José A Blakeley, Per-Ake Larson, Frank Wm Tompa

Data Structuring Group,

Department of Computer Science,

University of Waterloo,
Waterloo, Ontario, N2L 3G1

Abstract

Query processing can be sped up by keeping fre-
quently accessed users’ views materialized How-
ever, the need to access base relations in response to
queries can be avoided only if the materialized view
18 adequately maintained We propose a method
which all database updates to base relations are first
filtered to remove from consideration those that can-
not possibly affect the view The conditions given
for the detection of updates of this type, called sr-
relevant updates, are necessary and sufficient and are
mdependent of the database state For the remain-
ing database updates, a differential algorithm can be
applied to re-evaluate the view expression The algo-
nthm proposed exploits the knowledge provided by
both the view definition expression and the database
update operations

1 Introduction

In a relational database system, a database may be
composed of both base and derived relations A de-

*This work was supported 1n part by scholarship No 35957
from Consejo Nacional de Ciencia y Tecnologia (México),
and by grants A2460 and A9292 from the Natural Sciences
and Engineering Research Council of Canada

Permission to copy without fee all or part of this matenial 1s granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and 1ts date appear, and notice 1s given that copying 1s by
permission of the Association for Computing Machinery To copy
otherwise, or to republish, requires a fee and/or specific permission

© 1986 ACM 0-89791-191-1/86/0500/0061 $00 75

61

rived relation-or view-1s defined by a relational ex-
pression (1e, a query evaluated over the base re-
lations) A derived relation may be wirtual, which
corresponds to the traditional concept of a view, or
materialized, which means that the resulting relation
1s actually stored As the database changes because
of updates applied to the base relations, the mate-
rialized views may also require change A maten-
alized view can always be brought up to date by
re-evaluating the relational expression that defines
it However, complete re-evaluation 1s often waste-
ful, and the cost involved may be unacceptable

The need for a mechanism to update matenialized
views efficiently has been expressed by several au-
thors Gardarm et al [GSV84] consider concrete
views (1 e, materialized views) as a candidate ap-
proach for the support of real time queries How-
ever, they discard this approach because of the lack
of an efficient algorithm to keep the concrete views up
to date with the base relations Horwitz and Teit-
elbaum [HT85| propose a model for the generation
of language-based environments which uses a rela-
tional database along with attribute grammars, and
they suggest algorithms for mcrementally updating
views, motivated by the efficiency requirements of
mteractive editing Buneman and Clemons [BC79)
propose views for the support of alerters, which mon-
itor a database and report to some user or applhca-
tion whether a state of the database, described by
the view definition, has been reached

It must be stressed that the problem analyzed mn
this paper 18 different from the traditional view up-
date problem In the traditional view update prob-
lem, a user 1s allowed to pose updates directly to
a view, and the difficulty 1s i determiming how to

translate updates expressed against a view nto up-
dates to the base relations In the model proposed m
this paper, the user can only update base relations,
direct updates to views are not considered There-
fore, rather than analyzing the traditional problem
of deriving appropnate update translations, this pa-
per 18 concerned with finding efficient ways of keeping
materialized views up to date with the base relations

The purpose of this paper 18 to present a frame-
work for the efficient update of materialized views
when base relations are subject to updates Sec-
tion 2 presents some previous related work, Section 3
presents the notation and terminology used through-
out the paper, Section 4 describes how to detect up-
dates that have no effect on a view, Section 5 de-
scribes a method for differentially updating mater-
alized views; finally, Section 6 contains some conclu-
sions and suggestions for further research

2 Previous work

Work directly related to the maintenance of ma-
terialized views has been reported by Koemig and
Paige [KP81] and by Shmueh and Ita:1 [SI84] Koenig
and Paige [KP81] mnvestigate the support of denved
data 1n the context of a functional binary-association
data model. This data model puts together 1deas
borrowed from binary-association models, functional
models, and the entity-relationship model, within a
programming language suitable for data definition
and manipulation In theirr model, views can be ex-
plicitly stored and then maintamned For each possi-
ble change to the operands of the view, there exists
a procedure associated with this change that incre-
mentally updates the view This procedure 1s called
the dersvatsve of the view defimition with respect to
the change Their approach rehes on the availlability
of such derivatives for various view defimition/change
statement combinations

Shmuel and Itai’s approach consists of continu-
ously mamtaining an acychc database, together with
mformation that may be useful for future insertions
and deletions Their definition of views 1s lhimited to
the projection of a set of attributes over the natural
Jon of all the relations in the database scheme This
18 a restricted class of views, since views based on the
join of some, but not all, of the relations in the data-

62

base scheme cannot be handled by this mechamsm
Another restriction on the views 18 the omission of
selection conditions

In related work, Hammer and Sarin [HS78| present
a method for efficiently detecting violations of in-
tegrity constraints, called integrity assertions, as a
result of database updates For each integrity as-
sertion, there exists an error-predicate which corre-
sponds to the logical complement of the assertion If
the error-predicate 1s true for some instance of the
database, then the instance violates the assertion
Therr approach to the problem of efficiently check-
ing database assertions 1s based on analyzing the po-
tential effects that an update operation may have
on the assertions This analysis 1s performed by a
compile-time assertson processor The result 18 a set
of candidate tests that will be executed at run-time
to determine if the update causes the assertion to be
violated The selection of the least expensive test
from the set of candidate tests requires a procedure
similar to the one required 1n query optimization

Buneman and Clemons [BC79] propose a pro-
cedure for the efficient implementation of alerters
In general, the condition that triggers an alerter
18 expressed in terms of a query—called the target
relatson—over several base relations; in our terminol-
ogy, a target relation corresponds to a virtual view
One aspect that is emphasized 1n their work is the
efficient detection of base relation updates that are
of no nterest to an alerter, thus determming when
re-evaluation of the associated query 1s unnecessary

3 Notation and terminology

We assume that the reader 18 famihar with the basic
1deas and notation concerning relational databases,
as described 1 [M83]. A wview definstion V corre-
sponds to a relational algebra expression on the da-
tabase scheme A view materialszation v 18 a stored
relation resulting from the evaluation of this rela-
tional algebra expression against an instance of the
database In this paper, we consider only relational
algebra expressions formed from the combimation of
selections, projections, and joins, called SPJ ezpres-
stons

A transaction is an ndivssible sequence of update
operations to base relations Indivisible means that

either all the update operations are successfully per-
formed or none are performed Furthermore, updates
within a transaction may update several base rela-
tions

Considering that base relations are updated be-
fore the views, it is reasonable to assume that the
complete affected tuples from the base relations are
available at the time the view 18 to be updated. The
net effect of a transaction on a base relation can be
represented by a set of tuples that hiave been inserted
and a set of tuples that have been deleted Formally,
given a base relation r and a transaction T, there ex-
18t sets of tuples 1, and d, such that r, 1,, and d, are
disjoint and T (r) = r U, — d, Therefore, without
any loss of generality we will represent a transaction
applied to a base relation T (R) by insert(R,s,) and
delete(R,d,), where R 1s the name of the base rela-
tion with imnstance r such that r, 1., dr are mutually
disjoint

It 1s assumed that all attributes are defined on dis-
crete and finite domams Since such a domain can
be mapped to a subset of natural numbers, we use
mteger values 1 all examples

4 Relevant and irrelevant up-
dates

In certain cases, a set of updates to a base relation
has no effect on the state of a view When this occurs
mmdependently of the database state, we call the set of
updates srrelevant It 1s important to provide an ef-
ficient mechanism for detecting irrelevant updates so
that re-evaluation of the relational expression defin-
g a view can be avoided or the number of tuples
considered can be reduced
Consider a view defined by the expression

v= Wx(dc(y) (f‘]_ Xrz X X rp))

where C(Y) is a Boolean expression and X and Y
are sets of variables denoting the names of (some) at-
tributes for the relations named R;, Rz, . , Rp. The
sets X and Y are not necessarily equal (1, not all
the attributes in the projection participate in the se-
lection condition and wice versa), and 1n fact may be
disjoint

Suppose that a tuple t = (a1,a2, .,a,) 13 mserted
mto (or deleted from) relation rj defined on scheme

63

Ry LetYi=RynNnY,and Y2 =Y —-Y;,s0that Y =
Y1UY2 Let the selection condition C(Y) be modified
by replacing the vanables Y; by their corresponding
values ¢(Y;) If the modified condition C(Y) can be
shown to be unsatisfiable regardless of the database
state, then inserting or deleting ¢ from r; has no
effect on the view v

Example 4.1 Consider two relations r and s de-
fined on R = {A, B} and S = {C, D}, respectively,
and a view v defined as

v= WA,D(U(A<10)A(G>5)A(B=C) (rx s))

That 18, C(4, B,C) = (A < 10) A(C > 5) A(B = C)

r A B s C D v A D
1 2 2 10 5 20
5 10 10 20
12 15

Suppose that the tuple (9, 10) 18 inserted mto relation
r We can substitute the values (9, 10) for the van-
ables A and B 1 C(4, B,C) to obtain the modified
condition €(9,10,C) = (9 < 10)A(C > 5)A(10 = C)
The selection condition C(9, 10, C) 1s satisfiable, that
18, there exist mstances of the relations named R and
S containing the tuples (9, 10) and (10, §), for some
value of § such that C(9,10,6) = True Therefore,
mserting the tuple (9,10) imnto relation r 18 relevant
to the view v Notice that there may be some state
of s that contains no matching tuple (10, §), 1n which
case the tuple (9,10) wall have no effect on the view
However, the only way of verifying this 1s by checking
the contents of the database

On the other hand, suppose that the tuple (11,10)
1s inserted 1nto relation r After substituting the val-
ues (11,10) for the variables A and B 1n C(4, B, C)
we obtan

C(11,10,C) = (11 < 10) A (C > 5) A (10 = C)

We can see that C 1s now unsatisfiable regardless of
the database state Therefore, inserting the tuple
(11, 10) mto relation r 18 (provably) wrrelevant to the
View v O

The same argument apphes for deletions That
18, if substituting the values of the deleted tuple
the selection condition makes the selection condition

unsatisfiable regardless of the database state, then
the deleted tuple 1s irrelevant to the view In other
words, the deleted tuple 18 not visible 1n the view
Similarly, if substituting the values of the deleted
tuple in the selection condition makes the selection
condition satisfiable, then the deleted tuple may need
to be removed from the view

Definition 4.1 Consider a view

X rp))’

and a tuple ¢t = (a1,a2, ,aq) € r, defined on R,
forsome 1,1 <1 <p LetY; =YNR and Yo =
Y — Y, Denote by C(t,Y2) the modified selection
condition C(Y') obtained when substituting the value
t(A) for each occurrence of the variable A € Y; i
C(Y) C(t,Y2) 1s said to be a subststutrion of t for Y3
m C

vV=T7x (Uc(y)(fl X rqg X

Theorem 4.1 Consider a view

X rP)))

and a tuple ¢ inserted nto (or deleted from) r, defined
on R, for some 1,1 <1 < p LetY, = YNR,
and Y = Y — Y; The update imnvolving tuple ¢ 1s
srrelevant to the view v (for every database mstance
D) if and only if C(t,Y2) 18 unsatisfiable

v= ﬂ'x(O'C(y)(T]_ X rg X

Proof: (if) If the substitution of C(t, Y2) 18 unsats-
fiable, then no matter what the current state of the
database 18, C(t, Y2) evaluates to false and therefore
does not affect the view That 1s, if ¢ were mserted
1t could not cause any new tuples to become visible
n the view, and if ¢t were deleted 1t could not cause
any tuples to be deleted from the view. Hence, the
tuple ¢ 18 irrelevant to the view v

(only if) Assume that the tuple ¢ 18 1rrelevant to
the view and that C(¢t,Y2) 1s satisfiable C(t,Y2) be-
g satisfiable means that there exists a database n-
stance Dy for which a substitution of values u for Y3
i C(t,Y2) makes the selection condition true To
construct such a database instance we need to find
at least p— 1 tuples ¢, € r,,1 < 3 < pand) #1
(since t € r,), m such a way that

x{t} x x{t,})) #0.

1) For all attributes A such that A€ R, and A €Yy,
replace ¢,(4),1 < 7 < p,7 #1 by t(4)

wx (oc(r)({t1} x {ta} x

64

n) For all attnbutes B ¢ Y, replace ¢,(B),1 <3 <
p,7 #+ by any value, say one

m) For all attributes C € Y2, replace ¢,(C),1 <7 <
p,3 # % by any value in the domain of C that
makes C(t, Y2) true. Such values are guaranteed
to exist because C(t,Y>) 18 satisfiable.

The database instance Jp consists of p relations
r1 ={t1},r2 = {t2},

Clearly, the view state that corresponds to D) has
no tuples Creating 0, from D, by inserting ¢ mto
r, produces a view state with one tuple Thus the
msertion of ¢ 18 relevant to the view v Similarly,
deleting ¢ from D, shows that the deletion of ¢ is also
relevant to the view v This proves that the condition
18 necessary O

Deciding the satisfiability of Boolean expressions
15 1n general NP-complete However, there is a large
class of Boolean expressions for which satisfiability
can be decided efficiently, as shown by Rosenkrants
and Hunt [RH80] This class corresponds to expres-
stons formed from the conjunction of atomic formulae
of the form z op y, z op ¢, and z op y + ¢, where z
and y are variables defined on discrete and infinite
domains, ¢ 158 a positive or negative constant, and
op € {=,<,>,<,2} The improved efficiency arises
from not allowing the operator # 1n op

Deciding whether a conjunctive expression in the
class described above 1s satisfiable can be done n
time O(n®) where n 1s the number of variables con-
tamed 1n the expression The sketch of the algorithm
18 as follows (1) the conjunctive expression is nor-
mahzed, that 1s, 1t 18 transformed into an equivalent
one where only the operators < or > are used in
the atomic formulae; (2) a directed weighted graph
18 constructed to represent the normalized expres-
sion, and (3) if the directed graph contans a cycle
for which the sum of its weights 18 negative then the
expression 1s unsatisfiable, otherwise 1t 18 satisfiable
To find whether a directed weighted graph contains
a negative cycle one can use Floyd’s algonthm [F62],
which finds all the shortest paths between any two
nodes 1n a directed weighted graph

We can also decide efficiently the satisfiabiity of
Boolean expressions of the form

C=Ci1vCaV

=0, . ,rp={tp}

VCm

where, C,, + =1, ,m, 18 a conjunctive expression
in the class described above The expression (1s sat-
1sfiable if and only if at least one of the conjunctive
expressions C, is satisfiable Similarly, C 1s unsatisfi-
able if and only if each of the conjunctive expressions
C. 18 unsatisfiable We can apply Rosenkrantz and
Hunt’s algorithm to each of the conjunctive expres-
sions C,, this takes time O(mn®) in the worst case,
where n 18 the number of different variables men-
tioned mn C

4.1 Detection of relevant updates

This section presents an algorithm to detect those
relation updates that are relevant to a view Before
describing the algorithm we need another definition

Definition 4.2 Consider a conjunctive expression
C(Y), and a tuple t = (a1,a2, ,a,) € r defined
on R. Let a(C) denote the set of variables that par-
ticipate in C, Y = a(C), V1 =Y NR, Y, =Y - V),
and C(t,Y2) be the substitution of ¢t for Y; in ¢ We
distinguish between two types of atomic formulae 1n
C(t,Yz) called varsant and snvarsant formulae respec-
tively

(1) Variant formulae are those directly affected by
the substitution of t(A) for A € Yy m ¢ This
type of formula may have the form (z op ¢),
or {(c op d), where z 18 a vaniable and c,d are
constants Furthermore, formulae of the form
(z op c) are called varsant non-evaluable formu-
lae, and formulae of the form (c op d) are called
variant evaluable formulae Vanant evaluable
formulae are either true or false

(2) Invanant formulae are those that remain mnvari-
ant with respect to the substitution of ¢ for Y;
m C This type of formula may have the form
(z op ¢), or (z op y+¢), where z, y are variables,
and ¢ 18 a constant That 1s, the attributes X
Y represented by the variables z, y are not 1n

"

Notice that the classification of atomic formulae in
C depends on the relation scheme of the set of tuples
t substituting for attributes Y; n C

Algorithm 4.1

The input to the algorithm consists of

65

1} a conjunctive Boolean expression

C=hHAfan Afy,

where each f,,1 <1 < n, 1s an atomic formula of
the form (z op y), (z op y+c), or (z op c), where
z, y are variables (representing attributes) and
¢ 18 a constant,

n) a relation scheme R of the updated relation, and

m) aset of tuples T,,, = {t1,¢2, ,t,} onscheme R
T, contains those tuples inserted to or deleted
from the relation r

The output from the algorithm consists of a set of
tuples Tou: C Ti,, which are relevant to the view

1 The conjunctive expression C 1s normahzed

2 The normahzed conjunctive expression Cy 18 ex-
pressed as Crnv ACveEvaL ACvneEvar Cinv
18 a conjunctive subexpression containing only
mvanant formulae Cygy 4z 18 a conjunctive
subexpression containing only variant evaluable
formulae CynEv AL 18 a conjunctive subexpres-
sion containing only variant non-evaluable for-

mulae

3 Uswmg Cryv, build the invariant portion of the
directed weighted graph

4 For each tuple t € T,,,, substitute the values of
t for the appropriate variables in Cygv 4z and
Cvnevar Buwld the variant portion of the
graph and check whether the substituted con-
junctive expression represented by the graph 1s
satisfiable If the expression 1s satisfiable, then
add t to T,,;, otherwise 1gnore 1t O

An 1mmportant component of the algorithm 1s the
construction of a directed weighted graph G = (n, ¢),
where n = a(C) U {0} 1s the set of nodes, and e
18 the set of directed weighted edges representing
atomic formulae in C Each member of ¢ 1s a triple
(no, 4, w), where n,, ng € n are the orsgin and des-
tinatson nodes respectively, and w 18 the wesght of
the edge The atomic formula (z < y + c) translates
to the edge (z,y,¢) The atomic formula (z > y+¢)
translates to the edge (y,z, —c) The atomic formula

(z < ¢) translates to the edge (‘0’,z,c) The atomic
formula (z > c) translates to the edge (z,°0’,—c)

The normahzation procedure mentioned in the al-
gonthm takes a conjunctive expression and trans-
forms 1t into an equivalent one where each atomic
formula has as comparison operator either < or >
Atomic formulae (z < y + ¢) are transformed mto
(z £ y+c¢—1) Atomic formulae (z > y + c)are
transformed mto (z > y+ ¢ + 1) Atomic formulae
(z = y + ¢) are transformed mto (z < y+c¢) A (z >
y+c)

The satisfiability test consists of checking whether
the directed weighted graph contains a negative
weight cycle or not The expression 18 unsatisfiable
if the graph contains a negative cycle

We can generalize Definition 4 1 to allow substitu-
tions of several tuples for variables 1n an expression

c

Definition 4.8 Consider a view

X 1p))

and tuples t, € r,,1 <1 < k Assume that B,NR, =
Pforalli #7 Let Yy =YN(RiUR,U URy)and
Y, =Y -Y; Denote by C(t1,t2, ,tk,Y2) the mod-
1fied selection condition obtained when substituting
the values ¢,(X),1 < @ < k, for each occurrence of

V= Wx(Uc(y) (Tl X rg X

the variable A € Y3 m C(Y) C(t1,t2, ,tr,Y2) 18
said to be the substitution of t1,t2, ,&x for Y7 m
c
Theorem 4.2 Consider a view

=nx(ocy)(ri Xrax Xrp)),

and tuples #;,t2, ,tx all either inserted to or
deleted from relations ry,rz, . ,ri respectively Let
Y, and Y; be defined as before The set of tuples
{t1,t2, ,tx} 18 srrelevant to the view v (for every
database mstance D) if and only of C(¢1,t2, ,, Y2)
18 unsatisfiable

Proof: Similar to the proof of Theorem 4 1

While we do not propose the statement of The-
orem 4 2 as the basis of an 1mplementation for the
detection of irrelevant updates, 1t shows that the de-
tection of nrrelevant updates can be taken further by
considering combinations of tuples from different re-
lations

66

5 Differential re-evaluation of
views

The purpose of this section 1s to present an algorithm
to update a view differentially as a result of updates
to base relations participating in the view defimtion
Differential update means bringing the materiahized
view up to date by 1dentifying which tuples must be
mnserted 1nto or deleted from the current instance of
the view

For simpheaity, 1t 18 assumed that the base relations
are updated by transactions and that the differential
update mechanism 1s invoked as the last operation
within the transaction (1 e, as part of the commat of
the transaction) It 1s also assumed that the infor-
mation available when the differential view update
mechanism 1s mvoked consists of (a) the contents of
each base relation before the execution of the trans-
action, (b) the set of tuples actually inserted into or
deleted from each base relation, (c) the view defim-
tion, and (d) the contents of the view that agrees
with the contents of the base relations before the ex-
ecution of the transaction Notice in particular that
(b) only includes the net changes to the relations
for example, 1If a tuple not 1n the relation 1s mserted
and then deleted within a transaction, 1t 1s not rep-
resented at all in this set of changes

5.1 Select views

A select view 18 defined by the expression V =
oc(v)(R), where C (the selection condition) 15 a
Boolean expression defined on Y C R Let &, and
d, denote the set of tuples inserted into or deleted
from relation r, respectively The new state of
the view, called v', 18 computed by the expression
v' = vUoc(y)(tr) —oc(v)(dr) That 1s, the view can
be updated by the sequence of operations

insert(V, oc(v)(sr))
delete(V, oc(v)(dr))

Assuming |v| > |d,.|, 1t 18 cheaper to update the
view by the above sequence of operations than re-
computing the expression V from scratch

5.2 Project views

A project view 18 defined by the expression V =
nx{R), where X C R The project operation n-
troduces the first difficulty to updating views differ-
entially. The difficulty arises when the base relation
r 18 updated through a delete operation

Example 5.1 Consider a relation scheme R =
{A, B}, a project view defined as wg(R), and the
relation r shown below

r- A B v B
1 10 10
2 10 20
3 20

If the operation delete(R, {(3,20)}) 1s appled to
relation r, then the view can be updated by the
operation delete(V,{20}). However, if the oper-
ation delete(R,{(1,10)}) 158 apphed to relation r,
then the view cannot be updated by the operation
delete(V, {10}) The reason for this difficulty 1s that
the distributive property of projection over difference
does not hold (1 e, 7mx (ry — r2) # wx(r1) — 7x(r2))
0

There are two alternatives for solving the problem

1. Attach an additional attribute to each tuple n
the view, a multiphicaty counter, which records
the number of operand tuples that contribute to
the tuple in the view Inserting a tuple already
i the view causes the counter for that tuple to
be imncremented by one Deleting a tuple from
the view causes the counter for that tuple to
be decremented by one, if the counter becomes
gero, then the tuple in the view can be safely
deleted

2 Include the key of the underlying relation within
the set of attributes projected in the view This
alternative allows unique 1dentification of each
tuple 1n the view Insertions or deletions cause
no trouble since the tuples mm the view are
umquely 1dentified.

We choose alternative (1) since we do not want
to umpose restrictions on the views other than the
class of relational algebra expressions allowed in ther

67

definition In addition, alternative (2) becomes an
special case of alternative (1) in which every tuple mn
the view has a counter value of one

We require that base relations and views include
an additional attribute, which we will denote N
For base relations, this attribute need not be ex-
plicitly stored since its value m every tuple 1s al-
ways one The select operation 1s not affected by
this assumption The project operation 1s re-defined
as rx(r) = {t(X') | X = XU {N} and 3u €
r((w(X) = tXNAEN) = T pew w(N) where W =

{wlwerAawX)= t(X)}))} Notice that by re-
defining the project operation, the distnibutive prop-
erty of projection over difference now holds (1e,
Tx (r1 = r2) = mx(r1) — xx(rz))

To complete the defimition of operators to include
the multiplicity counter the jomn operation 1s rede-
fined as r 4 s = {#(¥1) | Y = RUS and 3u,0((u €
r)A(ves)A(R(R—-{N}) =u(R-{ND)A(t(S -
{H}) = o(S—{NNA(HN) = u(N)+0(X)))}, where

‘s’ denotes scalar multiphcation

5.3 Join views
A join view s defined by the expression

V=R1NR2N NRp

We consider first changes to the base relations ex-
clusively through nsert operations, next we consider
changes to the base relations exclusively through
delete operations, and finally we consider changes to
the base relations through both insert and delete op-
erations

Example 5.2 Consider two relation schemes R =
{A,B}and S = {B,C}, and aview V defined asV =
R 4 S Suppose that after the view v1s matenahzed,
the relation r 1s updated by the insertion of the set
of tuples 1, Let r' = r U1, The new state of the
view, called v/, 18 computed by the expression

= ris
(rus) s
= (rxsjU(s, b s)

If 1, =1, X s, then v = vUs, That 1s, the view can
be updated by mnserting only the new set of tuples

1, Into relation v In other words, one only needs
to compute the contribution of the new tuples in r
to the join Clearly, 1t 18 cheaper to compute the
view v’ by adding :, to v than to re-compute the
jon completely from scratch 0O

This 1dea can be generahzed to views defined as the
jom of an arbitrary number of base relations by ex-
ploiting the distributive property of join with respect
to union

Consider a database D = {r;,r2, ,rp,} and a
view V defined as V = R; W Ry X X Ry
Let v denote the materialized view, and the rela-
tions ry,rz, . ,r, be updated by mnserting the sets
of tuples t,,,2,,, ,3,, The new state of the view
v’ can be computed as

o' =(ry Ut) & (r2 Use,) 0 b (rp Usy))

Let us associate a binary vanable B, with each of
the relation schemes R,,1 <+ < p The value zero
for B, refers to the tuples of r, considered during the
current materialization of the view v (1 e, the old
tuples), and the value one for B, refers to the set of
tuples mserted 1nto r, since the latest matertahzation
of v (1e, the new tuples 2,) The expansion of the
expression for v', using the distributive property of
jomn over union, can be depicted by the truth table
of the variables B, For example, if p = 3 we have

By B, Bj

0 0 0 riXrgdrs
0 0 1 ry M ry M,
0 1 0 which ry M, Mr3
0 1 1 repre— ry My, M,
1 0 0 sents T, M2 M rg
1 0 1 Ty, M 2 X2y
1 1 0 iy, M2, M rg
1 1 1 tpy M3y M2y

where the union of all expressions 1n the nght hand
side of the table 18 equivalent to v/ The first row
of the truth table corresponds to the join of the base
relations considering only old tuples (1 e , the current
state of the view v) Typically, a transaction would
not msert tuples mto all the relations mmvolved m a
view defimtion In that case, some of the combina-
tions of joins represented by the rows of the truth
table correspond to null relations Using the table

68

for p = 3, suppose that a transaction contains -
sertions to relations r; and r2 only One can then
discard all the rows of the truth table for which the
variable B3 has a value of one, namely rows 2, 4, 6,
and 8 Row 1 can also be discarded, since 1t cor-
responds to the current materialization of the view
Therefore, to bring the view up to date we need to

compute only the joins represented by rows 3, 5, and
7 That 1s,

vV = v U (ry Mz, Xr3)

U (i, Mr2Xrs)
U (3, M2, M rg)

The computation of this differential update of the
view v 18 certainly cheaper than re-computing the
whole join

So far we have assumed that the base relations
change only through the insertion of new tuples The
same 1dea can be applied when the base relations
change only through the deletion of old tuples

Example 5.8 Consider again two relation schemes
R = {A,B} and S = {B,C}, and the view V defined
asV = R x4 § Suppose that after the view v 1s
materialized, the relation r 1s updated by the deletion
of the set of tuples d, Let ¥’ = r—d, The new state
of the view, called v, 13 computed as

r' X s
(r—d)ms
(ras8)—(dr mas)

@
imu

It

Ifd, = d, M s, then v’ = v—d, That s, the view can
be updated by deleting the new set of tuples d, from
the relation v It 18 not always cheaper to compute
the view v' by deleting from v only the tuples d,,
however, this 1s true when |v] > |d,] O

The differential update computation for deletions
can also be expressed by means of bmary tables
Thus, the computation of differential updates de-
pends on the ability to 1dentify which tuples have
been 1nserted and which tuples have been deleted
From now on, all tuples are assumed to be tagged
m such a way that 1t 18 possible to 1dentify nserted,
deleted, and old tuples

Example 5.4 Consider two relation schemes R =
{A,B} and S = {B,C}, and a view V defined as
V =R xS Let r and s denote instances of the
relations named R and S, respectively, and v =r i1
s Assume that a transaction T updates relations r
and s

Case 1 t €1, M 1,18 a tuple that has to be inserted
mto v

Case 2. t €1, ™ d, 18 a tuple that has no effect n
the view v, and can therefore be ignored

Case 3 t €1, M 818 a tuple that has to be mnserted
mto v

Case 4 t € d, X d, 1s a tuple that has to be deleted
from v

Case 5 t € d, M 3818 a tuple that has to be deleted
from v

Case 6 t € r 4 818 a tuple that already exists in the
VIEW v 0O

In general, we can describe the value of the tag field
of the tuple resulting from a join of two tuples ac-
cording to the following table

ry ro r1 M rg

msert 1nsert 1nsert
msert delete 1gnore
msert old msert
delete 1nsert 1ignore
delete delete delete
delete old delete
old msert 1nsert
old delete delete
old old old

where the last column of the table shows the value of
the tag attribute for the tuple resulting from the join
of two tuples tagged according to the values under
columns r; and ro Tuples tagged as “ignore” are
assumed to be discarded when performing the join
In other words, they do not “emerge” from the join

The semantics of the join operation has to be re-
defined once more to compute the tag value of each
tuple resulting from the join based on the tag values
of the operand tuples In the presence of projection
this will be in addition to the computation of the
count value for each tuple resulting from the join as
explained 1n the section on project views Similarly,
the tag value of the tuples resulting from a select or
project operation 1s described 1n the following table

69

r ocr)(r) mx(r)
msert 1nsert msert
delete delete delete
old old old

In practice, 1t 18 not necessary to build a table with
2P rows Instead, by knowing which relations have
been modified, we can build only those rows of the
table representing the necessary subexpressions to be
evaluated Assuming that only k such relations were
modified, 1 < k < p, building the table can be done
in time O(2F)

Once we know what subexpressions must be com-
puted, we can further reduce the cost of materializing
the view by using an algorithm to determine a good
order for execution of the jomns Notice that a new
feature of our problem 1s the possibility of saving
computation by re-using partial subexpressions ap-
pearing 1n multiple rows within the table. Efficient
solutions are being investigated

5.4 Select-Project-Join views

A select-progect-josn view (SPJ view) 18 defined by
the expression

V= ﬂx(dc(y) (R1] Rg ol

™ Rp)),

where X 18 a set of attributes and C(Y) 18 a Boolean
expression We can agamn exploit the distributive
property of join, select, and project over union to pro-
vide a differential update algorithm for SPJ views

Example 5.5 Consider two relation schemes R =
{A,B} and S = {B,C}, and a view defined as V =
74(9(c>10)(R > S)). Suppose that after the view
v 18 materiahized, the relation r is updated by the
msertion of tuples 1, Let ¥ =r U1, The new state
of the view, called v/, 18 computed by the expression

Ta(o(c>10)(r" M 8))

Ta(o(o>10)((rUs,) ™ 8))

Ta(o(c>10)(r ™ 8)) Uma(o(o>10)(2r 2 8))
vUma(0(c>10)(tr 2 3))

If 1, = ma(o(c>10)(tr M 8)), then v/ = vUs, That
18, the view can be updated by inserting only the new
set of tuples 1, into the relation v]

We can again use a binary table to find out what
portions of the expression have to be computed to
bring the materiahized view up to date To evaluate
each SPJ expression associated with a row of the
table, we can make use of some known algorithm such
as QUEL’s decomposition algorithm by Wong and
Youssefi [WY76] Once more, there 18 a possibihity of
saving computation by re-using partial computations
common to several rows in the table

We now present the outline of an algorithm to up-
date SPJ views differentially

Algorithm 5.1
The mput consists of

i) the SPJ view definition

V=nx(oc(Ria R ™ Rp)),

n) the contents of the base relations r,,1 < 3 < p,
and

1ii) the sets of updates to the base relations u,,,1 <
I<p

The output of the algorithm consists of a transaction
to update the view.

1 Build those rows of the truth table with p
columns corresponding to the relations being
updated

2. For each row of the table, compute the associ-
ated SPJ expression substituting r, when the
binary vanable B, = 0, and u,, when B, =1

3 Perform the union of results obtamed for each
computation in step 2 The transaction consists
of mserting all tuples tagged as insert, and delet-
g all tuples tagged as delete. 0

Observe that: (I) we can use for V an expression
with a mimimal number of Joins Such expression can
be obtained at view defimition time by the tableau
method of Aho Sagiv and Ullman [ASU79] extended
to handle mequahity conditions {K80], and (II) step 2
poses an imteresting optimization problem, namely,
the efficient execution of a set of SPJ expressions
(all the same) whose operands represent different re-
lations and where intermediate results can be re-used
among several expressions

70

6 Conclusions

A new mechanism for the maintenance of matenal-
1zed views has been presented The mechanism con-
sists of two major components First, necessary and
sufficient conditions for the detection of database up-
dates that are wrrelevant to the view were given Us-
ing previous results by Rosenkrantz and Hunt we de-
fined a class of Boolean expressions for which this de-
tection can be done efficiently Our detection of irrel-
evant updates extends previous results presented by
Buneman and Clemons and by Hammer and Sarn.
Since their papers were presented 1n the contexts of
trigger support and integrity enforcement, our re-
sults can be used in those contexts as well Second,
for relevant updates, a differential view update algo-
rithm was given This algorithm supports the class
of views defined by SPJ expressions

Our differential view update algorithm does not
automatically provide the most efficient way of up-
dating the view Therefore, a next step 1n this direc-
tion 1s to determine under what circumstances daffer-
ential re-evaluation 18 more efficient than complete
re-evaluation of the expression defining the view

This paper carries the assumption that the views
are materialized every time a transaction updates the
database It 1s also possible to envision a mechanism
in which materialized views are updated periodically
or only on demand Such materialized views are
known as snapshots [AL80] and therr mamtenance
mechamsm as snapshot refresh!. The approach pro-
posed 1n this paper also apphes to this environment,
and further work 1n this direction 18 1n progress

References

[AL80] Adiba, Michel, and Bruce G Lindsay,
“Database Snapshots,” Proc of the 6th
International Conference on Very Large

Databases, 1980, Pages 86-91

Aho, AV, Y Sagiv, and JD Ullman,
“Efficient Optimization of a Class of Re-
lational Expressions,” ACM Transactions

[ASU79)

1System R* provides a differential snapshot refresh mech-

anism for snapshots defined by a selection and projection
on a single base relation [L85] However, details of this
mechanism have not been published

[BCT9]

[F62]

[GSV384]

[HS78]

[HT85]

[K80]

[KP81]

[L85]

[M83]

on Database Systems, Vol 4, No 4, De-
cember 1979, pages 435-454

Buneman, O Peter, and Eric K Clemons,
“Efficiently Monitoring Relational Data-
bases,” ACM Transactions on Database
Systems, Vol 4, No 3, September 1979,
Pages 368-382

Floyd, Robert W, “Algorithm 97 Short-
est Path,” Communications of the ACM,
Vol 5, No 6, June 1962, Page 345

Gardarin, G, E Smmon, L Verlaine,
“Querying Real Time Relational Data
Bases,” IEEE-ICC International Confer-
ence (Amsterdam), May 1984, Pages 757-
761

Hammer, Michael, and Suml K Sarmn,
“Effictent Monitoring of Database Asser-
tions,” Supplement Proc ACM SIGMOD
International Conference on Management
of Data, Austin, TX, May 31-June 2,
1978, Page 38

Horwitz, Susan, and Tim Teitelbaum,
“Relations and Attributes A Symbiotic
Basis for Editing Environments,” ACM
SIGPLAN 85 Sympostum on Language Is-
sues 1In Programming Environments, Sig-
plan Notices, Vol 20, No 7, July 1985,
Pages 93-106

Klug, A, “On Inequahty Tableaux,” CS
Technical Report 403, University of Wis-
consin, Madison, W1, November 1980

Koenig, Shaye, and Robert Paige, “A
Transformational Framework for the Au-
tomatic Control of Derived Data,” Proc
of the 7th International Conference on
Very Large Data Bases, 1981, Pages 306-
318

Lindsay, Bruce G , Personal communica-
tion

Maier, David, The Theory of Relational
Databases, Computer Science Press, 1983

71

[RHS0]

[SI84]

[WY76]

Rosenkrantz, Damel J, and Harry B
Hunt III, “Processing Conjunctive Predi-
cates and Queries,” Proc of the 6th Inter-
national Conference on Very Large Data
Bases, 1980, Pages 64-72

Shmueli, Oded, and Alon Itai, “Mante-
nance of Views,” SIGMOD ’84 Proceed-
ings of Annual Meeting (Boston, MA),
Sigmod Record, Vol 14, No 2, 1984,
Pages 240-255

Wong, Eugene, and Karel Youssefi, “De-
composition - A Strategy for Query Pro-
cessing,” ACM Transactions on Database
Systems, Vol 1, No 3, September 1976,
pages 223-241

