
ANALYSIS OF AN ALGORITHM FOR DISTRIBUTED RECOGNITION

AND ACCOUNTABILITY

Calvin Ko

L. Todd Heberlein

Deborah A. Frinckc Terrence Goan, Jr.

Karl Levitt Biswanath Mukherjee Christopher Wee

D e p a r t m e n t of C o m p u t e r Sc ience

U n i v e r s i t y of Ca l i fo rn i a , Dav i s
Dav i s , C A 95616

A b s t r a c t 1 In troduct ion

Computer and network systems are vulnerable to at-
tacks. Abandoning the existing huge infrastructure of
possibly-insecure computer and network systems is intpossi-
ble, and replacing them by totally secure systems may not be
feasible or cost effective. A common element in many attacks
is that a single user will often attempt to intrude upon mul-
tiple resources throughout a network. Detecting the attack
can become significantly easier by compiling and integrat-
ing evidence of such intrusion attempts across the network
rather than attempting to assess the situation from the van-
tage point of only a single host. To solve this problem, we
suggest an approach for distributed recognition and account-
ability (DRA), which consists of algorithms which "process",
at a central location, distributed and asynchronous "reports"
generated by computers (or a subset thereof) throughout
the network. Our highest-priority objectives are to observe
ways by which an individual moves around in a network of
computers, including changing user names to possibly hide
his/her true identity, and to associate all activities of mul-
tiple instances of the same individual to the same network-
wide user. We present the DRA algorithm and a sketch of
its proof under an initial set of simplifying albeit realistic as-
sumptions. Later, we relax these assumptions to accommo-
date pragmatic aspects such as missing or delayed "reports",
clock skew, tampered "reports", etc. We believe that such
algorithms will have widespread apphcations in the future,
particularly in intrusion-detection systems.

Permission to copy without fee all or pert of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
~Ue of the publication and its date appear, and notice is given
that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.
1st Conf.- Computer & Comm. Security '93-11/93 -VA,USA
© 1993 ACM 0-89791-629-8/93/0011...$1.50

Most computer systems have some kind of security flaw
that may allow outsiders (or legitimate users) to gain
unauthorized access to sensitive information. In most
cases, it is not practical to replace such a flawed system
with a new, more secure system. It is also very difficult,
if not impossible, to develop a completely-secure system.
Even a secure system is vulnerable to insider,; misusing
their privileges, or improper operating practices. While
many existing systems may be designed to prevent spe-
cific types of attacks, other methods to gain unautho-
rized access may still be possible. Due to the tremen-
dous investment already made into the e~isting infras-
tructure of "open" (and possibly insecure) communica-
tion networks, it is infeasible to deploy new, secure, and
possibly "closed" networks. Since the event of an attack
should be considered inevitable, there is a tremendous
need for mech~misms that can detect outsiders at tempt-
ing to gain entry into a system, that can dete,:t insiders
misusing their system privileges, and tha¢ can monitor
tile networks connecting all of these systems ~ogether.

A common element in many attacks (or computer
intrusions) is that a single user will ofte'n a t tempt to
intrude upon multiple resources throughcut ~ network.
Detecting the attack can become significantly easier by
compiling and integrating evidence of such intrusion at-
tempts across the network rather than at tempting to
assess the situation from the vantage point of only a
single host. For example, an attacker may make only
a single at tempt at guessing a password for each host
computer. Thus, from the vantage point of a host, the
break-in attempts may appear to be a very normal mis-
take. However, by integrating these obs,~rvations over
multiple target hosts, it becomes clear that a single at-
tacker is making a concerted at tempt to brea]c in some-
where, by looking for an obvious hole.

Accordingly, the goals of our present work on dis-
tributed recognition and accountability (DRA) are (1)

154

http://crossmark.crossref.org/dialog/?doi=10.1145%2F168588.168608&domain=pdf&date_stamp=1993-12-01

to observe the ways by which an individual moves
around in a network of computers, including chang-
ing user names to possibly hide his/her true identity
(distributed recognition); and (2) to associate all ac-
tivities of multiple instances of the same individual to
the same network-wide user, referred to as the network
identifier, NID (accountability). We assume that mech-
anisms (communicat ion facilities) are available by which
"reports" can be sent by computers distributed across
the network to a centralized location. The centralized
facility, a CLIPS-based expert system in our current im-
plementat ion [SB+91a], executes the DRA algorithm to
track users as they move around the network, maintain-
ing correct NIDs as stated above.

Initially, the DRA algorithm is outlined under a set
of simplifying assumptions such as perfect network-wide
synchronization, no loss of information (e.g., no loss of
network packets associated with audit data), immediate
"report" generation (i.e., all "reports" are in sequence),
the network connecting all host computers is an Ether-
net local area network (LAN) so that Ml of their network
activities can be picked up by a LAN monitor such as
the Network Security Monitor (NSM) [HML+91], etc.
Later, some of the simplifying assumptions are relaxed,
and the corresponding necessary changes to the DRA
algorithm are discussed. Proofs of correctness are out-
lined to demonstrate that the DRA algorithm is robust
under the simplifying assumptions.

In Section 2, we provide motivat ion for our work by
describing several network attacks that cannot easily be
detected with the association of DRA. In Section 3, we
briefly describe a system architecture that implements
a form of DRA that addresses some of the practical
considerations raised earlier. In Section 4, we discuss a
DRA algori thm under the simplifying assumption, and
in Section 5, we extend this DRA algorithm to encom-
pass practical considerations.

2 N e t w o r k A t t a c k s

Figure 1 shows several behavior styles that are charac-
teristic of an intruder. Some of these behavior styles
indicate an a t t empt to gain access to a system, while
others are intended to hide the intruder 's identity or
are malicious behavior.

2 .1 D o o r k n o b A t t a c k

In a doorknob attack, the intruder 's goal is to discover,
and gain access to, insufficiently protected hosts on a
system. The intruder generally tries common account
and password combinations on several computers (see

(a) Simple Attack

(b) Doorknob Attack

(¢) Chain Attack

(d) Loop Attack

Currqmt Source ~ Current Target ~ PreviouJ ~r ,ge t
~ o f aefivi/y ofacfivi/y of activity

Figure 1: Network Attacks

Figure 1, part b). If the intruder only tries a few lo-
gins on each machine (with different account names),
single-host Intrusion Detection Systems (IDS) having a
higher "threshold of detection" may not detect the at-
tack. The threshold of detection is a common technique
used to quantify "how bad" a particular behavior is.
For example, two failed login a t tempts might be consid-
ered normal, but 30 failed login a t tempts should cause
concern. If the intruder tries two such "doorknob rat-
tles" on each of 15 machines, then, without aggregation,
none of the 15 machines would consider such behavior
to be serious. However, by aggregating all of the login
failures, it becomes clear that an at tack is underway.

For example, the following attack has been ob-
served. An attacker gains super-user access tc. an exter-
nal computer which did not require a password for the
super-user account. The intruder uses telnet to make
the connection to this site, and then repeatedly tries to
gain access to several different computers at the external
site.

Another intruder uses a doorknob a t t ack and suc-
ceeds in gaining access to a computer using a "guest"
account which does not require a password. Once the
attacker has access to the system, he exhibites behav-
ior which would alert most existing intrusion detection
systems (e.g., writing to sensitive files). The key here is
that. DRA permits the intrusive activity to be ;~ssociated
with its original source, while most existing Intrusion
Detection Systems (IDSs) would account this activity
to the "guest" account and not provide any backtrack-
ing.

155

2 . 2 C h a i n a n d L o o p A t t a c k s

In a chain at tack and a loop attack (Figure 1 parts c,
d), an intruder moves between several hosts and account
names in order to hide his point of origin. Insiders may
also employ chain at tacks to camouflage their identity.
The key here is tha t the most recent reported login in
a chain at tack would be from an on-site location rather
that from outside.

3 Arch i t ec tura l Overv i ew

Our system is a prototype IDS designed to monitor user
behavior across a single Ethernet LAN. I t provides a
type of DRA similar to that described above. Hosts
attached to the LAN may be either unmonitored (such
as PCs) or monitored. At present, monitored hosts must
be either Unix systems with Sun Microsystem's Basic
Security Module (BSM) or VMS systems. Both provide
a C2-1evel s tandard of auditing information.

Our architecture combines distributed monitor-
ing and da ta reduction with centralized da ta analysis
[SB+91a][SB+91b]. This approach is unique among cur-
rent intrusion detection systems. Each monitored host
is provided with a Host Monitor that collects and an-
alyzes audit records locally. These monitors pass in-
formation about notable events to a central analyzer,
called the Director, for further processing. Notable
events include: failed logins, changes to the security
state of the system, tagged file accesses, unusually
high number of file accesses (browsing), and an un-
usually high volume of requests for information about
users (paranoia). Much of this information comes from
HAYSTACK [Sma88], which has been incorporated into
the Host Monitor.

The LAN is monitored by a subset of the NSM
[HDL+90]. This LAN Monitor observes all traffic along
the network and reports activity such as rlogin and tel-
net connections, security-related services, and the use
of sensitive keywords (such as passwd) to the Director.

The Director consists of three logically indepen-
dent components that are all located on the same ded-
icated workstation: Communicat ions Manager, Expert
System, and User Interface. The Communicat ions Man-
ager is responsible for the transfi!'.r of data between the
Director and each of the Host and LAN Monitors. The
Expert System is responsible for evaluating and report-
ing on the security state of the monitored system. It
receives the reports from the Host and the LAN Mon-
itors, and, based on these reports, it makes inferences
about the security of each individual host, as well as the
system as a whole. The Director 's User Interface allows

i ov I
Nil): 1 ~ " ~ f

/ ~ NID: 1

/

/ 2 pid: 1038

NID: 2

aid: othcruscr
pid: 21017

~ host: cs.inside.edu

NID: 1

/

ukl: finalnam¢
pid: 191919

host: es.private.edu

rod: final~ame J
pid: 801 /

/
/

Figure 2: Nil) trace

the System Security Officer (SSO) interactive access to
the entire system.

4 Di s t r ibuted R e c o g n i t i o n and
Accountab i l i t y

Section 2 described several forms of network traversals
that often indicate an intruder. Such attacks can be
detected by observing the way that an individual moves
around a network (distributed recognition). I1; is also
important to assign activity to the appropriate user (ac-
countability).

4 . 1 T r a c k i n g a U s e r

On an Unix system, legal names or aliases are created
for a user only upon login (from a terminal, console,
or off-LAN source), upon change of user-id, or upon
creation of additional aliases. In each case, there is only
one initial login (network wide) from an external device
and a new unique network identifier (NlD) is created
when this original login is detected. When a user spawns
a new session, it is our goal to associate that new session
with the user's original NID. Subsequent actions by that
user should then be accounted to this NID regardless of
tile alias used?

In Figure 2, a user (i n t r u d e r ~ o u t s i d e . g o v) en-
ters the network from 'outside'. Activity associ-
ated with NID 1 includes actions from l e g i t i r a a t e ~ c s
• inside•edu, guest©cs.private.edu and final

1This method only works when user creates an alias by a
method which can be audited, e.g.: tehmt, rlogin, su, ftp. If a
user succeeds in finding a method that is not recorded, a backup
system (such as a LAN monitor) is needed.

156

i n l t u d e r ~ g o v

NID:I

] pid: 191919]
hest: m.privat e.edu

Figure 3: Tracking an Attacker

name@cs .private. edu. If the users guest, finalname,
and legitimate are viewed separately, the activities as-
sociated with each of them may fall below the threshold
of detection and the users would appear to be benign.
If the activity associated with a particular NID is aggre-
gated, the total may exceed the threshold of detection
and it would become clear that a particular user is an
intruder.

When a user creates a new alias within a local host,
the local host can observe the process that initiates the
alias change, and store both the original and the new
alias. However, when a user creates a remote alias using
rlogin, ftp, etc., the local host can observe the original
alias and the request to create a new alias, but it cannot
directly observe the creation of the new alias (or the
process associated with it). That information is in the
remote host's audit trail.

From the perspective of the destination host, the
new alias (and the associated process) is known. How-
ever, the source user alias is not necessarily present.
Even if this source name was attached to the request
to create the new alias, the destination host could not
be certain that the information is accurate. It is, there-
fore, necessary to combine information from both hosts
in order to "connect" the activity on the source host
with the activity of the destination host. This is the
purpose of distributed recognition.

A slight variation of the situation depicted in Fig-
ure 3 highlights the limitation of current audit records.
There are two sessions on host cs.inside, edu associ-
ated with user l e g i t i m a t e . One of them is entered
from outside (i n t r u d e r © o u t s i d e . g o v) a n d the other is
logged on from a terminal. Since audit records are re-
ported according to account name, wc can do no better
than account the activity of user l e g i t i m a t e to N I D
1 or N I D 2. Additional information is needed, e.g.,

TTY, to resolve the activity to the origirtating session.
Of course, the IDS could identify as suspicious (but not
necessarily guarantee an intrusion) the presence of two
sessions with identical account names originating from
different sources.

4.2 Assumptions of the DRA Algorithm

The algorithm presented here depends on the followings
assumptions:

(1) all hosts on the network are monitored, i.e.,
they generate audit records, (2) all hosts oil the net-
work are synchronized, (3) audit records created by a
host for delivery to the Director arrive in the order cre-
ated, (4) no audit records are lost or tampered with,
(5) an audit record identifies, where relevant, a connec-
tion identifier (in TCP/ IP , the identifer is [source host
and port, destination host and port]), (6) if a given user
initiates multiple jobs on a single host, all subsequent
activities of these jobs will be accounted as if the user
had a single job (this is a limitation of current audit
data in that activity is identified according to the ac-
count that generated it), and (7) each monitored host
periodically sends to the Director a clock tick which in-
dicates that all messages sent from that host before the
clock tick have arrived.

The following are the message types assumed for
our system. (These messages are generated by the hosts
and sent to the Director for processing.)

Connection start:
Connection accept:
Session start:
Fail login:
Connection end:
Session end:

Activity record:

CS(saddr, daddr, suid, ts)
Ch(saddr, daddr, is)
SS(saddr, daddr, duid, ts)
FL(sadd, daddr, ts)
CE(saddr, daddr, ts)
SS(saddr, daddr, duid, ts)
AR(host, uid, activity, is)

For a CS, CA, SS, FL, CE, or SS message, saddr
and dadch: are the source address and tile destination
address of the connection, respectively. The contents
of these addresses depend on the transport layer used,
for example, in TC, P/IP, the source address and the
destination address are [source host, source port] and
[destination host, destination port], respectively. The
field t s is the time stamp of the message. How these
messages are generated is described below.

1. When a user logs in to a host hosLA with uid uid_l
from an external device DAd, host host_A will send
out a SS message,

SS(EXTERNAL, daddr, D_I, time),

157

where daddr is (host_A, device_id), to the Director.

2. When host_A attempts to connect to host_B, a CS
message,

CS(saddr, daddr, suid, time),
where saddr and daddr are the source address and
the destination address of the connection, is sent
from host_4, suid is the user id associated with the
session which at tempts the connection. (This is the
first step when a user tries to creat a remote alias
from host_A to host_B.)

3. When host_B accepts the connection, a CA mes-
sage,

CA(saddr, daddr, time),
is sent from host_B. If host_B does not accept the
connection or the at tempt does not reach host_B,
then no message will be sent.

4. If the user successfully logs in, a new session is cre-
ated for him in host_B and a SS message,

SS(saddr, daddr, duid, time),

where duid is the user id associated with the ses-
sion, is sent from host_B.

5. If the login a t tempt is unsuccessful, a FL message,

FL(saddr, daddr, time),

is sent by host_B.

6. When a notable event (e.g.: deletion of a system
file) occurs at host_A, it will send a AR message,

AR(host_A, uid, activity, time),
where uid is the user id of the user responsible for
the activity.

7. When a user terminates a session in host_C with
uid_C, the following activities many occur.

Case 1: If the user started the session from an ex-
ternal device, a session end message SE,

SE(EXTERNAL, (host_C, dev_id, uid_C),
where dev_id is the external device associated with
the session, is generated.

Case 2: If the user started the session from another
host, the following occur:

(1) the corresponding session is terminated, and
(2) the connection is terminated.

When 1) occurs, a session end message,

SE(saddr, daddr, uid_C),
will be sent.

When 2) occurs, a connection end message,

CE(saddr, daddr)
will be sent.

Note that, sometimes, when a connection is created
and the user does not start a session or if the connection
is closed (e.g., due to timeout or user exit), only a CE
message is sent when the connection closes, since there
was no session start.

4 . 3 O v e r v i e w o f t h e D R A A l g o r i t h m

We present an overview of the DRA algorithm and its
proof, a detailed description and proof of the algorithm
is presented in [KFH+93].

The DRA algorithm maintains a directed graph
G(V,E), a message working set (MWS), and a connec-
tion working set (CWS) throughout the execution of the
system. The directed graph G(V,E) records the current
connection status of the system. The MWS stores all
the unresolved messages and CWS stores all the com-
pleted connections. The originating point of a login,
(e.g., an external host outside the monitored domain,
or an external device such as a terminal or a console) is
represented by a vertex v(src_id), which is designated
as an external vertex. A collection of indistinguishable
sessions (all associated with the same host and the same
uid) is represented by a vertex vl(host, uid). When
an external login occurs, an external vertex is created
and an unique network identity (NID) is as;signed to
it. A NID set will be assigned to each vertex since
more than one originating point can create a remote
alias to sessions with the same id (host, uid); hence au-
dit records of the activities of these sessions cannot be
distinguished. All edge e(vi, v j, src_addr, dst_addr), a
directed edge from vertex vi to v j, indicates that a user
of the session represented by vi creates a remote alias
to one of the sessions represented by vj. In addition,
the algorithm depends on the availiabilty of the time of
the most recently arrived message for each monitored
host. Therefore, the algorithm keeps a log of the the
most recently arrived message's time stamp from each
monitored host.

Before we describe the algorithm's detail, we first
describe a likely sequence of events. For simplicity, we
assume that the transport layer is TCP/ IP . The source
address and destination address of a connection is an
ordered pair [Host, Port].

An external login occurs at time t l from a device
E to host A creating a session with account uidl;
the message SS(EXTERNAL,[A,E],uidl, tl) is gen-
erated. The algorithm creates the external vertex v
and vertex vl, and associates nidl ~i th these ver-
tices. (See Figure 4a.)

From host A port pl at time t2 > t l a connection
is initiated to host B at port p2, producing the

158

(a)

nidl
{nidl}

(b) E i

nidl
{nidl} {nidl}

Figure 4: Normal Sequence of Events

message CS([A, P1],[B, P2], uidl, t2); this message is
stored in the MWS awaiting subsequent messages.

• Now, a connection accept message arrives from host
S - CA([A,P1],[B, P2],t3), where t3 > t2. The al-
gor i thm generates the pair (CS, CA) with appro-
priate arguments and store it in the CWS.

• How can a session be associated with this connec-
tion? The execution of a session start on host B will
produce the message SS([A,P1],[B, P2],uid2,t4) ,
where aid2 is the account name of the new session
which s tar t at t4 > t3. The graph G is updated to
include vertex v2 to reflect this new session, nidl
is associated with the new vertex v2. (See Figure
4b.)

• Activitiy AR(B, uid2, command, ~5)generated by
uid2 on host B might now occur, and will be asso-
ciated with nidl.

• Uid2 on host B terminates his session, gener-
ates the message SE([A,P1],[B, P2],uid2,t6), caus-
ing vertex v2 to be removed. The following con-
nection end message is subsequently generated:
CE([A,P1],[B, P2],t7), which removes the (CS, CA)
pair from the CWS.

• Finally, uidl on host A terminates his session, pro-
ducing the message SE(EXTERNAL,[A,Ej, uidl,
~8), which removes vertices vl and v from G

A more elaborate situation depicted in Figure 5
illustrates the case when a vertex may represent several
sessions in a host, all having the s~tme uid. In this]igure,
for example, a user associated with nidl and one asso-
ciated with aid2 both s tar t sessions on host A with uid
1. Now, when a command is executed in host A caus-
ing an activity message associated with uid 1, we have
no way to determine which originating session (nidl or

nidl nid2 nid3

Inidl, nid2} ~ ~ ~ / ~ dt3E

~ {nidl,nid2,nid3,nid4)

Session vertex • External vertex

Figure 5: DRA Connection Graph

nid2) executed the command. Therefore, the NID set
associated with vertex vl contains the N[D set {nidl,
aid2}.

Other factors that complicate the algorithm follow:

Although messages from a host arriw, at the Direc-
tor in the order generated, messages can be arbi-
trarily delayed (possibly due to network failure or
caching of message in a host). Thus for example,
a CA message might arrive before its correspond-
ing CS message, and the pairing of these messages
must await the arrival of both messages. Further-
more, a session start followed by activities (audit
events) could arrive before the CS that started the
connection.

A connection in progress might not be completed,
i.e., a CS message might not be follo~ ed by a corre-
sponding CA message. It is because the destination
host does not accept the connection or the connec-
tion request is lost due to some network problems.

A completed connection might not be followed by
a successful session start. This situation happens
when the connection (:loses (e.g., due to t imeout or
use exit) before the user successfully logs in.

Our algorithm reflects these possibilities. Before
describing the algorithm, we indicate the :properties
which the algorithm must satisfy.

159

(1) Correct association of Activity Records: If an ac-
tivity record AR is initiated by a user u from an
originating session with nid nl , then nl will be in
the (NID set) associated to AR.

(2) N I D sets are minimal: All NIDs the algorithm as-
sociates with an activity record could have been
responsible for the activity.

The DRA algorithm proceeds as follows. It consists
of three major steps:

S t e p 1: The Director updates its log at each hosts's
time upon receipt of a clock tick from the host.

S t e p 2: The Director at tempts to pair up CA and CS
messages to identify a connection when the its time log
of a host H is updated. Select a relevant CA message,
CA', (source host of the message is H) with the ear-
liest time stamp. If the time stamp of CA ~ is earlier
than H's time, pair CA I with a CS with the same con-
nection identifier (source host, source port, destination
host, destination port). If there is more than one CS
message, choose the CS message that occurred most re-
cently before CA~: Note that the pairing must await the
occurrence of this CS. When the pairing is complete,
earlier CS messages with the same connection identifies
as the CA that did not lead to a connection accept can
be discarded from the MWS. Once the completed con-
nection is recorded, there might be SS, AR, SE messages
in the MWS that can be processed.

S t e p 3: Process any messages that arrive. This step
involves the following cases:

Case 3.1 Arrival of SS(EXTERNAL, [host, devid], uid,
time) message. This corresponds to a login from a
terminal or console. The external vertex v, corre-
sponding to the external device is created. If there
is no vertex correspond to host and user uid, create
one and give it an unique NID. Otherwise, there is
such a vertex vl already; so create an edge between
vertices v and vl and add the new NID to the NID
set already associated with vertex vl.

Case 3.2 Arrival of a CS message, which is inserted
into the MWS.

Case 3.3 Arrival of a CA([src..host, src_port], [dst_host,
dst_port], uid, time) message. Attempt to-find a
matching CS for this CA according to Step 2. If no
match is found (the appropriate CS message is y¢~t
to arrive), store CA in the MWS.

Case 3.4 Arrival of a SS'([sre_host,src_port], [dst_host,
dst_port], uid, time) message. Attempt to iden-
tity a pair (CS,CA) that has the same connec-
tion identification (src_host, src_port, dst_hos~,

160

dst_port) as the SS. If there is no vertex vl
(dst_host, uid) in G, create it and create an edge
from a vi(sre_host,CS.uid) (CS.suid is the suid
field in the connection start message CS) which
must be already in G; associate with vl the NID
set of vi. If such a vertex vl already exists, create
an edge for vertex vi to this vl and form the union
of the NIDse t of v iands ;he NID set o f v l . If no
(CS,CA) pair has been formed, add the SS message
to the MWS.

Case 3.5 Arrival of a SE(EXTERNAL, [host, dev_id],
aid, time) message signalling the end of a session
initiated from an external device. The source ver-
tex v corresponding to the external device is re-
moved. Also remove the vertex vl if no other edge
is connected to it; otherwise, updat~ the NID set
associated with vertex vl to reflect the removal of
the NID associate with vertex v.

Case 3.6 Arrival of a SE([src_host,src_port], [dest_host,
dest_port], uid, time) message signalling the end of
a session not initiated from an external device. If
there is no vertex vl in G corresponding to dst_host
and uid, enter SE into the MWS, i.e., the connec-
tion has yet to be paired. Otherwise:, if w~rtex vl
has only a single edge from another vertex vi, re-
move the edge and vertex vl; otherwise, update the
NID set of vertex vl to reflect the removal of the
NID associated with the terminated session.

Case 3.7 Arrival of a CE([src_host, src_port], [dst_host,
dst_port], time) message signalling the termination
of a connection. There must be a pair (CS,CA)
with the same connection identifier as CE; remove
it from the CWS.

Case 3.8 Arrival of a AR(host, uid, activity, time)
message signalling an audited event If there ex-
ists a vertex vl in G corresponding to host and
uid, associate AR with the NID set of vl. Other-
wise, insert AR into the MWS; the connection that
preceded this AR has yet to be recorded by the
Director.

4 . 4 P r o o f o f t h e D R A A l g o r i t h m

The proof of the DRA algorithm procee&', in two steps.
In the first step, the "major" sl;ates associated with the
algorithm are enumerated, and it is proved that there
are no other such states; the proof is by structural in-
duction: for each state in the enumeration, it is veri-
fied that the arrival o f a message of any type causes a
transition to one of these states. The states in the enu-
aleration (slightly approximated) include the following.
They correspond to messages in the MWS with the same

connection identifiers and are yet to be paired up by the
Director. They are arranged in increasing order of their
t ime stamps.

(2) the NID set contains only those external logins
which could have been responsible for the activity.

(0) Empty

(1) A single CA message

(2) n (n=l , . . .) CA, CE messages followed by a CA
message (e.g., CA1CE1CA2CE2CA3)

(3) n (n=l , . . .) CS messages

(4) n (n=l , . . .) CS messages, m (m=0,1,.. .) CA,CE
messages followed by a CA message

(e.g., CS1CS2CA1CE1CA2CE2CA3)

As an example of the proof process, assume that the
current state is (0). When a CA or CS message arrives,
no pairing is possible, so that the transition is to state
(1) or (3). When the current state is (1), and a CS
message arrives (denote this case by ?), its time stamp
must be earlier than that of the CA associated with
state (1). It is not known if this CS message led to the
CA message or if it belongs to an aborted connection,
so there is no pairing yet and the transition to state
(4) occurs. Once in state (4), another CS message, CS'
might arrive; if the time stamp of CS ~ exceeds that of
the first CS message, then the first CS message is paired
with the CA message and both are removed from the
MWS and the transition to state (2) occurs. If the time
stamp of CS ~ is less that that of CA, the system remains
in state (4). While in state (4), a clock tick with time
stamp t might arrive from the source host (associated
with the connection). If t exceeds the time stamp of
CA, then the most recent CS is paired with CA and the
earlier CS's are discarded. When the current state is
(3), and a CA message arrives, its time stamp must be
later than that of the CS associated with state (3). The
situation will be same as (t).

Step 2 is the proof process involves showing that
the conjectured properties involving association of AR
records with NID sets are satisfied - in any state where
such an association is effected. This proof is again by
induction, this time on the length of paths in G.

Once it is established that the collection of system
states can be parti t ioned into the four classes above, it
can be proved that the CS and CA messages are cor-
rectly paired, and a subsequent SS is associated with
this pair. Next, it is shown that the following major
properties are established:

(1) association of activity records with the external lo-
gins (NID set), which must contain the NID of the
originating session which is responsible for the ac-
tivity, and

First consider property (1). The proof proceeds by
induction on the length of a path in G from the external
vertex v (external login) to the vertex vl associated with
the session(s) that caused the generation of activity AR.

Base Case: An external login results in the creation
of a new vertex vl, and associates with vl the NID as-
signed to the source vertex; or, in the case of an existing
vertex vl with the host and uid of the external login,
the external login results in the new NID being added
to the NID set associated with vl. In either case, vertex
vl acquires the NID of the external login and any AR
associated with the new session is asociated with the
NID set of vertex vl.

Inductive Step: Assume that there exists a path
terminating with a vertex vl and having an associated
NID set that includes the NID associated with the ex-
ternal login at the beginning of the path. From vertex
vl, a new remote session is launched by starting a con-
nection (CS), having the remote host generate a CA
message and, finally, having the remote host generate
a SS message. From the abow~ analysis, the SS is cor-
rectly associated with the (CS,CA) pair. Either a new
vertex vi is generated to correspond to this new session,
and vi inherits the NID set of vl, or an existing vertex
vj and its NID set extended to contain the NID set of
vl. In either case, the activity for this new session is
associated with a NID set which includes the NID of the
external login.

Now consider property (2), which involves show-
ing that the NID set of a vertex vl contains only NIDs
corresponding to external vertices which have paths to
v[. The proof is by structural induction on the graph
G(V,E). The DRA algorithm updates tile graph only
when a SS message is processed (in this case, it creates
or updates a vertex) or when a SE messa~:e is processed
(in this case, it removes or updates a vertex).

Base Case: The graph G(V,E) is empty (i.e., no
user is on the system). The first thing that happens
must be someone logging into a host, A, from an exter-
nal device, D. A SS message indicates a login fl:om exter-
nal device is generated from host A. When the SS mes-
sage is resolved, an external vertex v(D) with a unique
NID nl and the vertex vl(A, uid) associated with a NID
set containing only n l are created. Therefore, property
(2) follows.

Inductive Step: Assume that the current graph
G(V,E) satisfies property (2).

The algorithm changes the graph when :it resolves
a SS or SE message. We have the following possibilities:

161

1. A SS message is resolved. The algorithm creates
an edge e(vl, v2) from the vertex corresponding to
the source session to the vertex corresponding to
the destination session. (Vertex v2 is created if it
does not exist.) Then, the algorithm updates the
NID set of v2 to include the NIDs in the NID set of
vl. Therefore, a NID in v2 is either (a) in v2 before
the change, or (b) in vl. For case (a), the prop-
erty follows from the inductive assumption. For
case (b), the inductive assumption indicates that
the NID set of vl contains only NIDs associated
with vertices which have paths to vl. Since there
is an edge form vl to v2, those vertices have paths
to v2. Therefore, the property is satisfied.

2. A SE message is resolved (i.e., a user terminate a
session). The algorithm removes the edge e(vl, v2)
from the vertex corresponding to the source session
to the vertex corresponding to the destination ses-
sion. Then, it recomputes the NID set of v2 without
adding the NIDs in vl into the set. Therefore, the
property is satisfied.

5 R e l a x i n g t h e D R A A s s u m p -
t i o n s

Towards a more realistic setting ibr DRA, we relax sev-
eral of the assumptions given in the algorithm above,
and describe how the DRA algorithm can possibly be
modified to accommodate these changes. As we indi-
cate, additional information is usually required (e.g.,
from the NSM) and heuristics are used to at tempt to
infer missing data or replace erroneous information sup-
plied by the host monitors.

5.1 D R A and U n m o n i t o r e d H o s t s

In order to properly track users across multiple logins,
the previously presented Mgorithm requires monitors
on all hosts. Complete accountability cannot be main-
tained if the user passes through an unmonitored host.
An attacker can simply cover his tracks by logging onto
an unmonitored host and then back onto the monitored
network. (See Figure 5.) However, in many environ-
ments, hosts without monitors or even audit trails are
a reality, so we are working with a technology we call
thumbprinting to provide some measure of accountabil-
ity through unmonitored hosts [HML92].

Suppose a user u l on host A performs a remote
login to user u2 on host B, and from host B, performs a
remote login to user u3 on host C. Furthermore, hosts
A and C are monitored hosts, and B is unmonitored.

I in lruder@ otl ts ide.g o v

Nil)." 2 /
uid: n e w n a m e
pid: 21017

, the mmlitored
i n , d e

seeand NID

uid: fmdnmne
pid: 801

h o s t . c s . c h a i r . e d u

Figure 6: An Intruder Moves Off and Back Onto A
Monitored Host

Our goal is to determine that the activity belonging to
user u3 on host C should be mapped to the name NID
as user ul on host A. Certainly, without information
from host B, we do not know to whom the connection
from B to C belongs. For example, it could belong to a
user logged in at the console. However, by correlating
activity between the two monitored hosts, A and C, we
can draw some conclusions re~arding the relationship
between the connection from A to B and the connection
from B to C.

We start with the assumption that network connec-
Lions to or from one of our monitored machines generate
some monitorable activity associated with the data flow
between the two machines. Furthermore, the connec-
tions from A to B and B to C are using standard login
protocols (e.g., telnet, rlogin, remote shell, etc), services
where a user sends data to the remote machine and the
remote machine replies with information (e.g., entering
a command on a command line or entering text in an
editor). If these assumptions hold, we can determine,
with some degree of assurance, whether u:~er u3 on host
C is really tile same as user ul on host A by using what
we (:all thumbprints.

A thumbprint is a profile of connection acrjvity over
a specified period of time [HML92]. If two connections
haw~ similar thumbprints over several segments of time,
then we can say with some amount of certainty that
the two connections are really part of an ,extended con-
nection. For example, we can view the two connections
discussed previously, A to B and B to C, as a single ex-
tended connection from A to C. Now, we can map the
activity from user u3 on host C to the same NID as user
ul on host A.

Furthermore, this technique can be extended to

162

connections moving through an unknown number of
monitored hosts, for example, A ---* B1 ---* B2
B n ~ C. By comparing the thumbprints for the con-
nections A to B1 and Bn to C (n=l,2,. . .) , we can map
the activity from the user on host C to the user on host
A.

5.2 Out-of -Sequence Audi t trails

process messages.

• Add information about the method used to gener-
ate auditing paths on the source host to each audit
record, and use this information to group activi-
ties. This means that there must be sorae central
location that has all of the possible audit protocols
embedded in the rules.

Up to now, if a user logged on to a system and then
started a process that performed a sequence of ac-
tions al, a2,. . .an and then terminated, we have assumed
that the t imestamps t would be ordered as follows:
log onto system~ < start process~ < alt < ... < ant <
end processt.

However, not all auditing systems behave like this.
For example, some auditing systems produce the au-
dit records for the process before producing the au-
dit record signalling that the process has begun: i.e.,
log onto system~ < azt < ... < an~ < end process~ <
start process t.

In the first case, we can use the (host) audit record
to detect the creation of a new process with process
id p by the user with network id n. Henceforth, all
activities associated with that process id would also be
accounted to NID n. Activity associated with process
id p that occurs later than the timestamp of the end
process action (end processt) is assumed to belong to
a distinct process whose process id is p only because
process ids are recycled.

In the second case, we receive information about ac-
tivities associated with process id p before we are able to
connect that process id with NID n. Here, we cannot as-
sign the activities to NID n until the start process record
has been received. Further, we expect to receive exactly
one record associated with process id p that occurs later
than the t imestamp of the end process action (namely,
start process), and activity associated with process id p
that occurs later than this t imestamp is now assumed
to belong to a distinct process.

Two ways to handle this problem within a hetero-
geneous system without modifying the audit process fol-
low.

• Place a filter or an agent on the host that re-orders
the records so that the timestamps of case 2 fulfill
the order we expect in case 1. One possible im-
plementation would require the host to record the
time associated with the first observed occurrence
of a process id and then set the timestamp of the
start process action so that it is earlier than this
time but later than the last observed action of this
NID. This only solves the problem of delayed start

5.3 Clock Skew

One important assumption has been that the: clocks of
all hosts are synchronized. In reality, this will rarely be
the case.

The major problem of clock skew is that the al-
gorithm may pair up a wrong CS message with a CA
message. Consider the following scenario:

A user ul on host A tries to login to host B, so that
a CS message CS1 is generated by host A at time t l .
However, the connection at tempt fails. Later, another
user u2 on host A successfully logs in to host B using
the same connection that user u l used before. A CS
message CS2 is generated by A at time t2 and a CA
message is generated by host B at time t3 (tl <: t2 < t3).
Our DRA algorithm pairs the CA message with CS2
since it is the most recent CS message before the CA
message. However, if the clocks of hosts A and B are not
synchronized, the timestamp ot" the CA message may be
earlier than time t2, so that the algorithm will pair up
the CA message with CS1 instead of CS2.

Denote the minimal time period between two con-
secutive connection attempts using the same connection
id by t,n, and the amount of clock skew between the
clocks in hosts A and B by t,:. If t¢ < tin, the algo-
rithm is still correct. On the other hand, there is no
easy solution if t¢ _> tin. One possible way to handle
this situation is to pair a CA message not only with the
most recent CS before it, but with CS messages within
a certain time period after it as well, depending on the
amount of clock skew. However, the NID set associated
with an activity record may contain extraneous NIDs.

5 . 4 S h a r i n g o f u s e r i d

At present, our DRA algorithm is unable to properly
assign NIDs in the case of two users logging on to a sec-
ond host under the same account name. The reason for
this is that the Host Monitor only supplies the process
id and the account name. Since the source host does
not know the process id of the new process on the des-
tination host, and the account name used is identical,
it is not possible to correctly assign a N1D to the new

163

process. As indicated in the discussion on the DRA al-
gorithm, we assign the behavior on the second host to
both NIDs. If a more fine-grained description of the pro-
cess is provided (such as the try associated), it would be
possible to determine which NID should be assigned the
behavior. Networked PCs do not always provide even
the account name associated with an activity, so this
problem will appear in this type of environment as well.

6 Conc lus ions

We have presented an approach for distributed recogni-
tion and accountability (DRA), the purpose of which is
to track users as they move from host to host in a net-
work and to account activity to the proper user. DRA
solves the problem of tracking users as they might at-
tempt to change their identity in moving about a net-
work. The physical environment we assume is one in
which audit trails are generated at each host, and are
preprocessed; and the processed data are delivered to
a centralized site for analysis. The algorithm we pre-
sented makes assumptions about the hosts in a network,
including: they are monitored and produce audit trails
for network activity, they are synchronized, and the au-
dit trails are not tampered with. Under these assump-
tions, we presented an algorithm tbr DRA that is proved
correct with respect to a specification that asserts that
activity is always accounted to the root source that ini-
tiated the activity.

We have developed an intrusion detection system
DIDS (Distributed Intrusion Detection System) that
has DRA as its main concept. DIDS consists of hosts
each running a host monitor, a LAN monitor (NSM)
that observes all network traffic, and the DIDS Direc-
tor that among other things implements the DRA algo-
rithm. DIDS was designed to work with up to 30 hosts
on a single LAN segment. Our implementation keeps up
with hosts generating up to 10 network activity records
per second.

The paper also presents extensions to our DRA al-
gorithm, mostly relaxing the assumptions that permit-
ted a clean statement of the algorithm and its proof.
The main extensions relate to not requiring all hosts to
be monitored, to not requiring perfect synchronization
of hosts, and to allowing tampering of audit records by a
subverted host. In all of these cases, additional informa-
tion is required to resolve erroneous reports from hosts;
the NSM can in some cases provide this additional in-
formation. In addition, heuristics are employed to piece
together separate chains of sessions perhaps broken by
a malicious or unmonitored host.

Further extensions to DRA are under investigation.

1 6 4

One involves extensions to much larger networks pre-
cluding the possibility of a single analysis center. In-
stead, the DRA analysis would itself be distributed.
Other work is concerned with determining what audit
data a host should collect to facilitate DRA and other
intrusion detection algorithms.

7 A c k n o w l e d g e m e n t s

The original concept underlying DRA was suggested by
Steve Smaha who along with Che-Lin tto, John Fisher,
James Brentano, Steve Snapp, Tim Grance, Dan Teal,
Dong Mansur, Ira Morrison, Bob Palasek and the au-
thors participated in the development of an intrusion
detection system for which DRA was central. A hard
coded version of DRA is part of an intrusion detection
system (DIDS) currently under development at Trident
Systems, San Antonio. The work reported in this paper
was sponsored in part by the Air Force Cryptologic Sup-
port Center and the National Security Agency's Univer-
sity Research Program.

References
[HDL + 90]

[HML+91]

[HML92]

[KFH + 93]

[SB+91a]

[SB+91b]

[Sma88]

L. Heberlein, G. Dias, K. Levitt, B. Mukherjee,
J. Wood, and D. Wolber. A network security mon-
itor. Proceedings of the 1990 Symposium on Security
and Privacy, pages 296-304, May 1990.
L. Heberlein, B. Mukherjee, K. Levitt, G. Dias, and
D. Mansur. Towards detecting intrusions in a net-
worked environment. Proceeding of the 14th DOE
Conference on Computer Security, 1991.

L. Heberlein, B. Mukherjee, and K. Levitt. Internet
security monitor: An intrusion-detection system for
large-scalenetworks. Proceedings of the 15th National
Computer Security Conference, 1992.

C. Ko, D. Frincke, T. Heberlein, K. Levitt, and
B. Mukherjee. An algorithm for distributed recogni-
tion and accountability. Technical report, CSE-93-7,
UC Davis, November 1993.

S. Snapp, J. Brentano, et al. DIDS (Distributed Intru-
sion Detection System)-Motivation, Architecture and
An Early Prototype. Proceedings of the 1991 National
Computer Security Conference, 1991.

S. Snapp, J. Brentano, et al. A system for distributed
intrusion detection. IEEE COMPCON, 1991.

S. Smaha. Haystack: An intrusion detection system.
Proceedings of the IEEE Fourth Aerospae~ Computer
Security Applications Conference, 1988.

