, 14]. In order to make our approach widely applicable,

143

t 9

Figure 1: Example of method invocation tree

we consider a simple and general authorization model
where the subjects to which authorizations can be
referred are the users of the system, the objects are
the objects of the object-oriented model, and the access
modes executable by the subjects on the objects are
the elementary access modes, i.e., read, write, and
create, s Every authorization is a triple (user, access-
mode, object), stating that user can access the object
in the specified access-mode. We refer to the set of the
authorizations as Authorization Base (AB for short). 6

For every object, a Read Access Control List (RACL),
a Write Access Control List (WACL), and a Create
Access Control List (CACL) can be defined containing
the users who can respectively read, write, and create
instances of the object. Formally:

R A C L (o) = {u 13(u, read, o) • AB}

W A C L (o) = {u 13(u, write, o) • AB}

CACL(o) = {u 13(u, create, o) • AB}.

Every time the execution of a built-in method is
required in a transaction, access control is performed to
determine whether the user who star ted the transaction
has the necessary authorization for the access. If the
user has the proper authorization, access is allowed,
otherwise it is rejected. In the following we consider
this control to be always applied and we will not discuss
it in more details. Therefore, we consider the following
property to hold.

P r o p e r t y 1 (D i s c r e t i o n a r y p r o p e r t y) Read, write,
and create operations are executed in a transaction
only if the user who star ted the transaction has the
authorization for them. Formally:

VT: ri • T ~ u • RACL(o(r l))
wi • T ~ u • WACL(o(wi))
ci • T ~ u • CACL(o(c,))

w h e r e u = o w n e r (T) .

5The create access mode can be applied only to class objects.
eFor our purposes, authorizations may be considered as being

represented by means of access control lists associated with each
object stating the users authorized for accessing the object and
the access mode they are allowed to execute.

6.1 W e a k n e s s o f t h e d i s c r e t i o n a r y c o n t r o l

The application of discretionary control guarantees that
access to objects is executed only by users authorized for
that. In particular, a request by a subject to access in a
given mode (i.e., read, write, or create) an object will be
allowed if and only if the subject has the authorization
for the access mode on the object. However, the
discretionary access control does not guarantee the
satisfaction of the protection requirements as s tated
through the authorizations. In particular, in such a
model, it is possible for a user who does not have any
authorization on an object to read the information in
the object without violating the restrictions imposed
by the discretionary control. The problem is tha t no
control is enforced by the discretionary model on the
flow of the information in the system. Hence, once a user
has read some information, no restriction is imposed on
the usage of the information by the user. I f on one hand,
this may correspond to what one would like to see in
the discretionary control, where the only condition on
the access is to be authorized, on the other hand, this
makes the control prone to be easily bypassed and hence
unreliable.

To bet ter understand this problem, consider the
following example. Consider users z and y and two
objects oi and 02. Suppose that user z has the read
authorization on 01 and the write authorization on 02;
whereas user y has the read and write authorization
on 02. Object 01 has a method m l whose task is to
read some information in the object and return it to
the invoker. Suppose that a Trojan Horse is embedded
in m i ' s code. The Trojan Horse consists in sending a
message g to object 02 passing it the information read.
When the message is received by object 02, method m2
is executed causing a write operation on 02.

Suppose now that user z send a message to 01
invoking the execution of method m l . The read
operation on object 01 is allowed since z has the
necessary authorization. Then, a message is sent to 02
and a write operation is required. Again, since z has
the write authorization on 02 the operation is allowed.
Then, the reply is sent back to z. The sending of the
message to 02, i.e., the flow of information from object
01 to object 02, is caused by the Trojan Horse and
completely hidden to ~. Then, despite z ' s willing and
despite the discretionary control, information read in
01, and hence not readable from y, has been written in
02, and hence made readable to y.

The flow of information between the two objects has
not even been tracked by discretionary control, which
considers each operation as singularly taken and not in
the context in which it is executed. In particular, every
operation is considered legitimate as far as the owner of
the transaction has the authorization for it.

This simple example, shows how easily discretionary
control can be bypassed and hence that no assurance
is offered on the satisfaction of the protection require-
ments by the only application of discretionary control.
This justifies the need for the application of further
controls complementing the discretionary authorization
model by restricting the flow of information in the sys-
tem. These further control should provide assurance

144

that if some information is not accessible by some users,
these users will not indirectly be able to get it.

7 I n f o r m a t i o n f l o w

Objects exchange information by means of messages. If
the execution invoked by a message is to be performed
synchronously, i.e., the sender blocks waiting for the
execution invoked to terminate, the message can enforce
bidirectional information transmission. The forward
transmission is carried through the list of parameters
contained in the message, the backward transmission is
carried through the reply. By contrast, if the execution
invoked by a message is to be executed asynchronously,
i.e, a nil reply is immediately sent to the sender (which
therefore proceeds its execution regardless of the status
of the execution invoked) the message can enforce only
the forward transmission.

Not every time a message is exchanged between two
objects there is a flow of information between them.
For example, an object can acquire information only by
changing its internal state, i.e., by writing any of its
attributes. Thus, if no such changes occur in an object,
no information flow to the object is actually enacted.

In particular, we make the following assumptions:

• There can exist information flow from an object only
if information is read from the object.

• There can exist information flow to an object only
if information is written into the object.

Note that although these assumptions may seem
trivial, they are not. For example, in [10] different
assumptions are made. In particular, to have an
information flow from an object it is sufficient that the
object sends (or replies to) some message, regardless
of whether information has been read in the object.
Our approach has its justification in the fact that the
information we do not want to flow is the information
regarding the status of the objects, i.e., the values of
its attributes which can be known only after a read
operation on the object.

It may be argued that not considering the sending
of the message or the reply themselves as a "source"
of information may allow information embedded in
the methods to freely flow in the system. Then,
if information on the object 's attributes has been
"hidden" inside a method code, an illegal information
flow can be enacted in spite of the controls. To
ensure that no information about the value of the
object's attributes can be hidden inside the method's
specifications, we do not allow method codes to be
changed during normal execution.

To represent the concepts above, we distinguish be-
tween transmission of information between objects,
meaning a direct communication between the objects,
i.e, through a message or its reply, and flow of informa-
tion between objects enacted by a read operation on the
"source" object and the subsequent write operation on
the "destination" object. As we have already discussed,
the transmission of information, i.e., a communication,

between two objects does not imply a flow of informa-
tion between the two objects. Also the reverse may
not always be true, i.e, a flow of information between
two objects does not necessary imply a communication
between the two objects. If the flow of information is
enforced by means of a transmission of information be-
tween the two objects the flow is said to be direct, oth-
erwise the flow is indirect. In other words, there is a di-
rect information flow when an object reads information
stored in its internal at tr ibutes and sends it to another
object which writes it in any of its attributes. There
is an indirect information flow when the information is
passed from an object to another through the mediation
of one or more other objects.

Note that for an information flow to be enacted, it
is not necessary that the information written be the
same as the information read. In particular, there exists
information flow also when the information written
is derived by executing some computation over the
information read, i.e., some transformation has been
applied to the information read.

The following definition characterizes the information
flows in a transaction.

De f in i t i on 6 (I n f o r m a t i o n f low) There exists a flow
from object oi to object o i in a transaction T i f f the
transaction reads information from oi and, at a later
time, writes information in oj. Formally, there exists
a flow from object oi and object oj, iff there exist
method executions ti, tj E T, ti <e tj, o(ti) = oi, o(tj) =
oj, m (t d = read, m (t i) = wri te or create.

Note that flows in Definition 6 are potential flows.
Indeed, the information written in 0 i may not depend
on the information read in oi. Determining whether a
potential flow is an actual flow would require analyzing
how the information written has been produced [5].
This analysis is outside the scope of this paper.
We therefore take the pessimistic hypothesis that all
potential information flows are actual flows.

For an information flow to respect the protection
requirements as stated by means of the authorizations,
the object in which the information is written must be
protected in reading at least as the object from which
the information has been read. An information flow
which satisfies this condition is said to be safe. This is
formalized by the following definition.

De f in i t i on 7 (Safe i n f o r m a t i o n f low) An informa-
tion flow from object oi to object 0 i is safe iff
RACL(oj) C RACL(oi).

A transaction respects the protection requirements if
and only if it does not enact any unsafe flow. This is
formalized by the following definition.

De f in i t i on 8 (Safe t r a n s a c t i o n) A transaction T is
safe iff all information flows in it are safe. Formally, T
is safe iff:
Vri, wj, c, 6 T :

r{ <~ w i ~ RACL(o(wi)) _C RACL(o(ri))
r{ <~ cz ~ RACL(o(cz)) C RACL(o(r{)).

145

Definition 8 states tha t a transaction is safe if,
during its execution, no information is leaked in objects
readable from users not authorized for it.

8 The message filter
We propose the use of a message fil~er to complement
the discretionary access control in an object oriented-
system in order to ensure the verification of the
protection policies. The concept of message filter
was first introduced in [10] for the application of the
mandatory policy in object-oriented systems. There, a
filter intercepts every message exchanged by the objects
in the system and, based on the security levels of the
sender and of the receiver, as well as some auxiliary
information, decides how to handle the message.

Similarly, we propose the use of a message filter which
intercepts every message exchanged between the objects
in a transaction to guarantee that no unsafe flow takes
place.

An impor tant requirement which must be taken into
account in determining the control to be applied is that
the control should impact as little as possible on the
availability of the system to the users. For example,
a naive filtering policy could be that only objects with
same ACLs can exchange messages between each other.
This requirement would however be too restrictive and
a system enforcing it would be of little use to the
users. Hence, different ways of ensuring the satisfaction
of the protection requirements, i.e., flow safety, may
have different effects on the system usage by the users.
Before introducing our message filter, we discuss some
approaches which can be used to ensure transaction
safety.

8.1 P o s s i b l e a p p r o a c h e s

As we have illustrated in Section 7, information flow
from an object to another object is performed through
different steps. In particular, to have information flow
there must be:

1. a read operation on the "source" object

2. a chain o f communica t ions of information connect-
ing the "source" object to the "destination" object
(information transmission)

3. a wri te operation on the "destination" object (infor-
mation acquisition).

Where, if the chain of communications consists of one
transmission only (i.e., there is direct communication
between the source and the destination), the flow is
direct.

The strict need to know policy imposes that no flow
be completed if the destination object is not at least
as protected as the source object. This requirement
can be interpreted, and therefore enforced, in different
ways. In particular, it can be enforced by restricting the
execution of any of the steps above, i.e., by restricting:

• the read operations

• the transmission of information (i.e., the communi-
cation between objects) or

• the write operations (i.e., the acquisition of the
information).

The restrictions on the communications can be
enforced on any of the transmissions connecting the two
objects.

All above solutions ensure that no unsafe flow takes
place. However, they have different effects on the
transaction executions. Indeed, an approach like "read
everything, limit write" has a different impact on the
transaction execution than an approach like "limit read,
write everything", al though both of them are aimed to
ensure that no unsafe flow takes place.

For instance, consider objects Ol,O2, and 03, and
users z and y. Suppose that z is authorized to read
and write all the objects, whereas y is only authorized
to read object 02, that is z E RACL(ol) , RACL(o2),
RACL(o3), WACL(ol) , WACL(o2), WACL(o3), and y e
RACL(o2), Suppose now tha t user z sends a message
(gl) to object ol. Upon reception of gl by ol, method
m l is executed, consisting of sending a message (g2)
to o2 and of a subsequent write operation on o1. Upon
reception of g2 by o2, method m2 is invoked consisting of
sending a message (g3) to o3, of the execution of some
computat ion, and of a subsequent write operation on
o2. Upon reception of g3 by 03, method m3 is executed
consisting of a read and a subsequent write operation
on o3. The transaction, whose method invocation tree
is illustrated in Figure 2, has an unsafe flow due to the
execution of the write operation on 02 after the read
operation on o3, i.e., after 02 received the reply to g3
from o3. The unsafe flow can be forbidden by either:
(i) forbidding the read operation on 03, (ii) blocking the
reply of g3 from o3 to 02, or (iii) forbidding the write
operation on o2. Any of these solutions satisfies the
requirement of blocking the unsafe flow, however, they
all have a different effect on the transaction execution.
In particular, blocking the read operation on oz may
cause the subsequent write operation on o3 to be
uncorrect. Blocking the reply to be returned to o2 may
cause the reply to be returned by o2 to ot to be uncorrect
(since it does not take into account the information read
in o3). Finally, blocking the write operation on o2 has
the effect of not producing an up-to-date copy of o2 at
the end of the transaction.

t(r, 03)

ol)

Figure 2: Example of method invocation tree

146

In the object-oriented model, read operations on
an object can be invoked only by the object itself.
Then, restricting read operations, which are necessarily
required by the object inside another execution on it,
may be a too restrictive approach. Indeed, the object
should be able to access its own at t r ibute and the
restriction should instead be enforced at the moment
the information is leaked outside the object. In the
following section, we consider in more details the
restriction on information transmission and acquisition.

8.2 C o n t r o l po l i c i e s

There are two different times at which the message filter
can act to block possible unsafe flows to an object.

• When the information is to be sent to the object, by
not allowing information to pass if the object is not
be able to store it, i.e., blocking the message or its
reply.

* When the information is to be stored in the ob-
ject, therefore allowing information to be freely ex-
changed imposing, however, constraints on its acqui-
sition, i.e., blocking write and create operations.

The approach of always blocking the transmission of
information to an object if the object cannot store it
may not always be the correct solution. Let us examine
first the case of unsafe forward transmission, which
arises when an object sends a message to an object
less protected in reading, provided that more protected
objects have been read. Blocking the messages sent
from more protected objects to objects less protected
is a very strong limitation. Indeed, an object can
acquire information from an object less protected, and
the only way it can do so is by sending the less
protected object a message requiring information and
obtain the information through the reply. Blocking
the message would therefore imply not allowing the
backward transmission of the message, transmission
that is completely legitimate and desirable. For this
reason, the most appropriate solution seems, in this
case, to allow the message to pass and ensure that
no unsafe flow takes place by blocking possible write
operations the less protected object may require.

Consider now the case of unsafe backward transmis-
sion, arising from having an object replying to a mes-
sage sent to it by a less protected object. Obviously,
the forward transmission the message carries is safe and
then there is no need to block the message. A possible
solution to avoid the unsafe backward transmission to
take place is to always return a nil reply to the low level
object and proceeding with an asynchronous execution.
This is the solution that has been proposed in [10]. The
motivation of such an approach relies on the fact that
the low level object would not be able anyway to store
the information in any of its at tr ibutes and therefore
there is no need to pass it such information. Moreover,
blocking the reply of the message does not have here,
as it had in the case of forward transmission, the draw-
back of blocking further legitimate flow between the two
objects.

However some cases can be found where blocking the
information to be passed back to low level objects may
not be the right solution. In particular, it might be that
a low level object needs some high level information
in order to produce a reply to return to some high
object, i.e., the low object is providing a service. Then,
not returning the information to the low object would
compromise the success of the transaction. Therefore,
it seems more appropriate, in this case, to let the
information (reply) pass and ensure that no unsafe flow
takes place by blocking possible write operations on the
low level object.

Notice that this solution also has some drawbacks.
Indeed, passing an object information read from objects
more protected than the object itself will have the effect
of not allowing any subsequent write operation on the
object, to guarantee no unsafe flow takes place, therefore
possibly compromising the success of the transaction.

Hence, which of the two approaches has to be pre-
ferred over the other depends on the specific situation.
For this reason, we do not restrict our model to the
application of any of them in particular, but allow the
control to be executed either on the information trans-
mission or on its acquisition according to the specific
invocation to be controlled, i.e., to the specific message
intercepted by the filter. This gives our control flexibil-
ity, therefore overcoming the drawbacks that any of the
approaches can have in specific situations.

In particular, we allow executions to be invoked either
as resLricted or unrestricted. If an execution is invoked
as restricted, then no reply will be returned if the
invoking object would not be able to store it, i.e, if some
information has been read in a more protected object.
By contrast, if an execution is invoked as unrestricted no
constraint is imposed on the reply, and possible unsafe
flows will be blocked at the time of the write operations.
The restricted execution corresponds to applying the
application of the strict need to know policy on the reply
to be returned, i.e., on the transmission of information;
whereas the unrestricted execution does not impose any
constraint on the information transmission, therefore
requiring to block its possible acquisition.

The specification of whether an execution must run
as restricted or unrestricted is made by the sender at
the invocation time. Indeed it is the object sending the
message which knows what the information will be used
for, i.e., for example, if more protected information can
be returned since no write operation will be executed.
We note however, that different approaches can be
taken, for example, the receiver of a message could
impose the invoked execution to run under restricted
mode if no information transmission to less protected
object is wished. However, for sake of simplicity we
consider the specification to be made by the execution
invoker.

As we have already discussed in Section 4, executions
can run asynchronously. If an execution is invoked to
be run asynchronously then a nil reply is immediately
returned to the invoker which then proceeds indepen-
dently from the execution invoked. Also the specifica-
tion of whether an execution must be performed syn-
chronously, i.e., the sender waits for it to complete, or

147

asynchronously, is made by the sender upon the exe-
cution invocation. It is then task of the message filter
to provide for asynchronous execution, i.e., to intercept
the message requiring asynchronous invocation, return
a nil reply to the invoker and discard the actual reply
produced by the execution.

Summarizing, executions can be asynchronous or syn-
chronous. Moreover , synchronous executions executions
can be restricted or unrestricted. The specification of
whether an execution must be asynchronous, restricted
or unrestricted is made by the invoker object when send-
ing the message. To formalize this we extend the defi-
nition of message. A message is now defined as a 4-ple
g = (h ,p , r , c) where h,p, and r have the meaning il-
lustrated in Definition 2, and c denotes the mode under
which the execution to be invoked upon reception of the
message must be performed. Element c can have value:

N U L L No restriction is applied on the invoked execu-
tion

R S T The invoked execution runs in restricted mode,
i.e., its reply will be filtered

A S Y N The invoked execution has to be performed
a.synchronously.

8.3 T h e m e s s a g e f i l t e r i ng a l g o r i t h m

We now present the message filtering algorithm, i.e., the
controls and the actions executed by the message filter
upon interception of a message•

The message filtering algorithm, illustrated in Fig-
ure 3, works as follows.

Consider a message g sent by object ol to object
0~'. Let ti be the method execution in oi that sent the
message to oi, and t. the execution to be invoked on oj

• 3

upon recephon of message g by oj.

The two major cases correspond to whether g is a
primitive message.

The first case deals with primitive messages, i.e., read,
write, or create. If the read method is invoked, then no
constraint is enforced by the filter. If the write method
is invoked, the message filter allows its execution only if
this does not result in any unsafe flow. Then, the write
operation is allowed if and only if any read operation
preceding it in the transaction either has been executed
on an object less protected than o3" or has been called
inside a restricted execution invoked by an object less
protected than 0 i. If the create method is invoked,
no constraint is enforced by the message filter on the
execution. The transaction owner will be given access
privileges on the new object, z

The second case deals with non-primitive messages.
We can distinguish three different sub-cases, according
to the different conditions which can be put on the
execution invoked. If no condition is required on the
execution (c = NULL), then no control is enforced by
the message filter. By contrast, if the execution is
invoked to be performed under restricted mode (c =
RST), the reply generated by the execution must be

ZWc will elaborate on this in Scctlon 8.4.

filtered. In particular, if the execution has not invoked
any read operation on an object more protected than
o i or if so, the read operation was executed inside a
restricted execution invoked by an object less or equally
protected in reading than oa. , then the actual reply
is returned; otherwise a nil reply is returned. If the
execution has to be run asynchronously (c = ASYN),
the message filter immediately returns a nll reply to
the sender then discarding the eventual actual reply
produced by the execution.

8.4 A d m i n i s t r a t i o n o f a u t h o r l z a t l o n s

Whether a flow of information between two objects is
safe depends on authorizations the users have on the
two objects. As a consequence, the authorizations on
the objects determine the decision of the message filter
on how to handle the message. Hence, the correctness
of the message filter's controls strongly depends on
the correctness of the specified authorizations: if the
authorizations axe not correct, then also the message
filter decisions may be not correct. An incorrect decision
of the message filter may cause safe flows to be blocked
or unsafe flows to be allowed.

To ensure the correctness of our control, we impose
some restrictions on the administrat ions (i.e., granting
and revoking) of authorizations.

The first restriction is tha t authorizations may be
granted and revoked only outside the execution of
normal transactions. To understand the importance
of this requirement, suppose tha t authorizations can
be changed (i.e., granted or revoked) during normal
execution. Then, a malicious user could embed in a
method a Trojan Horse that , when executed by another
user u, gives the malicious user access authorization to
the objects of u. Since u is authorized to grant someone
else access to his own objects these grants would be
considered as legitimate. However, their execution was
hidden and not wished by u. This simple example
shows the importance of considering authorization
administrat ion as separate from the normal use of the
system.

The second restriction is tha t the authorizations on
an object cannot change when the object is being
accessed by some transaction. This restriction ensures
the consistency of the ACL of an object at any point
in t ime during the transaction execution. Therefore,
it avoids that an object which has been considered as
not readable by some users is then made readable for
them, or vice versa, thus compromising the correctness
of the control. The requirement that the authorizations
specified for an object cannot change during normal
execution, is similar to what in the manda tory policy
is known as tranquili ty principle which states that the
security level of an active object cannot be changed.
Similarly, we require the protection state (i.e., the set
of authorizations associated with the object) not to
be changed when the object is being accessed by a
transaction.

Note that , for our purposes, i.e., avoiding information
to be disclosed to users not authorized to read it,
it would have been sufficient to prevent the read set
of an object to be changed during normal execution.

148

Message Fi l ter ing A l g o r i t h m

% Let g = (h, (p t , . . . ,p~), r,e) be the message sent.
% Let t i be the execution to be invoked on o i .
i f h E {READ, WRITE, CREATE}

% g is a primit ive message
t h e n c a s e

(1) g = (R E A D , (a t) , r) : % allow unconditionally
r ~- value of at
r e t u r n r t o t l

(2) g = (W R I T E , (a t , v t) , r) :
% allow if it does not enforce any unsafe f low
i f Vr, <, wj: RACL(o(r,)) _._D RACL(o(ri))

V 3~k,tk <i Wi,tk'--~s rz,
th --% tk, tk E RST,
RACL(o(tt,)) D RACL(oj)

t hen [at ~-- vt; r +-- success]
else r ~ failure

r e t u r n r t o tl

(3) g = (CREATE,(vx , v ,) , r) :
% create object. Give privileges to
[CREATE i wi th values v l , . . . , vk and
RACL(i)= WACL(i)= CACL(i) = u]
r e t u r n r t o t l

e n d c a s e

else case % i.e., g is a non-primitive message

(4) e = NULL:% let g pass, return actual reply
i n v o k e tj
r ~ reply from ~i
r e t u r n r t o tl

(5) e = RST: % let g pass, filter reply
invoke t i
i f (Vr,,t i--*, r , : RACL(o(r,)) D RACL(o,)

V 3th, tk, t i--~s tk---~s rz,
•h "4s gkl~k E RST,
RACL(o(th)) 2 RACL(o,)

then r +-- reply from tj
else r +- NIL

return r to ti

(6) c = ASYN:
% let g pass, inject NIL reply,
% ignore actual reply

r *-- NIL
r e t u r n r to t i
invoke t i
discard reply from ti

end c a s e
endlf

Figure 3: Message filtering algorithm

However, we believe that it is a good principle to
consider administrat ive operations as separate from the
normal activity.

A further issue about authorization administrat ion
is the assignment of authorizations on objects created
inside a transaction. Since a create operation, may be
seen as a write operation on the created object, for the
transaction safety to be respected it would be sufficient
to require that a user can be authorized to read the
new object only if he has the read authorization for
all the objects read by the transaction prior to the
create operation. However, according to our approach
of keeping authorization administrat ion outside the
normal transaction execution, we consider that upon
creation of an object, only the user who star ted the
transaction is given the authorizations to access the
object. Authorizations on the created object can be
granted by the object 's owner to other users once the
transaction has completed.

9 C o n c l u s i o n s a n d f u t u r e r e s e a r c h

Discretionary access control alone does not provide
any assurance on the satisfaction of the protection
requirements s tated through the authorizations. Then,
the need of complementing access control by providing a
mean for limiting the indiscriminate flow of information
in the system. In this paper we have proposed the
use of a strict need to know policy for overcoming the
vulnerability of discretionary control policies in object-
oriented systems. We have stressed how characteristics
of object-oriented systems make information flow easily
representable and therefore controllable. The strict
need to know policy is enforced by a message filter
intercepting every message exchanged between objects
to ensure that no information is leaked to objects
accessible from users not allowed for it. The model
allows for different options in the application of the
policy therefore making the policy more flexible and
adaptable to the specific situations.

The work presented in this paper can be extended
in many respects. In particular, the model can
be extended to support "exceptions" to the strict
need to know policy. Indeed, there may be the
need for releasing sensitive information to users not
allowed to directly access it. However, this release of
information must be strictly controlled. Exceptions
can for instance be allowed after querying human users
about it or only inside certified trusted software. In
particular specific trusted methods could be allowed
to execute without obeying the strict need to know
policy. Other extensions may concern the underlying
authorization model. In particular, a more richer
authorization model can help in exploiting object-
oriented characteristic for providing access restriction
without compromising availability. Methods could be
considered as objects of the authorizations as done in
[1, 2, 14]. Moreover methods could be considered as
subjects of the authorizations. The interpretat ion of the
strict need to know policy to such an extended model
would result more flexible and help in overcoming the
rigidity proper of such control.

149

References

[1] AHAD, R. ET AL., "Supporting access con-
trol in a n object-oriented database language,"
Proc. Third International Conference on Eztend-
ing Database Technology (EDBT), Vienna (Aus-
tria), Springer-Vcrlag Lecture Notes in Computer
Science, Vol. 580, 1992.

[2] BERTINO, E., "Data hiding and security in
an object-oriented database system," Proc. Eighth
IEEE International Conference on Data Engineer-
ing, Phoenix (Ariz.), February 1992.

[3] BERTINO, E. AND WEIGAND, H., "An ap-
proach to authorization modeling in object-
oriented database systems," To appear in Data and
Knowledge Engineering.

[4] BOEBERT, W.E. AND FERGUSON, C.T., "A
partial solution to the discretionary Trojan Horse
problem," Proc. of the 8 th Nat. Computer Security
Conf., Gaithersburg, MD, October 1985

[5] DENNING, D.E., "A lattice model of secure
information flow," in Communication of the A CM,
Vol. 19, No. 5, May 1976

[6] DITTRICH, K., HARTIG, M., AND PFEFFERLE,
H., "Discretionary access control in structurally
object-oriented database systems," in Database
Security, II: Status and Prospects, C.E. Landwehr,
ed., North-Holland, Amsterdam, 1989.

[7] FERNANDEZ, E. B., GUDES, E., AND SONG, H.,
"A security model for object-oriented databases,"
Proc. IEEE Symposium on Security and Privacy,
Oakland, CA, May 1989.

[8] GRAUBART, R., "On the need for a third form of
access control," Proc. of the 12 th Nat. Computer
Security Conf., Gaithersburg, October 1989

[9] GRIFFITHS, P.G., AND WADE, B., "An authoriza-
tion mechanism for a relational database system,"
ACM TODS, Vol. 1, No. 3, September 1976

[10] JAJODIA, S. AND KOGAN B., "Integrating an
object-oriented data model with multilevel secu-
rity," Proc. IEEE Syrup. on Security and Privacy,
Oakland, CA, May 1990

[11] JAJODIA, S., KOGAN, B., AND SANDHU, R.,
"A multilevel-secure object-oriented data model,"
Technical Report, George Mason University, 1992.

[12] KARGER, P.A., "Limiting the damage potential of
discretionary Trojan Horses,", Proc. IEEE Syrup.
on Security and Privacy, Oakland, CA, May 1987

[13] MCCOLLUM, C.J., MESSING, J.R. AND NOTAR-
GIACOMO L., "Beyond the pale of MAC and DAC -
Defining new forms of access control," Proc. IEEE
Syrup. on Security and Privacy, Oakland, CA, May
1990

[14]

[15]

[16]

[17]

[18]

RICHARDSON, .]., SCHWARZ, P., AND CABRERA,
L.F., "CACL: efficient fine-grained protection for
objects," Proc. OOPSLA'9Z, Vancouver, B.C.
Canada, October 1992

SANDHU, R., THOMAS, R., AND JAJODIA, S.,
"Supporting timing channel free computations in
multilevel secure object-oriented databases," in
Database Security V: Status and Prospects, C.E.
Landwehr and S. Jajodia, eds., North-Holland,
1992.

STOUGHTON, A., "Access flow: a protection model
which integrates access control and information
flow," Proe. IEEE Syrup. on Security and Privacy,
Oakland, CA, May 1981

THOMAS, R., SANDHU, R., AND JAJODIA,
S., "Implementing the message filter object-
oriented security model without trusted subjects,"
in Database Security V: Status and Prospects, C.E.
Landwehr and S. :Iajodia, eds., North-Holland,
1992.

WALTER, K.G., OGDEN, W.F., ROUNDS, W.C.,
BRADSHAW, F.T., AMES, S.R., AND SUMAWAY,
D.G., "Primitive models for computer security,"
Tech. Report ESD-TR-4-117, Case Western Re-
serve University, Cleveland, OH, January 1974

150

