
The Architecture and Implementation
of a Distributed Hypermedia Storage System

T R93-013

Douglas E. Shackelford
J ohn B. Smith

F. Donelson Smith

The University of North Carol ina at Chapel Hill
Department of Computer Science
CB#317 5, Sitterson Hall
Chapel Hill. NC 27 599-317 5
9 19-962- 1792
jbs@cs.unc.edu

A TextLa b/Colla borator y Report

Portions of this work were supported by the National Science Foundation (Grant
IIIRI-9015443 and by IBM Corporation (SUR Agreement #866).

UNC is an Equal Opportuni ty/Affirmative Action Insti tution.

Abstract

Our project is studying the process by which groups of individuals work together to build
l3rge , complelC stru~tures of ideas and is d<Jveloping a distributed hypermedia collaboration
environment (called ADC) to suppor.t that process. This paper focuses on the architecture and
im plementation of the Distribu ted G raph Stor age (DGS) component of ABC. The OGS supportS
a graph· based data model, conservatively extended to meet hypermedia requirements. Some
important issues addressed in the system int;lude scale, performance, concurrency semantics,
access protection, location independence, and replicMion (for fauh tolerance) .

Keywords: distributed data, computer·supported cooperath·e work (CSC\V), distributed file
systems, performance, scalability, hypertext

2

1 Introduction and Motivation

Future hypermedia systems will integrate diverse information resources, systems, and technologies.
They will be based on modular architectures (e.g., (Thompson 1990)) that separate orthogonal
concerns into plug-compatible components such as change management, query and content search,
notification, application-specific concurrency control, computational semantics, and window confer
encing. Some of these compollents, such as change management, Ul"-Y be highly dependent on the
~em<mti<:s of a particular domain, whereas others will provide general support for all applications .

The key point . .. is that it is modular and open. T ltis modularity is ha.~d on the
observations that the functions the modules perform are independent of each other, that
is orthogonality implies modularity. (Thompson 1990)

Orthogonality implies modularity; modularity implies choice. The importance of this observat ion
is that every service has a price associated with 1t. For example, transactions may be the appropriate
concurrency mechanism for one application, while imposing prohibitively high overhead on another.
Ideally, one should be able to use a service when it is needed without having to pay for it when it
is not.

In th.is paper, we describe the architecture and implementation of our Disuibuted Graph Storage
(DGS} system. We have designed it in a way that supports modular expansion to add services such as
those enumerated above. A fundamental. requirement has been that the basic hypermedia. services for
data. storage and access should be inexpensive, efficient, and scalable. This is particularly important
since the performance of these basic services is an upper bound on the performance of the system
as a whole.

'!'he DGS bas been developed as a. part of a larger program of research that focuses on the process
of collaboration a.nd on technology to support that process. Vv'e are concerned with the intellectual
collaboration that is required for designing software systems or other similar tasks in which groups
of people work together to build large, complex structures of ideas. T he work of such groups- either
directly or indirectly - is concerned with prod ucing some tangible artifact. f'or software systems, the
artifact may include concept papers, a.rch.itecture, or specification documents, programs, diagrams,
reference a.nd user manuals, as well as administrative documents. A subtle but important point is
that we view a group's tangible creat ions as parts of a single artifact.

Our re.~arch in the UNC Collaboratory project studies how groups merge thcir ideas and their
efforts to build an artifact, and we are developing a computer system (called ABC for Artifact-Based
Collaboration) (Smith and Smith 1991) to support that process. ABC has six key components(Jeffay
et al. 1992): the Distributed Graph Storage system, a set of graph browsers, a set of data. application
programs, a shared window conferencing facility, rea.!- time video and auruo, and a set o[protocol
tools for studying group behaviors and strategies.

lo the foUowing sections we ruscuss the architecture and implementation of the DGS. We first
describe briefly in Section 2 the key rcquliem.ents for the rustributed implementation. Section 3
presents the underlying data model. Section 4 sketches the rustributed implementation, our efforts
to evaluate the system's performance, and the current status. Section 5 relates our design to other
work, and we conclude in Section 6.

2 Requirements for the Distributed Storage Service

In this section we give a brief summary (in no particular order) of key requ1rements that have shaped
our storage service design.

3

Permanent (persistent) storage - obvious but fundamental.

Sharing with protection - because the artifact effectively constitutes the group's collective mem
ory, it must be sharable by all. There are, howe,·er, reqwrements for mechanisms to authorize
or deny access to selected elements of the artifact by individuals or sub-groups.

Concurrent access - since collabora tors must work together, it is often necessary for more than
one user to read or modify some part of the art ifact at the same time. Data consistency
semantics in these cases should be easily understood and provide min imal barriers to users'
access to the art ifact.

Responsive performance - sufficient to support interactive browsing of the arti fact, is required.

Scalable - we are concerned about scale in two respects: the number of users in a group (and con
sequent size and complexity of the artifact), and the geographic dispersion of group members.
To be scalable, it must be possible to distribute the system over available processing and net
work resources and to add resources incrementally as necessary. Performance (responsiveness)
as perceived by users must not degrade significantly as tlte system grows in scale.

Available - if data becomes unavailable because of system faults, users may be severely impacted.
The system must, therefore, be designe<l to tolera~e most common faults and continue to
provide access to most or all elements of the artifact. Replication of data and processing
capacity is required to achieve high availability.

User and artifact mobility- users will need to change locations and system administrators will
need to move data or processing resources to balance loads and capacity. The system must
support th.is mobility in a way that is tr<tnsparent to users and application programs. There
should be no location dependencies inherent in the storage system.

Private data - these are created by individuals for their own use. Examples include personal
notes, annotations on documents, and correspondence. Users must be able to create and
protect such data and still establish relationsh.ips among them and the public artifact.

Support for applications- many applications used by a group are likely to be ex.isting tools such
as editors, drawing packages, compilers, and utilities, wh.ich use a conventional file model for
persistent storage. The system should make it possible to use such tools on node data-content
with no changes.

3 Data Model Concepts

3 .1 Attributes and Content

The most basic element of the data model is the node, whlch usually contains the expression of
a single thought or idea. Structural and semantic relationshlps between nodes are represented
explicitly as /inh between nodes.

The data model provides two mechanisms fo r storing information within a node: node attributes
and node content. Attributes are typed, named variables forst.oring fine-grained information (approx
imately 1-100 bytes). Some attributes (such as creation time and size) are maintained automatically
by the system. There may also be an unlimite<l number of application-defined attributes.

ln comparison to attributes, node content is designed to reference larger amounts of information.
Th.is content can take one of two forms:

4

1. a stream of bytes (accessed using a file metaphor)

2. a composile object (a.ccessed using a graph metaphor)

Applications control whether the content o{ a particular node is of Type 1 or of Type 2. Since
Type 1 corttent obeys the standard flle metaphor, it can be u:><!d to store the same types of in for·
mation as fi les, e.g. , text. bitmaps, line drawings, digitized audio and video, spreadsheet$, and other
binary data. Applications that can read and write conventional files can read and write Type 1
content with no changes .

Whereas Type 1 content is based on the lile metaphor, Type '2 content is based on the me.ta.phor
of graph theory. The content of a Type 2 node is a composite objecc called a subgraph. 1 A subgraph
is de.fined as a subset of the nodes and links in the artifact that is consistent with graph-theoretic
constraints. For example, all su bgraphs satisfy the condition that if a link belongs to a subgraph.
then so do the link 's source node and target node. Nodes and links may belong to multiple subgraphs
at the same time, but every node and link must belong to at least one subgraph. Our data model
also provides strongly typed subgraphs (e.g ., trees and lists) that are guaranteed to be consistent
with their type.

Links ca.n have both attributes and content associated with them. Moreover, the data model
defines two classes of li nks : structural and hyper-structural . Structural links (S-links) are >\sed
to store the essential structure of an artifact. By contrast, hyper-structural liitks (HS-links) are
lighter-weight objects that represent relationships that cut across the basic structure (see Figure 1).
Subgraphs containing only structural links are called S-subgraphs; those containing hyper-structural
links are called HS-subgraphs.

[I~]
Figure 1: Examples of Hyper-structural Linking

3.2 Using the Data Model to Organize Information

The data model encourages users to compose a large artifact from small subgra.phs using subgraph
content. This organization can improve human comprehension of the artifact and increase the poten·
tial for concurrent access to individual components. The best way to understand these mechanisms
is by exam pie.

1 Hete&fter, Type I conlenl will be referred Lo .. file ccntent and Type 2 content will be called Jubgroph content.

5

s ckelts home subgraph (SG l
cour••vork

0

~ _ .-KOts<ribuU!d Slm3ge Syst;;;, f;,\rtif:~ets in Group CoU.boratio: (SG 9)
L..:::.:J -- il'ltrG4UC't1Cn 0

Figure 2: Organizing the Public and Private Pieces of an Artifact

Figure '2 illustrates one way to organize the public and private materials associated with a large
rP_<;earch project (node content is indicated by dashed lines) . One can observe tl:tat Figure 2 subsumes
the organizat ion of data in a conventional fi le system while providing addit ional mechanisms for
storing meta--information a bout files (in attrib utes) and for representing semantic and structural
relationships between files (in links).

Subgraph SG 9 in Figure '2 is the top-level subgraph of a document. A useful exercise is to
compare this graph structu re with the way that the conference paper would be stored in a conven
tional file system. The most striking difference is the number and size of the nodes that compose
the document. Whereas a conventional document would normally be stored in a single file or a
Sulal1 number of files, the DGS data mode] encourages a user to divide documents into many smaller
nodes and subgraphs. This maximizes the benefits of hyper-structural linking because each node
expresses a single concept or idea. By dividing a document into di fferent subgraphs, collaborators
may be able to structure their materials for easier concurrent access.

3.3 Fine-Grained Linking Using Anchors

Although nodes are finer-grnined than t raditional files, there are still times when one would like to
reference information at an even finer level. For example, an application might want to create a
Unk that points to a specific word within a node, rather than to the node itself. To achieve fine
grained linking like this, the data model provides the concept of an anchor within a node. An anchor

6

identifies part of a node's content, such as a function declaration in a program module, a defirution
in a glossary, or an element of a line drawing. An anchor can be used to focus an HS-Hnk onto a
specific place within the content of a node. When an HS-link is pai red with one or more anchors in
its source or target nodes, it is called an anchored HS-Iink. The relationship between anchors and
HS-Ii nks is many-t<rmany.

3.4 Common Attributes and Graph Attributes

Some altributcs are called common attributes 'because theit values are independent of the context
from which they arc accessed. All objects- oodes, links, and subg<aphs-can have common at
tributes. In addi tion. nodes and links can ha ve context-sensitive attributes whose value may be
different depending on the context from which they are accessed. This second type of att.rib>1te is
called a graph attribute because a subgraph provides t he context.

4 Design and Implementation

4.1 System Architecture

As shown in Figure 3, the DGS has a layered architecture that can be configured in a number of
different ways. The Application Layer contains the user interface and other code that is application
specific. The top layer of the DGS is the Appfication Programming Interface (A PI) which exports
a graph-oriented data mode.! to applications. An overview oJ this data model was presented in
Section 3. Most of the DGS is implemented in the bottom two layers: the Graph-Cache Manager
(GCM) and the Storage Layer. The CCM implements the data model and performs local caching;
the Storage Layer is responsible for permanently storing results.

Ul
a-

Applicatioo Layer

ApplioWoo
Programmloa.
Ioterl-

ll) .
>- -----------
as

...J .~ntpo-'-,•~!!!
Mllll~er (GCM)

graph lf'VJ.IJipul.ali.on
caeM maJ1().gtJ'f'UN

Sloraae Layer
pU'If'otJJWII tUJrag•

distribution

I "" ... Code I
I A)'1: I
I GCM I

I s.=e~« I
DCS-Ml

API

DGS-Si

A pptie&ci.on. Code.

A)'1:

I
I GCM I

I o;,., ~"" I Stors.ae Server

DCS- M2

Appli~cn Code

A)'1:

I
GCM

Sin&Jo--U~~et,
LoulS~e

DCS-S2

Figure 3: Four Implementations of the DGS Layered Architecture

Since the API isolates the application from the rest of the DGS, application code is portable
across different implementations of the bottom two layers. We currently support two di fferent

7

implementations of the storage layer and two different methods for connecting the API with the
GCM. This yields the four implementations that are shown in Figure 3, In DGS-M2, the application
and the GCM run in different processes on the same machine; the Storage Layer is implemented as a
multi-US€r, distributed storage server. DGS-Ml is the same except that the GCM is Unked with the
application to become a single process. The advantage of this design is better local response time
due to reduced Inter-Process Comm~tnication (IPC). A disadvantage is that it increases the size of
application cx<.>cutables. DGS-Sl and DGS-S2 follow a similar pattern except that the distributed
storage server is replaced by a single-user, non-distributed storage layer.

4.2 The Object-Oriented API

The API for the DGS is a C++ class Ubrary (for a complete descri ption. see (Shackelford 1993)) .
Figure 4 shows the major classes in the inheritance hierarchy. The class Object defmes operations
that are common to all objects such as the functions for manipulating the common attributes of an
object. Subclasses inherit the API of thei r parent class and extend the inherited API with more
specialized functions.

Compon•nt

~
Unk Nodo

~
S-link HS-llnk

~
~~ph

Network TrM Ust

Figure 4: API Class Hierar<:hy

All node, link, and subgraph objects are identified by an object identifier (OID) that is un.iversal
and unique. Once an object is created by the DGS, its OlD is never changed and the value is never
reused even ifthe object is deleted. To applications, an OlD is an "opaque" (un.interpreted) key that
can be used to retrieve the corresponding object. However 1 we discourage. application programmers
from making direct reference to OIDs. Most operations call be performed without even knowing
that OIDs exist.

4.3 Concurrent Access to Objects

Since the DGS data model is object-oriented, the objects of the data model-nodes, links, and
subgraphs-exist as distinct entities within the storage system. Before a user's application can
access the data within a particular object (see Figure 5), the application must explicitly open the
object using its Open() f~tnction.

Open() will fail if the user lacks the proper access authorizations and if the request is in conJlict
with other requests in progress. Confiict can occur when different users try to access the same
object concurrently. To specify allowable conc11rrent accesses, the APT defines three access modes for
nodes, links, and Sllbgraphs: DGS..READ, DGS_WRITE, and DGS.READ..NQ_-\NCHOR. Applications
must specify one of these modes as a parameter to Open(). DGS..READ allows operations that.
do not change subgraph membership, linking information, or attribute or content values. 1n the
case of nodes, DGS..REA D also allows anchor creation and deletion, but only when the application
has read_write authorization on the HS-link that is being anchored. DGS.READ..NQ_.!,.NCROR is

8

Subgraph

sy .. eml.ayw

SytiCC:C Atll"\bvt.coo
olC•II.l~b

Node

Link

Figure 5: Information Stored in Nodes, Links, and Subgraphs

defined only for nodes and allows all operations of DGS..READ except anchor creation and deletion.
DGS-\VRITE allows all operations.

The following rules govern concurrent access to an object:

o For links and subgraphs, multiple opens with DGS..READ access and a single open with
DGS_WR.ITE access are allowed concurrently (as is the weaker case of multiple OGS...REAO
opens alone).

• For nodes , multiple opens with DGS..READ-NO..ANCHOR access and a single open with DGS_WRITE
access are allowed concurrently (as is the weaker case of multiple DGS..READ and/ or DGS..READ_NO_
ANCHOR opens alone).

Changes to an object are not visible to alty applications with overlapping opens of the object
until it is dosed by the writer and then only to applications that open it after the dose completes.

4.4 Access Control for Objects

Groups can control access to parts of the artifact by specifying access authorizations for node, link,
and subgraph objects. Authorizations are expressed in an access control list that is stored with each
object. An access control list maps names of users or grou ps of users to categories of operations that
they are allowed to perform on the associated object. Two categories of authorizations are defined:
access and administer. Acce$S authorizations give users permission to access the data associated with
a particular object. Administer authorizations give users permission to perform operations such as
changing the object's access control ust. Although the API does not define an explicit annotate
permission, a similar effect can be accomplished by restricting the access authorizations a..<;sociated
with HS-subgraphs.

9

4.5 D istributed Implementat ion

In this section we discuss the distributed implementations (DGS-M1 and DGS-M2 in Figure 3) with
emphasis on key design decisions.

Given an artifact composed from small elements and user access via interacti ve browsers, we
believe many characteristics and access pattern.s of objects will strongly resemble those observed in
distributed file systems supporting software teams using workstations (Baker et al. 1991), (Kistler
and Satyana.ra.yanan 1991). Our design is based on the notion that a scalable implementation can be
achleved by applying d~-~ign principles sucl1 as local caching, bulk-data transfer, and mi nimal client
server interactions pion~red in high-performance, scalable fi le systems like AFS (Howard et al.
1988), Sprite (Nelson ct al. 1988), and Coda (Kistler and Satyanarayanan 1991). We also model our
approaches to dat<t consistency, concurrency semantics, and replication after these dist ributed file
systems. This provides a sufficient level of function to users without requiring the fuU complexity
of mechanisms (e.g. distributed transactions) u.sed in database· sys tems.

The basic structure of the system is shown in Figure 6. A browser or application process acts
on behalf of a user to read and modi fy objects. Each user's workstation runs a single Graph-Cache
Manager (GCM} proce.o;.~ t hat services all applications running on that machine. Application requests
are directed over local interprocess communication facilities to the GCM. The GCM maintains a
local copy of node, link, and subgraph objects used by application processes and is responsible for
implementing all op~rations on objects in the data model except for anchor table merging. The
GCM is also resp onsible for maintaining the consistency of typed S-subgraphs. It is important
to note that th is design distributes the p rocessing for aU complex object operations to the users'
workstations and thus minimizes the processing demands on shared (server) resources.

User's Worllsta~on Users Worllstation

~ ---- e;Jm -.. _ ,
:.:."···-. ··-

. - .~:---\\~- ~--

-~~r ·~·
GC1A I~: ~I

~
-------------~-----------Server Worl<station ~ Serv9f Worllstation

)

Storage Server I T Storage Server I
I I I
I I I,

o o~ - - -Object-- - · ro- c:::J ~CI
c::::::J<-

___ Files----
~--c=J CJ CJ

Figure 6: DGS System Structure

r-Object
Interface

Auth.,.lcallon
and Pn:uctlon
S•rvke

..f. lie
n.terface I

When an application opens an object , the GCM, in turn, opens the object at the storage server

10

and retrieves it using a whole-file transfer. The received object is converted from its representation
in a file to an object representation designed for fast access in memory. As the apptication makes
requests, the GCM performs those operations on the copy in its local cache. Wri te operations are
reflected in the storage server only wheJI tile GCM closes the object and returns the modified file
representation to the storage server. Each file retrieved from the storage :;ervcr contains either
a whole node (including data cont-ent, if present), a whole subgrapb, or a group of tinks. An
importan t performance optimization is that context-dependem attributes (graph attribu tes) and
li nk information for all nodes in a subgraph are stored in one subgrapb file. Thus, all of the data
needed by a browser to display a subgraph is available from a single request (open) l.o the storage
server. The s tructure of each type of file is shown in Figure 7. Nodes and subgraphs are stored
individually, whereas links are group~>d according to the subgraph in which they were created.

link file I ·m'J!tiP'f i nks tom
!inlHeoords' ..amo wgraph in fi_~

jij$**1ffl • represenlaticn process&tl by stottaga GeNet

Figure 7: S~ructu re of Object Files

The file-oriented interface to the storage server is designed to isolate it as much. as possible
from the representation and semantics of objects. The primary responsibili ty of the storage server,
therefore, is to store and control acc~.ss to files indexed by an object's Om. Storage servers are
also responsible for maintaining access control lists, enforcing access authorizations, enforcing con·
currency semantics, creating unique OfDs and anchor IDs, and merging anchor table information
created by concurrent readers of the same node. The storage server must perform several checks
before completing a.n open request. First, it must determine whether the user who is running the ap
plication has the correct authorizations to open the object in the requested access mode. Then, the
storage server must determine whether the requested access mode is in conflict with any overlapping
opens for the same object. An open request wi'll fail if the user lacks proper access authorization or
if the open conflicts with other opens in progress.

Each GCM may need to communicate with multiple storage servers, including servers that
provide protection services and mappings from an OID to the host system that is the custodian for
that object. Object location is based on dividing the ar tifact store into non-overlapping collections of
nodes, links, a.nd subgraphs called partitions. Each part it ion is associated with real storage devices.
Partitions form boundaries for administrative controls such a.s space quotas, load balancing among
servers, and replication of data. The partition number of an object is embedded in its OID but thls
substructure is t~ever made visible outside the storage service. An object must (logically) remain in
the same partition for its entire lifetime because its oro cannot be changed.

We distinguish the partition number of an object from its absolute pbysical location(s) and, by
introducing a level of indirection (a partition directory), it is possible to change tb.e physical location
of a.n object while preserving its om a.nd, therefore, all its link and composition relationshlps with.
other objects (see Figure 8). Partition-location servers maintain a mapping of logical partitions to
host(s) runll.ing server processes for that partition. The GCM extracts tb.e part ition number from
the OlD of the object and uses the partition location service to find the host running a storage
server process maintaining a directory for that partition (the GCM can also cache the partition

11

location information for use in references to other objects). We expect that in most cases one
storage server maintains both the partition dir&tory and data. storage for an object. Despite their
importance, partitions are invisible to users. Only system administrators and system programmers
need to understand part itions. An RPC interface to the storage servers is provided for administrative
processes to use in creating new partitions, moving objects hom one physical partition to another ,
and performing ba.ckup and recovery operations.

Panhloo
Local ion
S..Vico

Object ldentlfler

I Resen'O<I I Typ•l LQ9i<al Panhion I :;:t'~':,;:,%V,mbo< I
2H>i1s 8 bb 32 b<ls 32 bils

I
Ste<~

I S.>VOt

HOSl(s)

SOM>< Oiroe1e><y
StOtage
Servec Panilion Oitectocy

o _u
c::::::J

I

0 '_L!

Figure 8: OID and Object L-ocation

Storage servers are responsible for managin.g par titions on disk , replicating partitions for avail
ability and fault tolerance in case of media or process failures, and for recovering from most failures.
The key to our implementation of fault tolerance is the ISIS system developed by Ken Birman and
his colleagues at CorneU University (Joseph and Birman 1985) . In particular, we use ISIS process
groups tO maintain replicated copies of physical partitions and to provide the location independence
of logical partitions. Ea.ch logical partition corresponds to an ISIS process group.

Performance and scalability are two key requirements for the system (see Section 2) . To evaluate
the current implementation with respect to t hese requirements, we have begun a series of benchmark
experiments similar to those used to evaluate performance and scalability of distributed file systems
such as AFS (Howard et a!. 1988) and Sprite (Nelson et a!. l988). We have created several
benchmark programs designed to stress different aspects of the system. The most interesting of
these is a ~synthetic browser" program that mimics lhe requests that result when users search
for information in an artifact stored in the. system. Load on the storage service is generatt.'<i by
running copies of the synthetic browser on several workstations. This program has parameters
that can be used to produce a wide range of browsing behaviors. In our Jirst experiments we
are using parameter values that represent the observed behavior of human subjects in a series of
experiments we conducted to understand how people would use a hypertext system for problem
solving (Smith 1992). With these values, ea.ch :instance of the program running on one workstation
generates a load on the server couesponding to approximately 10 users working with interactive
browsing applications. We have also written an uartifa.ct generator" program that, b~ on a

12

number of input parameters, creates a structure of subgraphs, nodes, and links to serve as data for
the browsing benchmark.

The results of our initial measurements have been very encouraging. The configuration for
•hese measurements consisted of one storage server running on a DEC~tation 5000/25<: and up to
7 workstations (DECstation 5000/120s) each running a copy of the synthetic browser program. All
workstations were connected by a single ethernet segment. The most significant results are:

• CPU utilization on the setver is at most ().5· 1.0% per active user.

• Server response times to requests from 50 users increased by less than 20% over response times
to requests from lO users.

The results show that one server can support at least 50 users. More extensive benchmark
experiments are underway to validate this conclusion for a variety of configurations.

We are cunently using the OGS for developing browsers and other collaboration support took
We continue to make en.hancements (mostly fo:r operations and administration) and plan to have a
version suitable for distribution to other groups by Fall 1993.

5 Comparison with Related Work

In this section, we compare our design with several hypertext systems that have signiftcant capabil·
ity for supporting collaborating groups, i.e., lntermed.ia(Haan eta!. 1992; Yankelovich eta!. 1988),
HyperBase/CHS(Schiitt and Streitz 1990; Schi.i tt and Haake 1993), Augment(Engelbart 1984) , Tele
sophy(Caplinger 1987; Schatz 1987), KMS(Ak:;cyn et a.l. 1988), and H.o\M(Campbell and Goodman
1988; Delisle and Schwartz 1987) . These systems differ widely on factors such as the data model
suppor ted, scalability, concurrent reader/writer semantics, and protection.

DGS, HyperBase/CHS, and Dexter(Halasz. and Schwartz 1990) support rich data models that
include aggregates (named groups of objects), aggregates of aggregates, and aggregates as endpoints
of links. Intermed.ia, HAM, and Augment do not use aggregates in composition or linking. TeiP.s
ophy 's data model has aggregates but does not give first-class status to links. HBl(Schnase et al.
1991) and Trellis(Stotts and Flu uta 1989) prov ide strong support for computation with.io b.ypertext
but do not have aggregates. The DGS data model benefits from the graph-theoretical metaphor on
wb..ich it is based and is the only system to provide strongly-typed aggregate objects.

Other areas in which these syste.ms differ substantially are in the semantics of concurrent reading
and writing and in the access protection mechanisms (see Table l). These systems also diffe.r in
their capability to scale up to large numbers of users (and objects) while preserving the illusion of
location transparency. Both Telesophy and the DGS have made sca.labi[j ty a central issue in their
designs . However, the DGS provides more flexibility in its data model and stronger consistency
semantics.

6 Summary and Conclusions

Collaborative groups face many problems, but one of the hardest and most important is to meld their
thinking into a conceptual structure that has integrity as a whole and that is coherent, consistent.
and correct. Seeing that construct as a single, integrated artifact can help. But groups must also
be able to view specific. parts of the artifact in order to understand and manage it. Our design
was guided by these requirements, along with others d iscussed above. The graph-based data model

13

Hypermedia.
Sntem
Augment

UAM

Hyper Base/
CHS

I ntcrmcdia.

KMS

Telesopny

DGS

Concurrent Rea.derj \.Vrit..cr Semantics

Ca.n have multiplt! readers of documents ~ha.t
ba.ve been submitted t.o lhe Journal system

could oot be determined

A<::\jvity markers are pro.,·ided to warn applica
tions of <::oncurre nt. activity, but these markers
are adv~ry in nature. All applications are no
tified when daLa. is cb.anged, so that they con
upda<e their view (if desired) .
Supporu multiple users reading and annotating,
and a single writer. Firal user to write a._n obje<::t
locks out ot.ber pote:nHal wt ite!'S
Uses a.n optimi.'>tic e:oncunency method. \Vhen
a writ-er au.empla to save a. node, he/she may
b~ denied beca.use someone elc;e ba.s conc\l rrently
writt-en to t.he Saine node. In this case, t he hu
ma.n user must manually rn~rge the two conftict.
ing versions
Suppons multiple concurrent rea.d.ers a.:od writ
era. \Vben writes overlap, the last writer com
pletely overwrites the work of others

Supporu multiple non-a.nnota.ting readers a.nd
a. single writer OR multiple annotating read ...
eu. Applications must- declare their intent at.
the time that they o-pen an object. Intent can be
one of: rea.d and annotate; re&d· on]y; read/write
and annotate .

ProtectlOD of Objects

Ohj~ts in the Journal are read-only. AcccM
to Journal cntrit.'S Ca.tl be rettrlct.cd a.t su.b
mission time.
Access Cont<ol Lists (optional): a<:c an·
notate, update. and destroy p-ermissions.
Access control will be based o-n user role.;.;
such as .:.:manager" and ~.~secretary"' (not yet
implemented).

Provide.s read, write. and a.nnotate perm_is...
sions that can be g ranted Lo users and g'rOUp$

of users.
O wner c a.n protect a frame from modification
or read a..cccs.9. In addlt.ion, an intNruediate
form allows users to add a.noota.tion items,
but not to modify existing items.

could not be determined

Acct:ss Conuol lists: access (rea.d. or
read/write) a.nd a.dminister permissions.
Rather than a.ssocia.le a single annotate pe r
mi.ssion with a. node, the DGS provid~ a
more fle-x.ible mechanism of associating ann~
t ate permission with the RS-.su bgraphs t hat
contain t.he node. Thus. a. user might be aJ ..
lowed to annotate a. node withln hl.s pers.onaJ
context at the sa.me time that he i.3 denied
the ability to a..nnota.te the -node in &- public
context.

Table 1: Concurrent Rea.der/Wr.iter Semantics and Object Protection

permits us to both part ition the artifact and to compose those pieces to build larger components
and the whole. The distributed architecture, i:n turn, permits us to build a system that can scale
up in terms of the size of the artifact, the number of users, and thei r geographic distances from
one-another.

We observe that most of the academic research in hypermedia is not based on the sort of modular
a rchit-ecture that was described at the beginning of this paper. Although many communities view
hypermedia as an "interesting" application, we take the perspective (also expressed in (Scbnase
et al. 1991)) that hypermedia has a broa.der ro]e to play. In our opinion, hypermedia is not just an
application, but is a new para.digm for the way we work and collaborate with each other. As such, it
will be an essential component of the next generation of operating system support. Our experiences
with DGS strongly indicate that it is possible to achieve the richer functions needed for hypermedia
storage with cost, performance, and scalability comparable to the best conventional distributed file
systems (e.g., AFS).

As we look to the future, a.dd.it ional issues we will explore pertain to wide-area network access,
dynamic change notification, graph traversal, and support of a richer set of graph and set operations

14

and queries. Many of these extensions lend themselves to the sort of modular approach that is
suggested in the Strawman Reference Model(Thompson 1990).

7 Acknowledgments

A number of individuals and organizations have contributed to this project. Gordon Ferguson and
Barry Ellege contributed to a Smalltalk prototype that preceded the DGS. Rajaraman Krishnan ..
Shankar Krishnan, X.iaofan Lu, .\.1ike Wagner , and Zhenxin Wang have contributed to the imple
mentation of the OGS. Tltis work was suppolted by the National Science ~oundation (Grant #
IRI·9015443) and by the IBM Corporation.

References

Akscyn, R.. M., D. L. McCracken, and E. A. Yoder (1988, July) . KMS: A distributed hypermedia
system for managing knowledge in organizations. Communications of the ACM 31(7) , 820-
835.

Baker, M.G., J. H. Hartman, M. D. Kupfer, K. W. Shirriff, and J. K. Ousterhout (1991, Oc·
tober) . Measurements of a distributed file system. Operating Systems Review, Special Issue:
Proceedings of the 13th ACM Symposium on Operating Systems Principles (Pacific Grove,
CA) 25(5), 198-212.

Campbell, 8. and J. M. Goodman (1988). HAM: A general purpose hypertext abstract machine.
Communications of the ACM 31 (7), 856-861.

Caplinger, M. (1987, October). An information system based on distributed objects. In OOPSLA
'87 Proceedings, pp. 126-137.

Delisle, N. M. and M. D. Schwartz (1987). Contexts- a partitioning concept for hypertext. A CM
1hmsactions on Office Information Systems 5(2), 168- 186.

Engelhart, D. C. (1984, February). Authorship provisions in augment. In Proceedings of the 1984
COMPCON Conference, San Franscisco, CA, pp. 465-472.

liaan, B. J ., P. Kahn, V. A. Riley, J. H. Coombs, and N. K. Meyrowitz (1992, January) . IRIS
hypermedia services. Communications of the ACM 35(1), 36- 51.

Halasz, F. and M. Schwartz (1990). The Dexter hyper text reference model. In Proceedings of the
NJST 8yperte;:t Standardization Workshop (Gaithersburg, Maryland), pp. 1-39.

Howard, J. H., M. L. Kazar, S. G. Menees, D. A. Nichols, M. Satyanarayanan, R.N. Sidebotham,
and M. J. West (1988, February). Scale and performance in a distributed file system. ACM
Transactions on Computer Systems 6(1}, 51-81.

Jeffay, K., J. K. Lin, J. Menges, F. D. Smith, and J. B. Smith (1992). Architecture of the
artifact-based collaboration system matrix. In Proceedings of ACM CSCW'92 Conference on
Computer-Supported Cooperative Work, CSCW Architectures, pp. 195-202.

Joseph, T. A. and K. P. Birman (1986, February) . Low cost management of replicated data in
fault· tolerant distributed systems. ACM Transactions on Computer Systems 4 (1), 54- 70.

Kistler, J. J . ·and M. Satyanarayanan (1991, October). Disconnected operationJn the Coda fU.e
system. Operating Systems Review, Special Issue: Proceedings of the 13th .4 CM Symposium
on Operating Systems Principles (Pacific Grove, CA) 25 (5), 213-225.

15

Nelson. M. N., B. B. Welch, and J. K. Ousterhout (1988, February). Cac.hingin the Sprite network
file system. ACM Transactions on Computer Systems 6(1), 134-154.

Schatz, B. R. (1987). Telesopby: A system for manipulating the knowledge of a community. In
Proceedings of Clobecom '81, ~ew York. pp. 1181-1186. ACM.

Sc:hnase, J. L., J . J. Leggett , and D. L. Hicks (1991, October). HB1: lnitia.J design and implemen
tation of a hy perbase management system. Technical Report TAMU-HRL 91-003, Hypertext
Research Lab, Texas A&M University.

Schutt, H. and J. M. Haake (1993, March) . Server su pport for cooperative hypermedia systems.
In Hypermedia '93, Zurich.

Schiitt, H. A. and N. A. Streitz (1990). Hyperbase: A hypermedia engine based on a relational
database management system. In Proceedings of the ECHT'90 European Conference on Hy
pertext, Databases. Indices and :-;ormative Knowledge, pp. 95-108.

Shackelford, D. E. (1993. January). The Distributed Graph Storage System: A users manual for
application programmers. Technical Report TR93-003, Department of Computer Science, The
University of Xorth Carolina at Chapel Hill.

Smith. D. K. (1992). Hypermedia vs. paper: User strategies in browsing SNA materials. Technical
Report TR92-036, Department of Computer Science, The University of North Carolina at
Chapel Hill.

Smith , J. B. and F. D. Smith (1991). ABC: A hy permedia system for a rtifact-based collaboration.
[n Proceedings of ACM Hypertext '91, Construction and Authoring, pp. 179-192.

Stotts, P. D. and R. Furuta (1989). Petri-net-based hypertext: Document structure with browsing
semantics. ACM Transactions on Information Systems 7(1), 3-29.

Thompson, C. W. {1990. January). Strawman reference model for hypermedia systems. In Proceed
ing! of the NIST Hypertext Standardization Workshop (Gaithersburg, Maryland), pp. 189-196.

Yankelovicb, :-1. eta!. { 1988, January). Intermedia: The concept and the construction of a seamless
information environment. IEEE Computer 21 (1), 81-96.

16

