
Video Widgets and Video Actors

Simon Gibbs, Christian Breiteneder,

Vicki de Mey and Michael Papathomas

Centre Universitaire d’Infonnatique, Universit6 de Gerkwe

24 rueG6nt%al-Dufour,CH-121 1 Gen&e 4, Switzerland

tel: +41 (22) 705.’7770; fax: +41 (22) 320.2927

{ simon, chris, vicki, michael}@cui.unige.ch

ABSTRACT

Video widgets are user-interface components rendered with

video information. The implementation and several usage ex-

amples of a family of video widgets, called video actors,, are

presented. Video actors rely on two capabilities of digital vid-

eo: non-linear access, and the layering of video information.

Non-linear access allows video frames to be displayed in mbi-

trary order without loss of continuity, layering allows two or

more video streams to be spatially composed. Both capabili-

ties are now becoming available to user-interface designers.

KEYWORDS: digital video. video layering, video widgets,
media components

INTRODUCTION

Recent developments in low-data rate digital video formats,

such as DVI [10], QuickTlme [5], MPEG [8], andJPEG[11],

are creating new possibilities for user-interface design. Un-

fortunately, many applications treat video simply as some-

thing which can be played in a window. This view reduce:% in-

temctivity to choosing when and where to start and stop, the

video, and ignores the possibility of processing the video.

Furthermore, by relying on a separate video “playback win-

dow”, there is little coupling between video material andl the

material appearing in other application windows. It is diffic-
ult, for example, to have a video pointer appear over appl ica-

tion buttons or menu items.

This paper shows how traditional video processing tech-

niques, such as keying and layering, can be used to integrate

video with the user interface. Currently these forms of video

processing are usually performed with studio equipment,

however as computer support for digital video becomes more

common, video processing is also appearing on the desktop.

In integrating video with the user interface, an essential con-

cept is that of a video widget – a user-interface component that

is rendered using video information. Like graphics-based

widgets, video widgets come in a variety of forms. For exam-

ple, a video button widget might use a video sequence, instead

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the

title of the publication and its date appear, and notice IS given
that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.

; 1993 ACM O-89791-628-X1931001 1...$1.50

of an icon or character string, for the face of the button.([mag-

ine a button that is a burning flame or a fountain of water.)

Rather than discuss video widgets in general, we will concen-

trate on a family of video widgets that we call video actors.

These widgets are characterized by human-like behavior and

are typically used to provide assistance or help information.

In the following we describe how video actors are used in ap-

plications and how they can be implemented. We first mention

some closely related uses of video in the user interface. We

then present a conceptual overview of video actors. Since sev-

eral pieces of information are associated with a particular vid-

eo actor, and since different actors have different behaviors,

the object-oriented approach is used. The implementation of

video actors is then described at two different levels: the ap-

plication level, and at the level of “multimedia components”.

We show how a strategy of constructing applications from

collections of cooperating components can be used to build

video actors. Next we present several examples of applica-

tions using video actors and briefly touch on the problem of

acquiring suitable video material. Finally we conclude with a

discussion of problems related to our implementation of video

actors.

RELATED WORK

Composition of graphics and video, as needed by videc) wid-

gets, is a widely used technique. For example, many computer

games and interactive video games overlay video sprites on

computer-generated backgrounds or on background video

(such as from a videodisc). Video titling systems (“character

generators”) are another example of graphics and video com-

position where, in this case, computer-generated titles are

overlaid on a video background.

Chroma-keying and other video composition techniques area

mainstay of video production but are little used for computer

interaction. (Although, as stated in the introduction, this may

well change as digital video becomes more common.) One ex-

ception is the Mandala Machine where live video, typically of

the user shot against a uniform background, is overlaid on a

computer-generated scene. Special hardware determines the

outline of the user, allowing the video to control the applica-

tion (e.g., moving a hand over a drum icon causes a drum

sound to be produced). Another exception is Krueger’s work

[7] where live video and real-time gesture and edge recogni-

tion are combined to produce highly interactive video worlds.

One difference with the work described here is that we use re-

November 3-5, 1993 UIST’93 179

http://crossmark.crossref.org/dialog/?doi=10.1145%2F168642.168660&domain=pdf&date_stamp=1993-12-01

carded rather than live video. This means that the video can be

prepared in advance and devised for specific purposes.

The notion of video actors derives from work directed to-

wards depicting and incorporating human-like agents in the

user interface. Several exploratory videos have been pro-

duced to help visualize such interfaces (e.g., Knowledge Nav-

igator [6]) and systems containing guides or agents have ap-

peared. An early example is Palenque, a DVI title where a

video guide assists the user in exploring a tropical rain forest

(a description can be found in [10]). A second example is the

use of guides to help users navigate a hypermedia database

[3] [9]. Both graphics-based (computer-generated) and video-

based guides were developed; this work also experimented

with attributing character to the guides so they not only assist

in navigation but also supply a point of view on the content of

the database. Another example of video-based agents, an ap-

plication which aids in learning a foreign language, is de-

scribed in [1] where the roles of “cultural agents” in multime-

dia interfaces are considered.

Several of the video actors we have implemented explain the

operation of software or pieces of equipment. In our case the

video explanation is prerecorded. Work has been done, how-

ever, on the generation of multimedia explanations. For ex-

ample, COMET [4] performs the automatic generation of ex-

planations concerning the maintenance and repair of equip-

ment. The explanations are visualized on the computer

through graphics and text and generated using an expert sys-

tem and several knowledge bases.

This brief summary has mentioned only a few of many exam-

ples of user interfaces that utilize video. While the design of

video-enhanced interfaces is an engaging and creative area,

the focus of this paper is more on the design of software ab-

stractions. In particular we are interested in identifying porta-

ble, reusable abstractions that enable interface designers to

experiment with non-linear access, video layering, and other

capabilities of digital video.

VIDEO ACTORS - CONCEPTS

A video actor consists of layered video material that appears

on top of application windows. Applications create and ma-

nipulate video actors by instantiating a C-t+ class. Before de-

scribing the interface provided by this class we first introduce

some of the terms and concepts relevant to video actors:

multiple video sources a video actor is composed from one

or more video layers. Layers are separate video values and

are accessed by separate players, i.e., there is one player for

each video layer and each player can be controlled inde-

pendently of the others.

layer composition a video actor’s layers are composed, us-

ing techniques such as chroma-keying and luminance key-

ing, into a single video stream. Application graphics and

the single video stream are then overlaid so that the graph-

ics appears behind the video. In other words, windows,

icons, menus etc. are in the background and the video actor

is in the foreground.

non-linear I random-access >ideo Whhin a layer, individual

video frames can be randomly accessed and displayed, in

other words playback is “non-linear.” Access times are

crucial and will depend on the format and size of the video

and the performance of the player.

actions, postures and events Each video actor has a reper-

toire of actions and postures. An action is a path through

the frames contained within a video layer. Actions need not

be sequential and may have accompanying audio. A pos-

ture is a particular frame (or set of frames, in order to re-

duce access times postures can be replicated and scattered

through a layer). It is possible for a video actor to perform

several actions simultaneously provided each is on a dif-

ferent layer. As video actors perform actions they generate

PostureHit and EndOfAction events as pictured in Figure 1.

Applications can request notification of these events al-

lowing synchronization of application activities with the

actor.

PostureHrt EndQfAdlon Pw.tureHit PostureHit EndOfAdIon

ttttt

~

==b~
Posture Posture Posture

}
Events

pon[on of a
video layer

tbme

Figure 1: A video layer showing Events,

Actions and Postures.

The basic functionality of video actors is provided by a Video-

Actor class. An outline of this class, in C++, is:

class VideoActor {
int nlayers; // how many layers for this actor
VideoPlayer’ player[]; //players for each layer
LayerInfo Iayer[]; //state information for each layer

protected:
//protected instance variables include chroma-key info
//plus tables defining actions and postures for this actor
1/
VideoPlayer’ Player(Layerld lay);

public:
VideoActor(int n); //create an actor with n layers

-VldeoActor();

int LoadLayer(Layerld lay, char’ fileName);
void Map(Layerld lay); //make a layer visible
void UnMap(Layerld lay); //make it invisible
void Mute(Layerld lay); //make a layer inaudible
void UnMute(Layerld lay); // make it audible

videoKey BackgroundKey(Layer Id lay); // identiies
//background

int RepertoireSize(); // how many things can it do?
void Repertoire(ActorRepertoire’ ar); //what are they?

int Perform(Layerld lay, Actionld a, float speed,
bool block);

int Pose(Layerld lay, Postureld p);

void Register(ActorEvent e, ActorEventHandier h);
void UnRegister(ActorEvent e);

}:

Layers, actions and postures have unique identifiers. When

using the VideoActor class directly, applications must be aware

180 UIST’93 Atlanta, Georgia

Figure 2: A video acto~ two frames from the torso layer (top), a head layer frame and composed

video overlaid on an application (below).

of these identifiers. (Our practice, however, is to create sub-

classes of VldeoActor which encapsulate this information.)

After creating an actor, the first step is to bind video values to

its layers. This is done by the LoadLayer method which indi-

cates the name of a file containing a video value. The fimrnat

of the file will depend on the player for the layer in question.

For example, one of our players is a network accessible

QuickTime server (see Appendix B). In this case fileName will

be the name of a Macintosh file containing a QuickTlme mov-

ie. We also use videodisc players in which case fileName is ig-

nored.

The BackgroundKey method returns a value, videoKey, that sep-

arates background from foreground in a video layer. The con-

tent of videoKey will depend on how keying is performed. For

instance, using luminance keying only a single value, the

threshold level, is needed, while chroma-keying requires

specification of a key color or color range (e.g., maximum and

minimum values for red, green and blue).

The RepertoireSize and Repertoire methods are used to query an

actor and determine the actions and postures of which it is ca-

pable. In addition to returning valid action and posture identi-

fiers, Repertoire indicates the layers used, and, for actions,

whether there is audio, and if so, the language used.

Perform is the crucial method. It directs an actor to start an ac-

tion on the specified layer (and at the specified speed). Perform

takes a boolean parameter indicating whether the method

should block. By using non-blocking invocations it is possi-

ble for an application to direct an actor to perform more than

one action at a time (provided the actions are on different lay-

ers). Alternatively, blocking invocations allow applications to

synchronize with the end of actions. The Pose method simply

requests that the actor assume a specific posture.

Finally, the Register and UnRegister methods are used to set and

remove event handlers. An ActorEvent includes an event type

(e.g., EndOfAction, PostureHit), a layer identifier, an action or

posture identifier, and data to be passed to the application. (To

catch all events of a particular type, the application uses wild-

cards for action or posture identifiers.)

As an example, consider an actor with two layers: one show-

ing the torso of a person and the other the head (see Figure 2).

The head layer has an accompanying audio track containing a

number of utterances. Actions are defined for particular utter-

ances. The body layer has a number of body positions, such as

pointing in a pat’titular direction, which correspond to pos-

tures. The following gives an idea of how an application could

invoke this actoc

vact = new VideoActor(2); II we want two layers
vact->LoadLayer(TORSO_LAYER, “Torso Track”);
vact->LoadLayer(HEAD_LAYER, “Talking Head Track);
vact->Pose(TORSO_LAYE% POSTURE_POINT_LEFT);
vact->Perform(H EAD_LAYER, ACTION_SAY_HELLO,

someSpeed, FALSE);

November 3-5, 1993 UIST’93 181

Since in this example the Perform does not block, it is possible

for the application to continue handling user events. These

could result in changes of posture, allowing, for example, the

actor to follow the movement of a window or cursor.

IMPLEMENTATION OF VIDEO ACTORS

This section presents a general software architecture for video

actors and describes how the architecture has been realized on

a particular multimedia platform. We begin by discussing the

application programmer’s view of video actors.

Application Level - The Application Programmer’s View
Video actors are overlaid on top of the windows, icons, menus

etc. used by applications. In our present implementation, the

video “floats” over the graphics, i.e., it is not clipped or other-

wise hidden. (This is somewhat restrictive and, in cases where

actors are interrupted, it seems appropriate for windows to be

brought on top of actors.) Assume that graphics rendering is

done by an X server. Then an application programmer’s view

of the relationship between actors, the X server, and the appli-

cation itself is shown in Figure 3. In this figure, the application

aster
contm

apphcatmn

Figure 3: Video actors: application level.

A is an X client, it has a connection to an X server and creates

an instance of the class VideoActor. The application program-

mer is aware that the video actor’s output is “mixed” with that

of the X server but need not be concerned with how this is

done.

Component Level - The Video Actor Implementor’s View
There are many ways of implementing the VideoActor class,

they differ in the number of actor layers supported and the

hardware required. We will describe two implementation ap-

proaches. The first is a possible (but not realized) digital im-

plementation. In this case the number of actor layers is limited

by processor speed a very fast processor or special-purpose

video processing hardware is required. The second imple-

mentation approach, and the one we have followed, is an ana-
log-digital hybrid. our Cul-rent hardware configuration (see

Appendix A) supports two actor layers but is scalable (i.e.,
more layers can be supported by adding more equipment)..

The two implementation approaches can be easily described

in terms of multimedia components [2]. These are software

abstractions representing hardware devices and software pro-
cesses. Components are connected to form media processing

systems, connections carry streams of data (such as digital

video frames or X server requests) or analog signals.

A possible component network (a group of connected compo-

nents) for a digital implementation of video actors is shown in

Fig,ure 4. Here a Player is a digital video source (e.g, a process

which reads compressed video frames from a file and produc-

es decompressed frames) and DVMIX is a digital video mixer

(e.g., a process which receives frames from several sources

and produces a single composite frame). The other compo-

nents make explicit the connections between an X server with

digital video extensions (the “X+DV” component), the frame-

buffer, and the display. The modifications needed by the X+DV

component are the addition of a port to receive the stream of

digital video frames, and the addition of server requests to

control compositing of the normal X graphics with the video

(e.g., XStartCompositing, XStopCompositing and XSetChro-

maKey). Since the final mix (that of the actor and the applica-

tion) occurs in the modified X server, we label Figure 4 a

“server-resident mixing” implementation.

mmulti-layera

Figure 4: Multi-layer digital acto~ compo-

nent level, server-resident mixing.

In choosing the components to implement video actors we

faced two practical constraints. First, our current equipment

supports primarily analog video. Second, we were not pre-

pared to modify the X server to incorporate digital video ex-

tensions. As a result, our current implementation of the Video-

Actor class relies on ahalog video (see Figure 5). Here two

videodisc player

>

Quicklme player
analog video signal

applm.aon X sewer framebuffer ssan cunvetter v]deo mtxer final display

Figure 5: Two layer analog actor compo-

nefit level, post-server mixing.

sources, such as a videodisc and a QuickTime player, produce

two actor layers. These signals pass through AVMIX, an analog

video mixer, whose output is in turn mixed with an analog sig-

nal coming from a scan converter. (A scan converter is a

stand-alone piece of equipment, or a computer board, that

converts a framebuffer’s RGB video signal to NTSC or some

other analog format.) After mixing the result is displayed on

an NTSC monitor. Since the final mix occurs after the X serv-

er, we label Figure 5 a “post-server mixing” implementation.

Although this implementation suffers from the problems of

182 UIST’93 Atlanta, Georgia

RGB to NTSC conversion (loss of resolution, color bleeding

etc.) it does allow experimentation with the VideoActor class.

However, the additional equipment (videodisc player, scan

converter, video mixer) leads to an expensive and bulky plat-

form.

EXAMPLES OF VIDEO ACTORS

We have implemented a few examples of video actors using

the hardware and software described in the previous sections.

The examples fit into two categories: domain-specific “as-sis-

tants” used to explain particular applications, and generic

“gesturers” used to test the basic capabilities of actors, such as

random access to video and real-time video display in re-

sponse to an input device. We have implemented three assis-

tants and one gesturer. The assistants are: a videodisc assistant

that provides help to users of a video player application; a mu-

seum guide, shown in Figure 6, that supplies information

about artwork on display in a virtual museum [2]; and a fax as-

sistant, shown in Figure 7, that explains and demonstrates the

use of a fax machine.

periment with a multi-layered actor whose different layers are

capable of tracking the mouse across the screen and perform-

ing a small repertoire of gestures. We also discuss how the

video for the examples was acquired.

The Videodisc Assistant – A Domain-Specific Video Actor
In this example a video actor is used to assist the use of an ap-

plication. The application consists of a panel that controls

playback of video from a videodisc in a window on a worksta-

tion screen. The large panel appearing near the left side of Fig-

ure 8 has video control buttons such as play forward, fast for-

ward and stop. In ad@ion to the buttons used for contrc)lling

playback, there is a help button, marked with a “?”. If a user

pushes this button before pushing one of the other buttons, a

video assistant pops up and explains and demonstrates the use

of the latter button.

Demonstrating the use of a button is the most interesting part

of this example. It is accomplished through a callback occur-

ring when the video actor layer reaches the posture where it

seems as if it pushes the button (shown in Figure 8). The call-

back causes execution of the associated command for a short

time period, for instance it plays a short part of the video, then

the video actor disappears and control is returned to the appli-

cation.

Figure 6: Museum guide.

Figure 8: Buttons explained by the “videodisc assistant”.

Figure 7: Fax assistant.

In this section we further discuss the videodisc assistant and

gesturer actors. The former illustrates the interaction of an ap-

plication with a single-layered video actor. The latter is an ex-

The VideodiscAssistant class implements the behavior of this

actor. A skeleton of the definition of this class is:

class VideodiscAssistant: public VideoActor {
public:

bool CanExplainButton(int buttonld);
void ExplainButton(int buttonld);
void RegisterHitButtons(ActorEventHandler h);

);

The CanExplainButton tests if the video actor has an explanation

for the chosen button in its repertoire. The ExplainButton meth-

od starts the explanation of some button. The RegisterHitBut-

tons is used for registering a callback to occur when the. actor

appears to push a button. These methods are implemented us-

ing the Repertoire, Perform and Register methods of its super-

class, VideoActor.

The Gesturer - a Generic Video Actor
The display of the “gesturer” is made up of two video layers,

one layer for the head of the actor and the other for the body.

November 3-5, 1993 UIST’93 183

The final display of the actor is a composite where the head

and the body of the actor are free to move independently. For

instance, the arm of the gesturer can follow the mouse cursor

as it moves around the screen while the head can be positioned

to look in different directions or to perform different actions,

e.g., nodding. The C++ class definition for the gesturer is as

follows:

class Gesturer: public VideoActor {
public:

void PointTo(int x, int y);
void LookAt(int x, int y);
void HeadNod();
void HeadShake();

);

The PointTo method finds the posture where the hand is closest

to the indicated position, it then invokes the VideoActor::Pose

method. Similarly, the LookAt method is used to find the pos-

ture with the head looking in the direction of the x, y coordi-

nates. The Head Nod and HeadShake methods request the actor

to “perform” (using the VideoActor::Perform method) actions

that picture the head either nodding or shaking, respectively.

This example is a possible implementation for the video actor

pictured in Figure 2.

Video Acquisition
The video material used as layers of an actor must be carefully

prepared if the composed video is to appear realistic. In our

implementation, video overlay was performed by chroma-

keying, an effect that makes certain color vah.tes (typically

shades of blue) transparent and allows the background to be

visible. The use of chroma-keying has two consequences. The

color values made transparent have to be as uniform as possi-

ble and they must not appear in the foreground. A uniform

background was achieved by using paint or cloth in a specific

color and most importantly, by lighting that produced little

shadow.

The actors appearing in the video required careful rehearsal

since they had to look and point in directions where objects

appear only after the video is overlaid. We also recorded in a

variety of languages (six) so we could experiment with multi-

lingual interfaces.

After shooting, the material was edited to select the best se-

quences, the exact start and stop points, or to enhance the vid-

eos, e.g. by adding graphics into the video. We added, for ex-
ample, ~~phic symbols for the fax assistant to highlight fax

buttons or regions that are explained. The edited material was

copied to a videodisc or stored in digital form. In some cases,

however, additional processing of the video material was nec-

essary. This was the case for the gesturer actor, where frames

were edited in digital form to separate body and arm positions

from head movements.

CONCLUSION

Video widgets offer the possibility of adding dynamism to the

user-interface. We have illustrated one type of video widget,

the video actor, and have discussed the implementation of

video actors and their use in application programs.

One natural question is why use video to implement video

widgets when real-time animation would offer more flexibili-

ty. Video certainly has fewer degrees of freedom than anima-

tion. Nonetheless, video does have some important advantag-

es. First, video is more realistic. We still need video if we want

to have real people on our screens rather than animated char-

acters. Second, video players can playback synchronized au-

dio; this may not be the casewith “animation players”. Third,

there are software-based digital video players, while real-time

animation often requires expensive hardware. And finally,

video is easier to obtain – it’s often less work to shoot a few

minutes of video than construct a few minutes of animation.

Although real-time animation is more interactive and easier to

modify than video, we believe that some of the deficiencies of

traditional video can be reduced by using keying and other

multi-layering techniques.

Our implementation of video actors is still in the experimental

stage. We conclude by describing some of the technical prob-

lems raised by the initial implementation.

video quali~ A problem with our particular hardware plat-

form is that the application and video actor are viewed on an

NTSC video monitor rather than the workstation monitor. The

resulting loss of resolution, and other problems with image

quality (flashing when the videodisc seeks, halos around ob-

jects due to poor keying) are artifacts of this particular plat-

form. By using digital video sources better quality should be

obtained, and the platform can be reduced to a single worksta-

tion.

video processing Currently if an application window is

moved, the video actor is not translated and the sense of cohe-

sion between the application window and the actor is lost. For

example, if the panel shown in Figure 8 is shifted the actor will

miss the button. A partial solution is to extend the VideoActor

interface and allow spatial positioning of video layers. In oth-

er words real-time video processing, in this case 2D transla-

tion, is required. Current video mixers and video effects pro-

cessors are capable of applying 2D transformations (e.g.,

scaling, rotation and translation), 3D transformations (e.g.,
perspective viewing and “wrapping” a video layer over a 3D

surface) and composition operations (e.g., chroma-keying,

fades, wipes, etc.) to multiple video streams in real-time. An

intriguing question is how to abstract these capabilities in

software allowing the creation of highly visual and fluid user

interfaces.

ACKNOWLEDGEMENTS
We would like to acknowledge the support of the Swiss Na-

tional Research Foundation (Fends National de la Recherche

Scientific) under project number 20-33703.92, the Austrian

National Science Foundation (Fends zur Forderung der wis-

senschaftlichen Forschung) under contract number J0770-

PHY, and Digital Equipment Corporation through EERP con-

tract number CH-023. In addition we thank the anonymous

referees for many useful suggestions.

REFERENCES
1. Adelson, B. Evocative Agents and Multi-Media Inter-

face Design. Proc.CHI’92,351-356.

2. de Mey, V. and Gibbs, S. A Multimedia Component Kit:

Experiences with Visual Composition of Applications.

Proc. ACM Multimedia Conj, 1993.

3. Don, A., Oren, T., and Laurel, B. Guides 3.0. In CHZ’91

Video Proceedings, 1991.

184 UIST’93 Atlanta, Georgia

4.

5.

6.

7.

8.

9.

10.

11.

Feiner, S. and McKeown, K. COMET: Generating Co-

ordinated Multimedia Explanations. Proc. CHI’91,

449-450.

Hoffert, E., et al. QuickTime: an extensible standard for

digital multimedia, Proceedings of the IEEE Computer

Conference (CompCon’92), February 1992.

Project 2000–A Knowledge Navigator, Apple Compute-

r, 1988 (videotape).

Krueger, M.W. Artftcial Reality II. Addison-Wesley,

Reading MA, 1991.

Le Gall, D. MPEG: A Video Compression Standard for

Multimedia Applications. Commun. of the ACM, ‘Vol.

34, No. 4 (April 1991), 46-58.

Oren, T., Salomon, G., Kreitman, K. and Don, A.

Guides: Characterizing the Interface. In B. Laurel, Ed.,

The Art of Human-Computer Interface Design. Addi-

son-Wesley, Reading MA, 1990,367-381.

Ripley, G.D. DVI – A Digital Multimedia Technology.

Commun. of the ACM, Vol. 32, No. 7 (July 1989), 811-

822.

Wallace, G.K. The JPEG Still Picture Compressicm

Standard. Commun. of the ACM, Vol. 34, No. 4 (April

1991), 30-44.

and communication paths used to implement the component

network of Figure 5. The central part of this layout is a 16x 16

video routing switch allowing video equipment to be ccmnect-

ed under computer control. The TBCS (time-base correctors)

synchronize video signals against some reference signal

(coming here from a sync generator) and are needed when

video signals are mixed. The video switch and video mixers

are configured so that the workstation display is placed at the

lowest (background) layer followed by two layers of a video

actor. The actor’s layers originate from a QuickTime server

(see Appendix B) and a videodisc player.

Appendix B: QuickTime Server
QuickTime is an extension to the Macintosh system software

providing a standard way of supporting dynamic media such

as video and audio [5]. At the highest level of abstraction, a

QuickTlme movie supports the synchronized presentation of

several audio and video tracks. A movie toolbox allows appli-

cations to create, playback and edit movies.

We have implemented a QuickTlme server and a QuickTime-

Player class which communicates, through TCP/IP, with the

server running on a Macintosh. The server uses the movie

toolbox, so movies are displayed on a Macintosh screen. A

board on the Macintosh is used to obtain a NTSC video signal

Appendix A: Hardware Platform of the screen, this video signal is then used as input to o~her

The components shown in Figure 4 and Figure 5 are abstrac- video components. The QuickTlme player componenl (QT in

tions – they encapsulate hardware and software resources. Figure 5) encapsulates the server. It is accessed through an in-

The connections between components are also abstractions stance of the QuickTimePlayer class, a subclass of the abstract

and are realized by a variety of mechanisms (e.g., physical ca- VideoPlayer class.

bles, message passing). Figure 9 shows the actual hardware

Ethernet

Figure 9: A two layer analog actor: hardware level, The three video signals F (front), M (middle), B

(back) come from the two actor layers and the application respectively.

November 3-5, 1993 UIST’93 185

