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A b s t r a c t  1 In troduct ion  

Computer and network systems are vulnerable to at- 
tacks. Abandoning the existing huge infrastructure of 
possibly-insecure computer and network systems is intpossi- 
ble, and replacing them by totally secure systems may not be 
feasible or cost effective. A common element in many attacks 
is that a single user will often attempt to intrude upon mul- 
tiple resources throughout a network. Detecting the attack 
can become significantly easier by compiling and integrat- 
ing evidence of such intrusion attempts across the network 
rather than attempting to assess the situation from the van- 
tage point of only a single host. To solve this problem, we 
suggest an approach for distributed recognition and account- 
ability (DRA), which consists of algorithms which "process", 
at a central location, distributed and asynchronous "reports" 
generated by computers (or a subset thereof) throughout 
the network. Our highest-priority objectives are to observe 
ways by which an individual moves around in a network of 
computers, including changing user names to possibly hide 
his/her true identity, and to associate all activities of mul- 
tiple instances of the same individual to the same network- 
wide user. We present the DRA algorithm and a sketch of 
its proof under an initial set of simplifying albeit realistic as- 
sumptions. Later, we relax these assumptions to accommo- 
date pragmatic aspects such as missing or delayed "reports", 
clock skew, tampered "reports", etc. We believe that such 
algorithms will have widespread apphcations in the future, 
particularly in intrusion-detection systems. 
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Most computer systems have some kind of security flaw 
that may allow outsiders (or legitimate users) to gain 
unauthorized access to sensitive information. In most 
cases, it is not practical to replace such a flawed system 
with a new, more secure system. It is also very difficult, 
if not impossible, to develop a completely-secure system. 
Even a secure system is vulnerable to insider,; misusing 
their privileges, or improper operating practices. While 
many existing systems may be designed to prevent spe- 
cific types of attacks, other methods to gain unautho- 
rized access may still be possible. Due to the tremen- 
dous investment already made into the e~isting infras- 
tructure of "open" (and possibly insecure) communica- 
tion networks, it is infeasible to deploy new, secure, and 
possibly "closed" networks. Since the event of an attack 
should be considered inevitable, there is a tremendous 
need for mech~misms that can detect outsiders at tempt-  
ing to gain entry into a system, that can dete,:t insiders 
misusing their system privileges, and tha¢ can monitor 
tile networks connecting all of these systems ~ogether. 

A common element in many attacks (or computer 
intrusions) is that a single user will ofte'n a t tempt  to 
intrude upon multiple resources throughcut ~ network. 
Detecting the attack can become significantly easier by 
compiling and integrating evidence of such intrusion at- 
tempts across the network rather than at tempting to 
assess the situation from the vantage point of only a 
single host. For example, an attacker may make only 
a single at tempt at guessing a password for each host 
computer. Thus, from the vantage point of a host, the 
break-in attempts may appear to be a very normal mis- 
take. However, by integrating these obs,~rvations over 
multiple target hosts, it becomes clear that a single at- 
tacker is making a concerted at tempt to brea]c in some- 
where, by looking for an obvious hole. 

Accordingly, the goals of our present work on dis- 
tributed recognition and accountability (DRA) are (1) 
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to observe the ways by which an individual moves 
around in a network of computers,  including chang- 
ing user names to possibly hide his/her true identity 
(distributed recognition); and (2) to associate all ac- 
tivities of multiple instances of the same individual to 
the same network-wide user, referred to as the network 
identifier, NID (accountability). We assume that  mech- 
anisms (communicat ion facilities) are available by which 
"reports" can be sent by computers  distributed across 
the network to a centralized location. The centralized 
facility, a CLIPS-based expert system in our current im- 
plementat ion [SB+91a], executes the DRA algorithm to 
track users as they move around the network, maintain- 
ing correct NIDs as stated above. 

Initially, the DRA algorithm is outlined under a set 
of simplifying assumptions such as perfect network-wide 
synchronization, no loss of information (e.g., no loss of 
network packets associated with audit data),  immediate  
"report" generation (i.e., all "reports" are in sequence), 
the network connecting all host computers  is an Ether- 
net local area network (LAN) so that  Ml of their network 
activities can be picked up by a LAN monitor  such as 
the Network Security Monitor (NSM) [HML+91], etc. 
Later, some of the simplifying assumptions are relaxed, 
and the corresponding necessary changes to the DRA 
algorithm are discussed. Proofs of correctness are out- 
lined to demonstrate  that  the DRA algorithm is robust 
under the simplifying assumptions.  

In Section 2, we provide motivat ion for our work by 
describing several network attacks that  cannot easily be 
detected with the association of DRA. In Section 3, we 
briefly describe a system architecture that  implements 
a form of DRA that  addresses some of the practical 
considerations raised earlier. In Section 4, we discuss a 
DRA algori thm under the simplifying assumption, and 
in Section 5, we extend this DRA algorithm to encom- 
pass practical considerations. 

2 N e t w o r k  A t t a c k s  

Figure 1 shows several behavior styles that  are charac- 
teristic of an intruder. Some of these behavior styles 
indicate an a t t empt  to gain access to a system, while 
others are intended to hide the intruder 's  identity or 
are malicious behavior. 

2 .1  D o o r k n o b  A t t a c k  

In a doorknob attack, the intruder 's  goal is to discover, 
and gain access to, insufficiently protected hosts on a 
system. The intruder generally tries common account 
and password combinations on several computers (see 

(a) Simple Attack 

(b) Doorknob Attack 

(¢) Chain Attack 

(d) Loop Attack 

Currqmt Source ~ Current Target ~ PreviouJ ~r ,ge t  
~ o f  aefivi/y . . . . . . . . . .  ofacfivi/y of activity 

Figure 1: Network Attacks 

Figure 1, part  b). If  the intruder only tries a few lo- 
gins on each machine (with different account names),  
single-host Intrusion Detection Systems (IDS) having a 
higher "threshold of detection" may not detect the at- 
tack. The threshold of detection is a common technique 
used to quantify "how bad" a particular behavior is. 
For example, two failed login a t tempts  might be consid- 
ered normal, but 30 failed login a t tempts  should cause 
concern. If  the intruder tries two such "doorknob rat-  
tles" on each of 15 machines, then, without aggregation, 
none of the 15 machines would consider such behavior 
to be serious. However, by aggregating all of the login 
failures, it becomes clear that  an at tack is underway. 

For example, the following attack has been ob- 
served. An attacker gains super-user access tc. an exter- 
nal computer which did not require a password for the 
super-user account. The intruder uses telnet to make 
the connection to this site, and then repeatedly tries to 
gain access to several different computers at the external 
site. 

Another intruder uses a doorknob a t t ack  and suc- 
ceeds in gaining access to a computer using a "guest" 
account which does not require a password. Once the 
attacker has access to the system, he exhibites behav- 
ior which would alert most  existing intrusion detection 
systems (e.g., writing to sensitive files). The key here is 
that. DRA permits the intrusive activity to be ;~ssociated 
with its original source, while most  existing Intrusion 
Detection Systems (IDSs) would account this activity 
to the "guest" account and not provide any backtrack- 
ing. 
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2 . 2  C h a i n  a n d  L o o p  A t t a c k s  

In a chain at tack and a loop attack (Figure 1 parts c, 
d), an intruder moves between several hosts and account 
names in order to hide his point of origin. Insiders may 
also employ chain at tacks to camouflage their identity. 
The key here is tha t  the most  recent reported login in 
a chain at tack would be from an on-site location rather 
that  from outside. 

3 Arch i t ec tura l  Overv i ew  

Our system is a prototype IDS designed to monitor  user 
behavior across a single Ethernet LAN. I t  provides a 
type of DRA similar to that  described above. Hosts 
attached to the LAN may be either unmonitored (such 
as PCs) or monitored.  At present, monitored hosts must  
be either Unix systems with Sun Microsystem's Basic 
Security Module (BSM) or VMS systems. Both provide 
a C2-1evel s tandard of auditing information. 

Our architecture combines distributed monitor-  
ing and da ta  reduction with centralized da ta  analysis 
[SB+91a][SB+91b]. This approach is unique among cur- 
rent intrusion detection systems. Each monitored host 
is provided with a Host Monitor that  collects and an- 
alyzes audit records locally. These monitors pass in- 
formation about  notable events to a central analyzer, 
called the Director, for further processing. Notable 
events include: failed logins, changes to the security 
state of the system, tagged file accesses, unusually 
high number  of file accesses (browsing), and an un- 
usually high volume of requests for information about  
users (paranoia).  Much of this information comes from 
HAYSTACK [Sma88], which has been incorporated into 
the Host Monitor. 

The LAN is monitored by a subset of the NSM 
[HDL+90]. This LAN Monitor observes all traffic along 
the network and reports activity such as rlogin and tel- 
net connections, security-related services, and the use 
of sensitive keywords (such as passwd) to the Director. 

The Director consists of three logically indepen- 
dent components that  are all located on the same ded- 
icated workstation: Communicat ions Manager, Expert  
System, and User Interface. The Communicat ions Man- 
ager is responsible for the transfi!'.r of data  between the 
Director and each of the Host and LAN Monitors. The 
Expert  System is responsible for evaluating and report- 
ing on the security state of the monitored system. It  
receives the reports from the Host and the LAN Mon- 
itors, and, based on these reports, it makes inferences 
about  the security of each individual host, as well as the 
system as a whole. The Director 's User Interface allows 

i ov I 
Nil): 1 ~  " ~ f  

/ ~ NID: 1 

/ 

/ 2  pid: 1038 

NID: 2 

aid: othcruscr 
pid: 21017 

~ host: cs.inside.edu 

NID: 1 

/ 

ukl: finalnam¢ 
pid: 191919 

host: es.private.edu 

rod: final~ame J 
pid: 801 / 

/ 
/ 

Figure 2: Nil) trace 

the System Security Officer (SSO) interactive access to 
the entire system. 

4 Di s t r ibuted  R e c o g n i t i o n  and 
Accountab i l i t y  

Section 2 described several forms of network traversals 
that  often indicate an intruder. Such attacks can be 
detected by observing the way that  an individual moves 
around a network (distributed recognition). I1; is also 
important  to assign activity to the appropriate  user (ac- 
countability). 

4 . 1  T r a c k i n g  a U s e r  

On an Unix system, legal names  or aliases are created 
for a user only upon login (from a terminal,  console, 
or off-LAN source), upon change of user-id, or upon 
creation of additional aliases. In each case, there is only 
one initial login (network wide) from an external device 
and a new unique network identifier (NlD) is created 
when this original login is detected. When a user spawns 
a new session, it is our goal to associate that  new session 
with the user's original NID. Subsequent actions by that  
user should then be accounted to this NID regardless of 
tile alias used? 

In Figure 2, a user ( i n t r u d e r ~ o u t s i d e . g o v )  en- 
ters the network from 'outside'.  Activity associ- 
ated with NID 1 includes actions from l e g i t i r a a t e ~ c s  
• inside•edu, guest©cs.private.edu and final 

1This method only works when user creates an alias by a 
method which can be audited, e.g.: tehmt, rlogin, su, ftp. If a 
user succeeds in finding a method that is not recorded, a backup 
system (such as a LAN monitor) is needed. 
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i n l t u d e r ~ g o v  

NID:I 

] pid: 191919 ] 
hest: m.privat e.edu 

Figure 3: Tracking an Attacker 

name@cs .private. edu. If the users guest, finalname, 
and legitimate are viewed separately, the activities as- 
sociated with each of them may fall below the threshold 
of detection and the users would appear to be benign. 
If the activity associated with a particular NID is aggre- 
gated, the total may exceed the threshold of detection 
and it would become clear that a particular user is an 
intruder. 

When a user creates a new alias within a local host, 
the local host can observe the process that initiates the 
alias change, and store both the original and the new 
alias. However, when a user creates a remote alias using 
rlogin, ftp, etc., the local host can observe the original 
alias and the request to create a new alias, but it cannot 
directly observe the creation of the new alias (or the 
process associated with it). That  information is in the 
remote host's audit trail. 

From the perspective of the destination host, the 
new alias (and the associated process) is known. How- 
ever, the source user alias is not necessarily present. 
Even if this source name was attached to the request 
to create the new alias, the destination host could not 
be certain that  the information is accurate. It is, there- 
fore, necessary to combine information from both hosts 
in order to "connect" the activity on the source host 
with the activity of the destination host. This is the 
purpose of distributed recognition. 

A slight variation of the situation depicted in Fig- 
ure 3 highlights the limitation of current audit records. 
There are two sessions on host cs.inside, edu associ- 
ated with user l e g i t i m a t e .  One of them is entered 
from outside ( i n t r u d e r © o u t s i d e . g o v ) a n d  the other is 
logged on from a terminal. Since audit records are re- 
ported according to account name, wc can do no better 
than account the activity of user l e g i t i m a t e  to N I D  
1 or N I D  2. Additional information is needed, e.g., 

TTY, to resolve the activity to the origirtating session. 
Of course, the IDS could identify as suspicious (but not 
necessarily guarantee an intrusion) the presence of two 
sessions with identical account names originating from 
different sources. 

4.2 Assumptions of the DRA Algorithm 

The algorithm presented here depends on the followings 
assumptions: 

(1) all hosts on the network are monitored, i.e., 
they generate audit records, (2) all hosts oil the net- 
work are synchronized, (3) audit records created by a 
host for delivery to the Director arrive in the order cre- 
ated, (4) no audit records are lost or tampered with, 
(5) an audit record identifies, where relevant, a connec- 
tion identifier (in TCP/ IP ,  the identifer is [source host 
and port, destination host and port]), (6) if a given user 
initiates multiple jobs on a single host, all subsequent 
activities of these jobs will be accounted as if the user 
had a single job (this is a limitation of current audit 
data in that activity is identified according to the ac- 
count that generated it), and (7) each monitored host 
periodically sends to the Director a clock tick which in- 
dicates that all messages sent from that host before the 
clock tick have arrived. 

The following are the message types assumed for 
our system. (These messages are generated by the hosts 
and sent to the Director for processing.) 

Connection start: 
Connection accept: 
Session start: 
Fail login: 
Connection end: 
Session end: 

Activity record: 

CS(saddr, daddr, suid, ts) 
Ch(saddr, daddr, is) 
SS(saddr, daddr, duid, ts) 
FL(sadd, daddr, ts) 
CE(saddr, daddr, ts) 
SS(saddr, daddr, duid, ts) 
AR(host, uid, activity, is) 

For a CS, CA, SS, FL, CE, or SS message, saddr  
and dadch: are the source address and tile destination 
address of the connection, respectively. The contents 
of these addresses depend on the transport layer used, 
for example, in TC, P/IP,  the source address and the 
destination address are [source host, source port] and 
[destination host, destination port], respectively. The 
field t s  is the time stamp of the message. How these 
messages are generated is described below. 

1. When a user logs in to a host hosLA with uid uid_l 
from an external device DAd, host host_A will send 
out a SS message, 

SS(EXTERNAL, daddr, D_I, time), 
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where daddr is (host_A, device_id), to the Director. 

2. When host_A attempts to connect to host_B, a CS 
message, 

CS(saddr, daddr, suid, time), 
where saddr and daddr are the source address and 
the destination address of the connection, is sent 
from host_4, suid is the user id associated with the 
session which at tempts the connection. (This is the 
first step when a user tries to creat a remote alias 
from host_A to host_B.) 

3. When host_B accepts the connection, a CA mes- 
sage, 

CA(saddr, daddr, time), 
is sent from host_B. If host_B does not accept the 
connection or the at tempt does not reach host_B, 
then no message will be sent. 

4. If the user successfully logs in, a new session is cre- 
ated for him in host_B and a SS message, 

SS(saddr, daddr, duid, time), 

where duid is the user id associated with the ses- 
sion, is sent from host_B. 

5. If the login a t tempt  is unsuccessful, a FL message, 

FL(saddr, daddr, time), 

is sent by host_B. 

6. When a notable event (e.g.: deletion of a system 
file) occurs at host_A, it will send a AR message, 

AR(host_A, uid, activity, time), 
where uid is the user id of the user responsible for 
the activity. 

7. When a user terminates a session in host_C with 
uid_C, the following activities many occur. 

Case 1: If the user started the session from an ex- 
ternal device, a session end message SE, 

SE(EXTERNAL, (host_C, dev_id, uid_C), 
where dev_id is the external device associated with 
the session, is generated. 

Case 2: If the user started the session from another 
host, the following occur: 

(1) the corresponding session is terminated, and 
(2) the connection is terminated. 

When 1) occurs, a session end message, 

SE(saddr, daddr, uid_C), 
will be sent. 

When 2) occurs, a connection end message, 

CE(saddr, daddr) 
will be sent. 

Note that, sometimes, when a connection is created 
and the user does not start a session or if the connection 
is closed (e.g., due to timeout or user exit), only a CE 
message is sent when the connection closes, since there 
was no session start. 

4 . 3  O v e r v i e w  o f  t h e  D R A  A l g o r i t h m  

We present an overview of the DRA algorithm and its 
proof, a detailed description and proof of the algorithm 
is presented in [KFH+93]. 

The DRA algorithm maintains a directed graph 
G(V,E), a message working set (MWS), and a connec- 
tion working set (CWS) throughout the execution of the 
system. The directed graph G(V,E) records the current 
connection status of the system. The MWS stores all 
the unresolved messages and CWS stores all the com- 
pleted connections. The originating point of a login, 
(e.g., an external host outside the monitored domain, 
or an external device such as a terminal or a console) is 
represented by a vertex v(src_id), which is designated 
as an external vertex. A collection of indistinguishable 
sessions (all associated with the same host and the same 
uid) is represented by a vertex vl(host, uid). When 
an external login occurs, an external vertex is created 
and an unique network identity (NID) is as;signed to 
it. A NID set will be assigned to each vertex since 
more than one originating point can create a remote 
alias to sessions with the same id (host, uid); hence au- 
dit records of the activities of these sessions cannot be 
distinguished. All edge e(vi, v j, src_addr, dst_addr), a 
directed edge from vertex vi to v j, indicates that a user 
of the session represented by vi creates a remote alias 
to one of the sessions represented by vj. In addition, 
the algorithm depends on the availiabilty of the time of 
the most recently arrived message for each monitored 
host. Therefore, the algorithm keeps a log of the the 
most recently arrived message's time stamp from each 
monitored host. 

Before we describe the algorithm's detail, we first 
describe a likely sequence of events. For simplicity, we 
assume that the transport layer is TCP/ IP .  The source 
address and destination address of a connection is an 
ordered pair [Host, Port]. 

An external login occurs at time t l  from a device 
E to host A creating a session with account uidl; 
the message SS(EXTERNAL,[A,E],uidl, tl) is gen- 
erated. The algorithm creates the external vertex v 
and vertex vl, and associates nidl ~i th  these ver- 
tices. (See Figure 4a.) 

From host A port pl  at time t2 > t l  a connection 
is initiated to host B at port p2, producing the 
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(a) 

nidl 
{nidl} 

(b) E i 

nidl 
{nidl} {nidl} 

Figure 4: Normal  Sequence of Events 

message CS([A, P1],[B, P2], uidl, t2); this message is 
stored in the MWS awaiting subsequent messages. 

• Now, a connection accept message arrives from host 
S - CA([A,P1],[B, P2],t3), where t3 > t2. The al- 
gor i thm generates the pair (CS, CA) with appro- 
priate arguments  and store it in the CWS. 

• How can a session be associated with this connec- 
tion? The execution of a session start  on host B will 
produce the message SS([A,P1],[B, P2],uid2,t4) , 
where aid2 is the account name of the new session 
which s tar t  at t4 > t3. The graph G is updated to 
include vertex v2 to reflect this new session, nidl 
is associated with the new vertex v2. (See Figure 
4b.) 

• Activitiy AR(B, uid2, command, ~5)generated by 
uid2 on host B might now occur, and will be asso- 
ciated with nidl. 

• Uid2 on host B terminates his session, gener- 
ates the message SE([A,P1],[B, P2],uid2,t6), caus- 
ing vertex v2 to be removed. The following con- 
nection end message is subsequently generated: 
CE([A,P1],[B, P2],t7), which removes the ( CS, CA) 
pair from the CWS. 

• Finally, uidl on host A terminates his session, pro- 
ducing the message SE(EXTERNAL,[A,Ej, uidl, 
~8), which removes vertices vl  and v from G 

A more elaborate situation depicted in Figure 5 
illustrates the case when a vertex may  represent several 
sessions in a host, all having the s~tme uid. In this ]igure, 
for example,  a user associated with nidl and one asso- 
ciated with aid2 both s tar t  sessions on host A with uid 
1. Now, when a command  is executed in host A caus- 
ing an activity message associated with uid 1, we have 
no way to determine which originating session (nidl or 

nidl nid2 nid3 

Inidl, nid2} ~ ~ ~ / ~  dt3E 

~ {nidl,nid2,nid3,nid4) 

Session vertex • External vertex 

Figure 5: DRA Connection Graph 

nid2) executed the command.  Therefore, the NID set 
associated with vertex vl  contains the N[D set {nidl, 
aid2}. 

Other factors that  complicate the algorithm follow: 

Although messages from a host arriw, at the Direc- 
tor in the order generated, messages can be arbi- 
trarily delayed (possibly due to network failure or 
caching of message in a host). Thus for example, 
a CA message might arrive before its correspond- 
ing CS message, and the pairing of these messages 
must await the arrival of both messages. Further- 
more, a session start  followed by activities (audit 
events) could arrive before the CS that  started the 
connection. 

A connection in progress might not be completed, 
i.e., a CS message might not be follo~ ed by a corre- 
sponding CA message. It is because the destination 
host does not accept the connection or the connec- 
tion request is lost due to some network problems. 

A completed connection might not be followed by 
a successful session start.  This situation happens 
when the connection (:loses (e.g., due to t imeout  or 
use exit) before the user successfully logs in. 

Our algorithm reflects these possibilities. Before 
describing the algorithm, we indicate the :properties 
which the algorithm must satisfy. 
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(1) Correct association of Activity Records: If an ac- 
tivity record AR is initiated by a user u from an 
originating session with nid nl ,  then nl  will be in 
the (NID set) associated to AR. 

(2) N I D  sets are minimal: All NIDs  the algorithm as- 
sociates with an activity record could have been 
responsible for the activity. 

The DRA algorithm proceeds as follows. It consists 
of three major steps: 

S t e p  1: The Director updates its log at each hosts's 
time upon receipt of a clock tick from the host. 

S t e p  2: The Director at tempts to pair up CA and CS 
messages to identify a connection when the its time log 
of a host H is updated. Select a relevant CA message, 
CA', (source host of the message is H) with the ear- 
liest time stamp. If the time stamp of CA ~ is earlier 
than H's time, pair CA I with a CS with the same con- 
nection identifier (source host, source port, destination 
host, destination port). If there is more than one CS 
message, choose the CS message that occurred most re- 
cently before CA~: Note that  the pairing must await the 
occurrence of this CS. When the pairing is complete, 
earlier CS messages with the same connection identifies 
as the CA that  did not lead to a connection accept can 
be discarded from the MWS. Once the completed con- 
nection is recorded, there might be SS, AR, SE messages 
in the MWS that  can be processed. 

S t e p  3: Process any messages that  arrive. This step 
involves the following cases: 

Case  3.1 Arrival of SS(EXTERNAL, [host, devid], uid, 
time) message. This corresponds to a login from a 
terminal or console. The external vertex v, corre- 
sponding to the external device is created. If there 
is no vertex correspond to host and user uid, create 
one and give it an unique NID. Otherwise, there is 
such a vertex vl already; so create an edge between 
vertices v and vl and add the new NID to the NID 
set already associated with vertex vl.  

Case  3.2 Arrival of a CS message, which is inserted 
into the MWS. 

Case  3.3 Arrival of a CA([src..host, src_port], [dst_host, 
dst_port], uid, time) message. Attempt to-find a 
matching CS for this CA according to Step 2. If no 
match is found (the appropriate CS message is y¢~t 
to arrive), store CA in the MWS. 

Case  3.4 Arrival of a SS'([sre_host,src_port], [dst_host, 
dst_port], uid, time) message. Attempt to iden- 
tity a pair (CS,CA) that  has the same connec- 
tion identification (src_host, src_port, dst_hos~, 
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dst_port) as the SS. If there is no vertex vl 
(dst_host, uid) in G, create it and create an edge 
from a vi(sre_host,CS.uid) (CS.suid is the suid 
field in the connection start message CS) which 
must be already in G; associate with vl the NID 
set of vi. If such a vertex vl already exists, create 
an edge for vertex vi to this vl and form the union 
of the NIDse t  of v iands ;he  NID set o f v l .  If no 
(CS,CA) pair has been formed, add the SS message 
to the MWS. 

Case  3.5 Arrival of a SE(EXTERNAL, [host, dev_id], 
aid, time) message signalling the end of a session 
initiated from an external device. The source ver- 
tex v corresponding to the external device is re- 
moved. Also remove the vertex vl if no other edge 
is connected to it; otherwise, updat~ the NID set 
associated with vertex vl to reflect the removal of 
the NID associate with vertex v. 

Case  3.6 Arrival of a SE([src_host,src_port], [dest_host, 
dest_port], uid, time) message signalling the end of 
a session not initiated from an external device. If 
there is no vertex vl in G corresponding to dst_host 
and uid, enter SE into the MWS, i.e., the connec- 
tion has yet to be paired. Otherwise:, if w~rtex vl 
has only a single edge from another vertex vi, re- 
move the edge and vertex vl; otherwise, update the 
NID set of vertex vl to reflect the removal of the 
NID associated with the terminated session. 

Case  3.7 Arrival of a CE([src_host, src_port], [dst_host, 
dst_port], time) message signalling the termination 
of a connection. There must be a pair (CS,CA) 
with the same connection identifier as CE; remove 
it from the CWS. 

Case  3.8 Arrival of a AR(host, uid, activity, time) 
message signalling an audited event  If there ex- 
ists a vertex vl in G corresponding to host and 
uid, associate AR with the NID set of vl. Other- 
wise, insert AR into the MWS; the connection that  
preceded this AR has yet to be recorded by the 
Director. 

4 . 4  P r o o f  o f  t h e  D R A  A l g o r i t h m  

The proof of the DRA algorithm procee&', in two steps. 
In the first step, the "major" sl;ates associated with the 
algorithm are enumerated, and it is proved that there 
are no other such states; the proof is by structural in- 
duction: for each state in the enumeration, it is veri- 
fied that the arrival o f  a message of any type causes a 
transition to one of these states. The states in the enu- 
aleration (slightly approximated) include the following. 
They correspond to messages in the MWS with the same 



connection identifiers and are yet to be paired up by the 
Director. They are arranged in increasing order of their 
t ime stamps. 

(2) the NID set contains only those external logins 
which could have been responsible for the activity. 

(0) Empty  

(1) A single CA message 

(2) n (n=l , . . . )  CA, CE messages followed by a CA 
message (e.g., CA1CE1CA2CE2CA3) 

(3 )  n (n=l , . . . )  CS messages 

(4) n (n=l , . . . )  CS messages, m (m=0,1,.. .) CA,CE 
messages followed by a CA message 

(e.g., CS1CS2CA1CE1CA2CE2CA3) 

As an example of the proof process, assume that  the 
current state is (0). When a CA or CS message arrives, 
no pairing is possible, so that  the transition is to state 
(1) or (3). When the current state is (1), and a CS 
message arrives (denote this case by ?), its time stamp 
must be earlier than that  of the CA associated with 
state (1). It is not known if this CS message led to the 
CA message or if it belongs to an aborted connection, 
so there is no pairing yet and the transition to state 
(4) occurs. Once in state (4), another CS message, CS'  
might arrive; if the time stamp of CS ~ exceeds that  of 
the first CS message, then the first CS message is paired 
with the CA message and both are removed from the 
MWS and the transition to state (2) occurs. If the time 
stamp of CS ~ is less that  that  of CA, the system remains 
in state (4). While in state (4), a clock tick with time 
stamp t might arrive from the source host (associated 
with the connection). If t exceeds the time stamp of 
CA, then the most recent CS is paired with CA and the 
earlier CS's are discarded. When the current state is 
(3), and a CA message arrives, its time stamp must be 
later than that  of the CS associated with state (3). The 
situation will be same as (t). 

Step 2 is the proof process involves showing that 
the conjectured properties involving association of AR 
records with NID sets are satisfied - in any state where 
such an association is effected. This proof is again by 
induction, this time on the length of paths in G. 

Once it is established that  the collection of system 
states can be parti t ioned into the four classes above, it 
can be proved that  the CS and CA messages are cor- 
rectly paired, and a subsequent SS is associated with 
this pair. Next, it is shown that  the following major 
properties are established: 

(1) association of activity records with the external lo- 
gins (NID set), which must contain the NID of the 
originating session which is responsible for the ac- 
tivity, and 

First consider property (1). The proof proceeds by 
induction on the length of a path in G from the external 
vertex v (external login) to the vertex vl associated with 
the session(s) that caused the generation of activity AR. 

Base Case: An external login results in the creation 
of a new vertex vl,  and associates with vl  the NID as- 
signed to the source vertex; or, in the case of an existing 
vertex vl  with the host and uid of the external login, 
the external login results in the new NID being added 
to the NID set associated with vl. In either case, vertex 
vl  acquires the NID of the external login and any AR 
associated with the new session is asociated with the 
NID set of vertex vl. 

Inductive Step: Assume that there exists a path 
terminating with a vertex vl  and having an associated 
NID set that  includes the NID associated with the ex- 
ternal login at the beginning of the path. From vertex 
vl, a new remote session is launched by starting a con- 
nection (CS), having the remote host generate a CA 
message and, finally, having the remote host generate 
a SS message. From the abow~ analysis, the SS is cor- 
rectly associated with the (CS,CA) pair. Either a new 
vertex vi is generated to correspond to this new session, 
and vi inherits the NID set of vl, or an existing vertex 
vj and its NID set extended to contain the NID set of 
vl. In either case, the activity for this new session is 
associated with a NID set which includes the NID of the 
external login. 

Now consider property (2), which involves show- 
ing that the NID set of a vertex vl contains only NIDs 
corresponding to external vertices which have paths to 
v[. The proof is by structural induction on the graph 
G(V,E). The DRA algorithm updates tile graph only 
when a SS message is processed (in this case, it creates 
or updates a vertex) or when a SE messa~:e is processed 
(in this case, it removes or updates a vertex). 

Base Case: The graph G(V,E) is empty (i.e., no 
user is on the system). The first thing that  happens 
must be someone logging into a host, A, from an exter- 
nal device, D. A SS message indicates a login fl:om exter- 
nal device is generated from host A. When the SS mes- 
sage is resolved, an external vertex v(D) with a unique 
NID nl  and the vertex vl(A, uid) associated with a NID 
set containing only n l  are created. Therefore, property 
(2) follows. 

Inductive Step: Assume that the current graph 
G(V,E) satisfies property (2). 

The algorithm changes the graph when :it resolves 
a SS or SE message. We have the following possibilities: 
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1. A SS message is resolved. The algorithm creates 
an edge e(vl, v2) from the vertex corresponding to 
the source session to the vertex corresponding to 
the destination session. (Vertex v2 is created if it 
does not exist.) Then, the algorithm updates the 
NID set of v2 to include the NIDs in the NID set of 
vl. Therefore, a NID in v2 is either (a) in v2 before 
the change, or (b) in vl.  For case (a), the prop- 
erty follows from the inductive assumption. For 
case (b), the inductive assumption indicates that 
the NID set of vl contains only NIDs associated 
with vertices which have paths to vl. Since there 
is an edge form vl to v2, those vertices have paths 
to v2. Therefore, the property is satisfied. 

2. A SE message is resolved (i.e., a user terminate a 
session). The algorithm removes the edge e(vl, v2) 
from the vertex corresponding to the source session 
to the vertex corresponding to the destination ses- 
sion. Then, it recomputes the NID set of v2 without 
adding the NIDs in vl into the set. Therefore, the 
property is satisfied. 

5 R e l a x i n g  t h e  D R A  A s s u m p -  
t i o n s  

Towards a more realistic setting ibr DRA, we relax sev- 
eral of the assumptions given in the algorithm above, 
and describe how the DRA algorithm can possibly be 
modified to accommodate these changes. As we indi- 
cate, additional information is usually required (e.g., 
from the NSM) and heuristics are used to at tempt to 
infer missing data or replace erroneous information sup- 
plied by the host monitors. 

5.1 D R A  and U n m o n i t o r e d  H o s t s  

In order to properly track users across multiple logins, 
the previously presented Mgorithm requires monitors 
on all hosts. Complete accountability cannot be main- 
tained if the user passes through an unmonitored host. 
An attacker can simply cover his tracks by logging onto 
an unmonitored host and then back onto the monitored 
network. (See Figure 5.) However, in many environ- 
ments, hosts without monitors or even audit trails are 
a reality, so we are working with a technology we call 
thumbprinting to provide some measure of accountabil- 
ity through unmonitored hosts [HML92]. 

Suppose a user u l  on host A performs a remote 
login to user u2 on host B, and from host B, performs a 
remote login to user u3 on host C. Furthermore, hosts 
A and C are monitored hosts, and B is unmonitored. 

I in lruder@ otl ts ide.g  o v  

Nil)." 2 / 
uid: n e w n a m e  
pid: 21017 

, the mmlitored 
i n , d e  

seeand NID 

uid: fmdnmne 
pid: 801 

h o s t . c s . c h a i r . e d u  

Figure 6: An Intruder Moves Off and Back Onto A 
Monitored Host 

Our goal is to determine that the activity belonging to 
user u3 on host C should be mapped to the name NID 
as user ul  on host A. Certainly, without information 
from host B, we do not know to whom the connection 
from B to C belongs. For example, it could belong to a 
user logged in at the console. However, by correlating 
activity between the two monitored hosts, A and C, we 
can draw some conclusions re~arding the relationship 
between the connection from A to B and the connection 
from B to C. 

We start with the assumption that  network connec- 
Lions to or from one of our monitored machines generate 
some monitorable activity associated with the data flow 
between the two machines. Furthermore, the connec- 
tions from A to B and B to C are using standard login 
protocols (e.g., telnet, rlogin, remote shell, etc), services 
where a user sends data to the remote machine and the 
remote machine replies with information (e.g., entering 
a command on a command line or entering text in an 
editor). If these assumptions hold, we can determine, 
with some degree of assurance, whether u:~er u3 on host 
C is really tile same as user ul  on host A by using what 
we (:all thumbprints. 

A thumbprint is a profile of connection acrjvity over 
a specified period of time [HML92]. If two connections 
haw~ similar thumbprints over several segments of time, 
then we can say with some amount of certainty that 
the two connections are really part of an ,extended con- 
nection. For example, we can view the two connections 
discussed previously, A to B and B to C, as a single ex- 
tended connection from A to C. Now, we can map the 
activity from user u3 on host C to the same NID as user 
ul  on host A. 

Furthermore, this technique can be extended to 
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connections moving through an unknown number of 
monitored hosts, for example, A ---* B1 ---* B2 . . . . .  
B n  ~ C. By comparing the thumbprints for the con- 
nections A to B1 and Bn to C (n=l,2,. . .) ,  we can map 
the activity from the user on host C to the user on host 
A. 

5.2 Out-of -Sequence  Audi t  trails 

process messages. 

• Add information about the method used to gener- 
ate auditing paths on the source host to each audit 
record, and use this information to group activi- 
ties. This means that there must be sorae central 
location that has all of the possible audit protocols 
embedded in the rules. 

Up to now, if a user logged on to a system and then 
started a process that  performed a sequence of ac- 
tions al, a2,. . .an and then terminated, we have assumed 
that the t imestamps t would be ordered as follows: 
log onto system~ < start process~ < alt  < ... < ant < 
end processt. 

However, not all auditing systems behave like this. 
For example, some auditing systems produce the au- 
dit records for the process before producing the au- 
dit record signalling that the process has begun: i.e., 
log onto system~ < azt < ... < an~ < end process~ < 
start process t. 

In the first case, we can use the (host) audit record 
to detect the creation of a new process with process 
id p by the user with network id n. Henceforth, all 
activities associated with that process id would also be 
accounted to NID n. Activity associated with process 
id p that occurs later than the timestamp of the end 
process action (end processt) is assumed to belong to 
a distinct process whose process id is p only because 
process ids are recycled. 

In the second case, we receive information about ac- 
tivities associated with process id p before we are able to 
connect that  process id with NID n. Here, we cannot as- 
sign the activities to NID n until the start process record 
has been received. Further, we expect to receive exactly 
one record associated with process id p that occurs later 
than the t imestamp of the end process action (namely, 
start process), and activity associated with process id p 
that occurs later than this t imestamp is now assumed 
to belong to a distinct process. 

Two ways to handle this problem within a hetero- 
geneous system without modifying the audit process fol- 
low. 

• Place a filter or an agent on the host that re-orders 
the records so that the timestamps of case 2 fulfill 
the order we expect in case 1. One possible im- 
plementation would require the host to record the 
time associated with the first observed occurrence 
of a process id and then set the timestamp of the 
start process action so that it is earlier than this 
time but later than the last observed action of this 
NID. This only solves the problem of delayed start 

5.3 Clock Skew 

One important assumption has been that the: clocks of 
all hosts are synchronized. In reality, this will rarely be 
the case. 

The major problem of clock skew is that  the al- 
gorithm may pair up a wrong CS message with a CA 
message. Consider the following scenario: 

A user ul  on host A tries to login to host B, so that  
a CS message CS1 is generated by host A at time t l .  
However, the connection at tempt fails. Later, another 
user u2 on host A successfully logs in to host B using 
the same connection that user u l  used before. A CS 
message CS2 is generated by A at time t2 and a CA 
message is generated by host B at time t3 (tl <: t2 < t3). 
Our DRA algorithm pairs the CA message with CS2 
since it is the most recent CS message before the CA 
message. However, if the clocks of hosts A and B are not 
synchronized, the timestamp ot" the CA message may be 
earlier than time t2, so that the algorithm will pair up 
the CA message with CS1 instead of CS2. 

Denote the minimal time period between two con- 
secutive connection attempts using the same connection 
id by  t,n, and the amount of clock skew between the 
clocks in hosts A and B by t,:. If t¢ < tin, the algo- 
rithm is still correct. On the other hand, there is no 
easy solution if t¢ _> tin. One possible way to handle 
this situation is to pair a CA message not only with the 
most recent CS before it, but with CS messages within 
a certain time period after it as well, depending on the 
amount of clock skew. However, the NID set associated 
with an activity record may contain extraneous NIDs. 

5 . 4  S h a r i n g  o f  u s e r  i d  

At present, our DRA algorithm is unable to properly 
assign NIDs in the case of two users logging on to a sec- 
ond host under the same account name. The reason for 
this is that the Host Monitor only supplies the process 
id and the account name. Since the source host does 
not know the process id of the new process on the des- 
tination host, and the account name used is identical, 
it is not possible to correctly assign a N1D to the new 
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process. As indicated in the discussion on the DRA al- 
gorithm, we assign the behavior on the second host to 
both NIDs. If a more fine-grained description of the pro- 
cess is provided (such as the try associated), it would be 
possible to determine which NID should be assigned the 
behavior. Networked PCs do not always provide even 
the account name associated with an activity, so this 
problem will appear in this type of environment as well. 

6 Conc lus ions  

We have presented an approach for distributed recogni- 
tion and accountability (DRA), the purpose of which is 
to track users as they move from host to host in a net- 
work and to account activity to the proper user. DRA 
solves the problem of tracking users as they might at- 
tempt to change their identity in moving about a net- 
work. The physical environment we assume is one in 
which audit trails are generated at each host, and are 
preprocessed; and the processed data are delivered to 
a centralized site for analysis. The algorithm we pre- 
sented makes assumptions about the hosts in a network, 
including: they are monitored and produce audit trails 
for network activity, they are synchronized, and the au- 
dit trails are not tampered with. Under these assump- 
tions, we presented an algorithm tbr DRA that  is proved 
correct with respect to a specification that  asserts that  
activity is always accounted to the root source that ini- 
tiated the activity. 

We have developed an intrusion detection system 
DIDS (Distributed Intrusion Detection System) that 
has DRA as its main concept. DIDS consists of hosts 
each running a host monitor, a LAN monitor (NSM) 
that observes all network traffic, and the DIDS Direc- 
tor that  among other things implements the DRA algo- 
rithm. DIDS was designed to work with up to 30 hosts 
on a single LAN segment. Our implementation keeps up 
with hosts generating up to 10 network activity records 
per second. 

The paper also presents extensions to our DRA al- 
gorithm, mostly relaxing the assumptions that permit- 
ted a clean statement of the algorithm and its proof. 
The main extensions relate to not requiring all hosts to 
be monitored, to not requiring perfect synchronization 
of hosts, and to allowing tampering of audit records by a 
subverted host. In all of these cases, additional informa- 
tion is required to resolve erroneous reports from hosts; 
the NSM can in some cases provide this additional in- 
formation. In addition, heuristics are employed to piece 
together separate chains of sessions perhaps broken by 
a malicious or unmonitored host. 

Further extensions to DRA are under investigation. 

1 6 4  

One involves extensions to much larger networks pre- 
cluding the possibility of a single analysis center. In- 
stead, the DRA analysis would itself be distributed. 
Other work is concerned with determining what audit 
data a host should collect to facilitate DRA and other 
intrusion detection algorithms. 
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The original concept underlying DRA was suggested by 
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