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ABSTRACT
This paper describes a variety of 3D interactive graphics tech-
niques for visualizing programs. The third dimension pro-
vides an extra degree of freedom for conveying information,
much as color adds to black-and-white images, animation
adds to static images, and sound adds to silent animations.
The examples in this paper illustrate three fundamental uses
of 3D: for providing additional information about objects
that are intrinsically two-dimensional, for uniting multiple
views, and for capturing a history of execution. The ap-
plication of dynamic three-dimensional graphics to program
visualization is largely unexplored.

KEYWORDS: Algorithm animation, program visualization,
information visualization, 3D graphics.

OVERVIEW

Algorithm animation is concerned with illustrating the be-
havior of a program by visualizing the fundamental opera-
tions of the program as it runs. Such displays have proven
to be quite useful both for education and for research in the
design and analysis of algorithms.

The first general-purpose algorithm animation systems in the
early 1980’s used monochrome displays. Systems such as
BALSA [3] were constrained by a lack of computational
power for real-time two-dimensional graphics. As computa-
tional power has increased, so has the sophistication of the
graphics techniques used for animating algorithms.
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In the mid- 1980’s, Animus [6] showed the utility of smooth
transformations of 2D images, especially for looking at small
examples. TANGO [11] in the late 1980’s provided an el-
egant framework for specifying 2D animations. Color was
an integral part of Zeus [1]. The Zeus system also pioneered
“algorithm auralization’’-using non-speech sound to con-
vey the workings of algorithms [2]. Not surprisingly, each
new advance in technology has enabled an extra level of
expressiveness to be added to the visualizations.

This paper describes our use of 3D interactive graphics for al-
gorithm animation. Three-dimensional interactive graphics
provides another level of expressiveness to the animations,
akin to the way that smooth transitions, color, and sound have
increased the level of expressiveness in the past.

We are not proposing to use 3D for showing objects that
are intrinsically three-dimensional, such as the convex hull
of points in 3-space. We are also not advocating the use
of 3D for enhancing the beauty of a picture that is easily
shown in 2D. Rather, we are using 3D to increase the quality
and quantity of information conveyed in a graphical display.
Specifically, we have explored three distinct uses of 3D:

● Expressing fundamental information about structures

that are inherently two-dimensional.

Consider how one might display the values of an N-by-
M, two-dimensional matrix of positive numbers. An
obvious 3D display is to draw sticks at each cell of an
N-by-M grid, where the height of each stick is pro-
portional to the value of the corresponding element.
Of course there are other techniques for displaying the
matrix without using 3D graphics, such as displaying
a number in each cell or modifying the color, shape,
or size of each cell according to the value of the cor-
responding element of the matrix. However, showing
sticks of varying heights seems to be an extremely effec-
tive technique, perhaps because it allows direct visual
comparison of the elements.
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Uniting multiple views of an object. The techniques used in the Closest Pair and Elementary Sort-

Finding a single view of an object that reveals all of its
feature; can ~e difficult, if no; impossible. Therefore,
presenting multiple views of that object is a helpful
technique. However, it can be difficult for the user to
understand the relationship between the multiple views.
A carefully crafted 3D view can incorporate multiple
2D views into a single image, thereby helping the user
to see how the views are related.

Capturing a history of a two-dimensional view.

Often, a visualization of a program’s entire execution
history can be just as helpful for understanding a pro-
gram’s behavior as an animation of the current state of
theprogmm. When running programs on small amounts
of data, a history often gives the user a context of how
the algorithm has progressed each time the state has
changed. When running programs on large amounts
of data, a history often exposes patterns that are not
otherwise observable,

In any event, identifying and quantifying the advantages and
drawbacks of visualization techniques is beyond the scope
of this paper.

This paper presents six example animations that exemplify
our three distinct uses of 3D interactive graphics. The first
two examples, Shortest Path and Closest Pair, use 3D for
showing additional information on a structure that is inher-
ently two-dimensional. The next three examples, Heapsort,
k-d Trees, and Balanced Trees, use 3D for uniting multiple
views. The final example, Elementary Sorting, uses 3D for
augmenting a view with a history of how it has changed over
time.

ing examples are particularly noteworthy because they can
be applied to many arbitrary 2D views. We shall return to
this point when describing those two examples.

The images in this paper are screen dumps of views we
developed using the Zeus algorithm animation system [1].
In the Zeus framework, strategically important points of an
algorithm are annotated with procedure calls that generate
“interesting events.” These events are reported to the Zeus
event manager, which in turn forwards them to all interested
views. Each view consists of two windows that are installed
on the user’s desktop. One window displays the actual 3D
image and the other window contains a control panel (see
Fig. 5c). The control panel allows the user to change generic
rendering parameters (e.g., lighting), as well as view-specific
parameters (e.g., in the case of Balanced Trees, the distance
between the two trees). The rendered scene can be moved,
rotated, and scaled through mouse controls. In addition, one
can use the mouse to specify a momentum, which will cause
the scene to rotate continuously.

It is important for readers to realize that the figures in this pa-
per cannot do justice to the animations: Not only is informa-
tion lost when printing color images in black-and-white, but
the reader is unable to manipulate the 3D scenes. Moreover,
the scenes themselves are not static ! They are constantly
changing as the algorithm runs.
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EXAMPLE 1: Shortest Path
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Single-source shortest-path algorithms are a family of algo-
rithms which, given a directed graph with weighted edges,
find the shortest path from a designated vertex, called the
source, to all other vertices. The length of a path is defined
to be the sum of the weights of the edges along the path.

All single-source shortest-path algorithms have certain com-
mon features: First, they assign a cost to each vertex, indi-
cating the length of the shortest path found so far from the
source to this vertex. Initially, the cost will be infinite. Then
they repeatedly choose an edge e from vertex u to vertex
v, test if it can lower the cost associated with v, that is, if
COST(?J) > COST(u) + WEIGHT(e), and if so, indeed lower
v’s cost. Algorithms differ in their choice of which edge to
examine next.

A 3D view of one such algorithm is shown in Fig. 1. The
graph is drawn in the xy plane, with a green column above
the node in the z dimension. The column represents the cost
of each node. An edge from u to v with weight w leaves the
column above u at height O, and goes into the column above
v at height w. Figs. 1a and lb show the initial state of the
algorithm, from above (Fig. 1a) and from an oblique viewing
perspective (Fig. lb), Edges are drawn in gray; a shadow of
the edges is projected into the zy plane and drawn in black,
along with the vertices.

Whenever an edge e from u to v is examined, a highlighted,
red copy of it is lifted to the top of u’s green column, hence
its tip will hover over v at height proportional to COST(w) +

WEIGHT(e). If v’s column is taller, the edge can indeed lower
v’s cost, so v’s column is shortened, otherwise, the high-
lighted edge disappears. The set of highlighted lifted edges
forms the shortest-path tree when the algorithm terminates.
Fig. lC shows the algorithm about halfway complete; Fig. ld
shows the algorithm upon completion, with the initial edges
not drawn.

This view uses the third dimension to provide state irifor-
mation (namely, cost of vertices and weight of edges) about
an algorithm as it operates on a data structure that uses two
dimensions for placing objects. The view uses animation
effects to show the fundamental operations of the algorithm:
lifting an edge represents addition, lowering a highlighted
edge indicates the outcome of a comparison, shortening a
column shows assignment.

2C

The closest-pair problem is to find the two points in a collec-
tion of n ponts that are closest to each other. An algorithm
that does a pairwise comparison of all points takes 0(n2)
time; however, a recursive, divide-and-conquer algorithm
can improve this time bound to O (n log n).

The algorithm (for points in the plane) is as follows: First
we divide the plane by a line parallel to the y-axis such that
each half contains the same number of points. Next, we
recursively find the closest pair of points in each half. And
finally, we merge the two halves, checking if there is a new
pair of points (saddling the dividing line) that are closer to
each other than the closest pairs in each half. The crux of
the algorithm is that we need to consider only those points in
each half that are fairly close to the dividing line (in z) and
fairly close to the other endpoint (in y).

The 3D view of this algorithm, shown in Fig. 2, draws each
half-plane in the zu plane and uses the z axis to show the
division process and the induced recursion structure. In each
divide step, the half-plane is lifted, split in the middle, and
the two halves are moved apart. In the merge step, the halves
are moved back together, the eligible points are compared
pairwise, and the merged plane is lowered. The region of
interest around the dividing line is highlighted. The globally
best pair found so far is also highlighted.

In Fig. 2, the user has specified that the half-planes should not
be moved apart, and that the half-planes should be displayed
almost completely opaque. Fig. 2a shows the initial splitting,
Fig. 2b shows the merge of the two half-planes split by the
initial left half-plane, and Fig. 2C shows the algorithm deep
in recursion as it processing the initial right half-plane.

As in the Shortest Path example, the third dimension is used
to display additional information (in this case, the recur-
sion structure) about an algorithm that operates on two-
dimensional data, and animation effects are used to show
operations crucial to the algorithm.

The visualization technique here is an example of a general-
purpose way to integrate a visualization of a program’s call-
ing structure with the contents of its data structures. We
believe that it can be applied to other views, although we
have not explored this yet.
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EXAMPLE 3: Heapsort EXAMPLE 4: k-d trees

Heapsort works in two phases. First, it arranges the elements k-d trees are a special kind of search tree, useful for an-
being sorted into a heap, a complete bina& tree in which
the value of each node is larger than the values of each of
its children. Second, it repeatedly removes the root (i.e.,
the largest value among the elements) from the heap, sets it
aside, and reestablishes the heap property, doing so until the
heap is empty.

Heaps can be implemented as arrays by placing the root node
at position 1, and for each node at position i, placing its left
child at position 22, and its right child at position 2i + 1.

The 3D view in Fig. 3 exposes both of these properties.
When viewed from the front as in Fig. 3a, we see the heap
configured as a traditional tree (drawn in the zg plane). Each
node in the tree is an element of the array being sorted, and
has depth (in the z dimension) proportional to its value. Thus,
nodes at the top of the tree are longer (or deeper) than those
near the leaves. When the tree is viewed from the side as in
Fig. 3b, we see a classical sticks view of sorting algorithms
(cf. Fig. 6). Fig. 3C shows the same structure from an oblique
viewing angle.

The value of elements are also encoded by colors along the
spectrum: large elements are displayed in red and small
elements in blue. Color is not crucial in the sticks represen-
tation, because the value of a stick is encoded by its length,
but it is quite helpful in the tree view.

Of course, it is possible to show the two perspectives—the
tree and the array-as separate views, each in its own win-
dow, without using 3D graphics. However, the viewer must
mentally integrate the different views in order to understand
them as a whole. The 3D view alleviates this problem.

swering range queries about a set of points in k-space. The
algorithm for the two-dimensional case (i.e., k = 2) with
points in the xy plane is as follows: The algorithm selects
any point and draws a line through it parallel to the y axis.
This line partitions the plane vertically into two half-planes.
Another point is selected and is used to horizontally partition
the half-plane in which it lies. In general, a point that falls
in a region created by a horizontal partition will divide this
region vertically, and vice versa.

This division process induces a binary tree structure: The
first point becomes the root, and each point falling into the
left half-plane is inserted into the left subtree, and each point
falling into the right half-plane is inserted into the right sub-
tree. For points that divide regions horizontally, the points in
the upper half-plane are inserted into the left subtree whereas
points in the lower half-plane are inserted into the right sub-
tree. Thus, nodes at even levels in the tree divide the set of
points into left and right half-regions, and nodes at odd levels
divide a region into upper and lower half-regions,

There are two obvious views of this algorithm: a view of the
partitioning of the plane, and a view of the binary tree that
is induced. The 3D view shown in Fig. 4 merges and unites
these two views.

The points in the plane are drawn as circles in the xy plane,
and the partitionings caused by them are drawn as transparent
walls extended in the z dimension. On top of each wall and
above each point is a sphere, representing the corresponding
node in the 2-d tree. Therefore, the height (as well as color)
of each wall reflects the node’s level in the tree. The tree
edges are represented as lines connecting related nodes.
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When viewed from the top and with the tree edges hidden,
as in Figs. 4a, 4c, and 4e, we see the traditional view of
the partitioning of the plane. Exposing the tree edges wcwld
show the 2-d tree in a representation that a graph-theorist
would be comfortable with: as a connected, acyclic graph.
However, when viewed from the side (and with the walls
mostly translucent), as in Figs. 4c, 4d, and 4f, we see a tree
more familiar to the computer scientist: each node is below
its parent.

Figs. 4a and 4b show the state of the algorithm after it has
processed the first two points. Figs. 4C and 4d show the
state after the algorithm has processed the third and fourth
points, and Figs. 4e and 4f, after the algorithm has processed
the fifth and sixth points. Finally, Fig. 4g shows the state

of the algorithm after all points have been processed, with
opaque partitioning walls. Notice how the 3D view merges
the traditional plane-partitioning view and the induced 2-d
tree view.

It is disconcerting to see edges of the tree overlapping.
(Moreover, the left and right children are not necessarily
drawn to the left and right of their parent!) Fortunately, when
the tree is rotated in real-time about the z axis, it appears to
have depth. The real-time animation provides the viewer
with the visual clues needed to understand the overlaps.
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EXAMPLE 5: Balanced trees
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This view is superb for understanding the dynamics of many

A 2-3-4 tree is a balanced search tree in which nodes can
contain 1, 2, or 3 keys and can have 2, 3, or 4 children.
Inserting keys into a node might eventually cause it to over-
flow, which results in the node being split into multiple nodes.
Performing the split operation judiciously will keep the tree
balanced. Unfortunately, 2-3-4 trees are cumbersome to im-
plement, mainly due to their irregular structure. Therefore,
it is common to implement 2-3-4 trees as Red-Black trees.
These are ordinary binary search trees with an extra bit (the
“color”) attached to each node.

The 3D view shown in Figs. 5a, 5b, and 5C illustrates the
mapping between a 2-3-4 tree and a Red-Black tree. The
two trees are drawn with one in front of the other. More
precisely, each tree is drawn in the zv plane, and the trees
have different values of z. Each node in the 2-3-4 tree is
associated with its corresponding nodes in the Red-Black
tree by enclosing the nodes in both trees into a horizontal
transparent envelope, and thus grouping them together.

This view, like the others, is somewhat hard to appreciate
fully as a static image. Spinning the scene very slowly helps
the viewer to see the mapping. The controls for manipulating
this 3D view are shown in Fig. 5d.

EXAMPLE 6: Elementary Sorthig

Perhaps the most famous algorithm animation is the “sticks”
view of sorting algorithms, shown in Fig. 6a. This view, in-
troduced in Baecker’s seminal 1981 film Sorting Out Sorting,

shows the array of elements as a row of sticks. The height of
each stick is proportional to the corresponding element in the
array, so when the sort is completed, the sticks are arranged
from short to tall, from left to right.

sorting algorithms, especially when the algorithm runs on
small amounts of data. However, this view does not provide
any history of the execution. We see the current state only.
However, if we consider the sticks as being drawn in the q
plane, we can see an execution history by drawing the sticks
at increasing values of .z as the algorithm progresses, That
is, we stack the new row of sticks in front of the old ones.
This results in a 3D solid.

In order to emphasize the importance of the current row of
sticks, we chose to flatten all previous sticks and to encode
by color the value of the corresponding array element. In ad-
dition, we keep the current row fixed at z = O, and move the
stack of flattened sticks forward at each step. This results in
a horizontal plane of “paint chips” giving a complete history
of the algorithm. (Another way to think of the “chips” view
is as the sticks stamping their color onto the chips plane,
which is pulled forward as execution progresses.)

Fig. 6b shows the same scene as in Fig. 6a, but viewed from
above. Fig. 6C shows the same scene again, but viewed
from an oblique viewing perspective. Notice how we can see
both the current contents of the array and the history of the

algorithm’s execution in the 3D view.

Fig. 6d uses the same view and viewing angle to display
Shakersort. In the BALSA system, the chips view was a
separate view of sorting algorithms, one among a dozen or
so views. The chips view of Shakersort was instrumental in
providing the insight that led to Janet Incerpi’s Ph.D. thesis
on the worst-case analysis of Shellsort (Brown University,
1985). The insight suggested by the picture of Shakersort is
the “zipper” effect: in one left-to-right pass, many elements
are moved one position to the left, only to be moved back to
their previous position on the subsequent right-to-left pass.
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This digression is important because the 3D visualization In algorithm animation per se, Cox and Roman [5] recently
techniq~e of stacking ‘a 2D view along the z axis as the al-
gorithm progresses is general purpose, and can be applied to
many 2D views. It is reasonable to imagine that other hiclden
properties of algorithms will be exposed by examining 3D
history of 2D views.

RELATED WORK

The scientific visualization community routinely uses 3D
interactive graphics. Systems like AVS [12] support 3DI vi-
sualizations of domain-independent data. The Information
Visualization project at Xerox PARC [4] has stimulated a
flurry of interest in developing 3D views that show classical
types of data organization (e.g., a tree) traditionally shown
in 2D. Both scientific visualization and information visual-
ization typically concentrate on a given set of numeric or
relational data. We are concerned with visualizing the be-
havior of programs, which typically operate in subtle ways
on abstract and complex combinatorial structures.

There are a few recent examples of using 3D in program
visualization. Lieberman [8] describes a 3D view of the ex-
ecution of Lisp programs. The view shows the code for an
expression in the Zy plane on a block with some depth in the
.z dimension. As the program executes, each subexpression
causes a new block to be displayed in front of the caller’s
block. When an expression is evaluated, its block (the front-
most) is removed. Koike’s VOGUE system [7] provides a 3D
visualization of class libraries: A conventional class hierar-
chy tree is drawn in the xy plane. Behind each node (in the .z
axis) are “floating” nodes for methods. Finally, Reiss has de-
veloped a 3D variation of a program call graph [9], where the
z coordinate (and the actual contents) of each node reflects
some attribute of the corresponding procedure.

show-cd a view of a sh&test-path algorithm similw to that
shown in Fig. 1. Their work was developed independently
of ours. Also, in an unpublished videotape, Stasko at Geor-
gia Tech shows a clever 3D animation of Quicksort using
Polka [10]. The front view is a traditional “dots” view (i.e.,
just the tips of the sticks in Fig. 6); as elements are ex-
changed, a trail is maintained whose depth is proportional to
the number of exchanges that have happened so far. Viewing
the scene from the side provides a history.

SUMMARY

The potential use of 3D graphics for program visualization
is significant and mostly unexplored. The examples in this
paper use 3D graphics for expressing additional information
geometrically about a two-dimensional structure, integrating
two nominally 2D views, and capturing a history of execu-
tion. Our use of 3D graphics is not to enhance the beauty of
a program visualization; it provides additional, fundamental
information.

Two of the examples stand out as being instances of general-
purpose visualization techniques: In the Closest Pair exam-
ple, we discussed using 3D for combining program control
information with arbitrary 2D views of program data struc-
tures. In the Elementary Sorting example, we discussed
using 3D for capturing a history of an arbitrary 2D view.

A great deal of experimentation is needed to better understand
the strengths and weaknesses of using 3D interactive graphics
for animating algorithms, and to develop a collection of 3D
visualization techniques and metaphors to augment those that
have been developed for using 2D, color, and sound.
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MORE INFORMATION

A copy of this paper with color figures is available by send-
ing electronic mail to src -report &src. dec. com and
requesting SRC Research Report #1 10a. A videotape of the
animations is also available upon request it’s SRC Research

Report #l 10b. Please specify which VHS format you prefer,
NTSC, PAL, or SECAM. (And please don’t forget to include
your physical mailing address!)

The figures in thk, paper are available via anonymous ftp from
gatekeeper. dec . corn. The files are located in the di-
rectory /pub/ DEC/SRC/research- report s;they are
named SRC–ll Oa-fig* .gif.
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