Providing High-level Control
and Expert Assistance in the
User Interface Presentation Design

by
Won Chul Kim and James D. Foley

GIT-GVU-93-09
March 1993

Graphics, Visualization & Usability
Center

Georgia Institute of Technology
Atlanta GA 30332-0280

Providing High-level Control and Expert Assistance
in the User Interface Presentation Design

Won Chul Kim

Department of Electrical Engineering and
Computer Science
The George Washington University
Washington, DC 20052
kim@seas.gwu.edu

ABSTRACT

Current user interface builders provide only low-level
assistance, because they have knowledge of neither the
application, nor the principles by which interface elements are
combined effectively. We have developed a framework that
unites the knowledge components essential for effective user
interface presentation design. The framework consists of an
application model (both a data model and a control model), a
design process model that supports top-down iterative
development, and graphic design knowledge that is used both
to place dialog box elements such that their application
dependent logical relationships are visually reinforced and to
control design symmetry and balance. To demonstrate the
framework's viability, we have constructed a tool based on
encapsulated design knowledge that establishes high-level
style preferences and provides expert assistance for the dialog
box presentation design and menu structuring.

KEYWORDS: Automatic layout, knowledge-based tool, Ul
design process

1. THE DESIGN PROCESS

Every interactive computer application must have a user
interface (UI) to mediate between users and application
functions. UI builders [3, 5, 15, 22, 23] help designers by
providing components, such as menus, dialog boxes, radio
buttons and scroll bars, to put together user interfaces quickly
andeasily. However, they donotprovide intelligent assistance
for generating a presentation design. They facilitate the
presentation design activities attoo low a level; adesigner still
must follow written guidelines [1, 18, 21] and graphics
principles [4, 9, 10, 16] to create a good design. Interpreting
the guidelines unambiguously and applying generic principles
toa particular design problem isitself amajor challenge. Thus,
such tools may simply allow a designer to assemble a poor Ul
quickly.

James D. Foley

Graphics, Visualization, and Usability Center
College of Computing
Georgia Institute of Technology
Atlanta, GA 30332
foley@cc.gatech.edu .

Our objective is to integrate expert assistance into the Ul
design process. The essential ingredient of expert assistance
is knowledge. We have thus extended the knowledge base
model of User Interface Design Environment (UIDE) (7, 8,
20] to encapsulate elements, relationships, and principles of
design knowledge related to the organization and presentation
of menus and dialog boxes. This extended knowledge base
model [12, 13, 14] consists of (1) a conceptual design
representation which is a high-level description of an
application; (2) style knowledge, which provides default style
atiributes of interface widgets; (3) organization structures,
which define the logical groupings of application commands
and parameters; and (4) apresentation design representaiion,
which represents the interface object type (what interface
object to use), the style selection (how the object looks), and
the layout decisions (where objects are placed). The integrated
knowledge base model provides a framework in whicha set of
reusable design rules automates various steps of the Ul design
process.

Based on this knowledge base framework, we have developed
a Ul presentation design tool called DON [12, 13]. The tool
has two stages. An organization manager uses a top-down
design methodology to assist designers in organizing the
information, and selecting appropriate interface objects and
their associated attributes. A presentation manager lays out
selected interface objects in a dialog box or selected menu
items, in a meaningful, logical, and consistent manner.

A difficult challenge is to accommodate user preferences and
design goals in the design process. Because it is unrealisuc 10
automate completely the Ul design process, we have modeled
the process and have broken it down into stages corresponding
to the logical steps a designer takes. With DON, a designer
specifies high-level preferences, such as acceptable range of
dialog sizes or consisient margins and spacing, and each
design stage automatically accommodates the preferences.
The designer can view the intermediate results of each design
stage and can modify them interactively, or can repeat a stage
with modified preferences.

Support of Organization
The design process starts with the conceptual design

User Interface Designer

preemmesmmmemmeamesm—esssam—n— pemmmm e mm . ——
'

...................... P e e LR L DD LDl bl
'

Organization Manager

Presentation Manager ‘

Design g Style
Specification Preferences

Interactive
Refinement

| Organization Rules

1 Evaluation Metrics

User Interface

Implementations

T T
Conceptual Design Organization . Presentation Design
Representations Structures [4+ Represantations
Figure 1 An overview of the design tool environment.

specification of an application. This representation of
application entities and semantic relationships is used to aid
the designer in determining the classifications and logical
groupings of the application information to be presented to
end users.

The organization manager (OM), shown in Figure 1,
implements the first step of the design process and embodies
two main sets of rules: (1) organization rules that analyze the
high-level conceptual design representation and design
organization preferences to allocate commands to menus, and
attributes and command parameters to dialog boxes; (2)
selection rules that select the appropriate interface object
types and their attributes. Various existing systems [2, 6, 26]
demonstrate the feasibility of rule-based, automatic mapping
of application descriptions to interface object representations.
The logical relationships of application commands and
parameters are represented explicitly in the organization
structure, which provides the basis for feedback at the
organization level and for interactive modification of automated
decisions. The OM allows the designer to specify high-level
preferences and to modify interactively interface object type
mappings stored in the organization structure. The designer
can iterate through the organization process until the content
organization and interaction object mappings are complete
and satisfactory.

Support of Presentation Design

The OM paves the way for the presentation manager (PM),
also shown in Figure 1, to complete the presentation design.
Four aspects of the PM are important: (1) it automates the
actual layout of menus and dialog boxes; (2) graphic design
principles are embedded in the layout rules, which automate
the layout process; (3) designer-specified layout preferences
provide effective means to control the presentation design
details; and (4) the evaluation metrics provide the comparative
criteria that the designer can use as a guideline to evaluate and
constrain design alternatives. The PM supports iterative menu
structuring. For dialog box design, a combination of iterative
and generate-and-evaluate methods is supported.

In the following sections, we discuss the strategies for providing
‘high-level design control and expert assistance for dialog box
presentation design.

2. AUTOMATIC DIALOG BOX LAYOUT

Success in design of forms, including dialog boxes, involves
analyzing the conceptual content, designing the graphic
appearance, and evaluating the form. The major goals of
dialog box layout istoreinforce visually the logical relationships
among items, to use space efficiently, and to generate
aesthetically pleasing designs.

The layout algorithm assumes a dialog box tree. This tree is
generated automatically by the organization rules. A dialog
box tree defines the logical organization structure of the
widgets that have been assigned to each dialog box. Leaf
nodes of a dialog box tree represent the contents and labels of
selected interaction objects. Initially, the bound (extent) of all
leaf nodes of adialog box is obtained. The logical groupnodes’
bounds are unknown until the layout process is compiete.

The layout algorithm works with the tree of bounds, as shown
in Figure 2. The strategy is to organize the bounds (extents of
selected interaction objects) recursively from the leaf nodes
(shown in white) up to the root of the dialog box tree. The
bottom-up layout strategy systematically reduces the complex
layout problem into many smaller layout problems for each
unknown group node in similar fashion to hierarchical
composition of graph [17] and tree layout algorithms (25].
Figure 2 illustrates a possible solution based on the bottom-up
layout strategy, where unknown subgroup node bounds and

Figure 2 [lustration of the layout process, working
with a tree structure of bounds.

Decislon Tree for Shape

and Size Comparison

-
SimilarX ANP Similar Y

i 1
Xmax >= Ymax Xmax < Ymax

v .) -
Vertical Orientation: Horizontal Orientation:

-
Different X ANID DifferentY

{ 1
Xmax >= Ymax Xmax < Ymax

.. , . ¥
Vertical Orientation: Horizontal Orientation:

Longer X on Top Longer Y on Left Longer X on Top Longer Y on Left
—— ,)
— []
. v _ v
Similar X ANI? Different Y Different X ANlD Similar Y
r 1 I 1
Xmax >= Ymax Xmax < Ymax Xmax >= Ymax Xmax < Ymax
- + v +
Vertical Orientation: Horizontal Orientation: Vertical Orientation: Horizontal Orientation:
Longer X on Top Longer Y on Left Longer X on Top Longer Y on Left
[]
]

Figure 3 The layout rule decision tree for analyzing two rectangular items based on the comparison of shape and size.

locations are determined recursively until the shape and size
of the root node are determined.

All the known bounds of a subgroup node are put into a pool
of bounds to be laid out. Two bounds are selected, their
arrangement is determined by a shape and size analysis
(discussed in the following section), and the resulting group
node consisting of two laid out bounds is thrown back into the
pool asasingle bound, witharemainder area that is maintained
for possible use. This process is repeated for each unknown
group node until all the bounds in the pool are exhausted. An
important advantage of laying out two items at a time is that
it ensures consistent alignments and gaps between items.
Since the bottom-up layout is based on a logical tree structure,
logically related items are arranged in close proximity, which
partly ensures visual reinforcement of the logical structure.

Analysis of Shape and Size

Shape and size analysis is the central component of the layout
algorithm that determines the alignment, orientation, and
placement of selected pairs of bounds. The shape and size
analysis is used to analyze the placement of a label with
respect to its content. It is also used to categorize shapes of
bounds and to formulate visual groupings based on similar
shapes.

The decision tree for shape and size comparison for the two
rectangular bounds is shown in Figure 3. The top level of the
decision tree compares the similarity of the widths and heights
of two bounds. The lower level of the decision tree compares
the maximum widths and heights as the criteria to determine
the orientation, alignment, and placement of the two selected
bounds.

A designer can modify the similarity size ratio that is used by
criteria for the shape and size comparison to determine
similarity of items' lengths and widths. The default is set at

0.618, a value is derived from the golden proportion [4, 10,
16). This option gives the designer additional fine control of
the layout algorithm.

High-Level Analysis

To increase the efficiency of the algorithm and t0 handle
special cases appropriately, DON incorporates a high-level
analysis that examines many bounds atonce, in contrast to the
basic pair-wise comparison. The layout algorithm uses the
high-level analysis to identify overflow situations, simple
cases where the number of items is small, visual groupings
based on similar shapes and sizes, and to assess appropriateness
of a column-based design. DON handles these cases before
applying the full layout algorithm.

When the area required for all the widgets exceeds the specified
dialog box size, overflow solutions [12] are employed. For
example, (1) the sizes of certain interaction objects can be
reduced to the acceptable minimum, (2) the interaction object
type can be changed to one that requires less space, and (3)
margins and spacing can be tightened.

When the area required for all the widgets is less than the
minimum dialog box size, DON suggests an increase in that
minimum size, which results in a design with extra white
space. The range of heights and widths for dialog boxes, as
well as of limits on the size ratios, can be specified as style
preferences.

With DON, the designer can explicitly specify and explore
various alternative column-based styles, as shown in Figure 4.
This feature allows the designer at all times to constrain layout
structures to column-based arrangements of labels and dialog
box contents, as suggested in the OPEN LOOK Applicauon
Style Guidelines [21]. The bottom two designs in Figure 4 are
of the same dialog box representation. When a parucular
design is chosen—the lower-right design in this case—its

CREATE-SHAPESOT CREATE-SHAPES074

©

Figure 4 Alternative column-based designs for a
dialog box with four items.

design representation is mapped into the OPEN LOOK GUI
components shown on the lower left.

DON also may recommend a column-based layout based on
analysis (using rules such as the following) of the number of
horizontally and vertically shaped contents, even if a designer
has not explicitly requested such consideration:
If the number of horizontal shapes are greater than
the sum of none-horizontal shapes,
then suggest column-based layout.

At each group node of a dialog box tree, the bounds are
analyzed for possible grouping based on similar shapes and
sizes. Figure 5 illustrates how the visual groupings are formed
based on similar shapes. The row or column arrangements for
a similar shape group are determined based on the shapes.
When the majority of similar bounds is horizontally shaped,
then a vertical column arrangement is recommended. When
the majority is vertically shaped, then a horizontal row
arrangement is recommended. In the interactive design mode,
these automated decisions and recommendations can be
overridden.

DON allows the designerto influence the overall organizational

constraints on items by specifying:

» That the organization be column-based

+ That a label location be used consistently (usually
accompanies column-based design)

» That a specified visual balance tendency be used
(top-heavy, bottom-heavy, left-heavy, or right-heavy)
These organizational preferences provide higher level
constraints on the layout of all the items within a dialog box.

lterative Design Method

An iterative design method, where alternative designs can be
prototyped, implemented, refined rapidly and easily is
advocated for developing good user interfaces. The iterative

similar shapes

Figure 5 Groupings of bounds based on shape
and size analysis.

design cycle comprises these steps: (1) a designer specifies
the layout constraints, (2) the system generates automatically
asingle design based on layout constraints, and (3) the system
displays an outline of the layout structure and evaluation
results. This cycle is short because only the outline (bordering
bounds) of the layout structure is generated, and evaluation is
based on this outline.

The high-level style customization capability combined with
an iterative design strategy provides an easy to use ool that
allows a designer to explore aiternative designs quickly,
without worrying about fine details. The functional user Ul
code is generated only when a designer is satisfied with the
layout structure.

3. CUSTOMIZATION OF USER INTERFACE STYLE
DON provides an explicit method for specifying the layout
constraints for each dialog box design instance. The layout
rules achieve automatically the detail layout constraints
specified. Consistency is realized when same layout constraints
are applied for all dialog boxes; the framework makes it
possible to set certain specifications global to all the dialog
box instances. If the designer needs to specify excepuons,
specific constraints for each dialog box instance can be
overridden.

It is important that a design tool allow the designer to specify
the fine detail layout constraints. The designer must have
explicit control sufficient to generate a layout that fits the
design goals particular to the current application. These layout
constraints become input to the layout rules that automatically
generate the dialog box designs.

Control of Margins and Spacing

Specification of consistent margins and spacing is tedious and
difficult, even with an interactive layout tool. A simpler
approach is to allow the designer to provide a high level

specification of margins and spacing that can be applied
consistently throughout the design.

Effective use of white space is the key to achieving attractive
layouts. Various kinds of white space—such as inner, outer,
top, foot margins, gaps separating items, and offsets between
contents and labels—are controlled by the layout algorithm.

Figure 6 shows the various spacings that a designer can

specify.

Manager

D)
= R

Box Atiributes
i?a Box Items Attributes o .
._.I Ok/Cancel/Apply Attributes
o Command Button Group Attributes
A Appiication Window Attributes..

£dge Offsats...

Zoundary Offsets...

| intra Group Node Offsats...
Inter Group Node Offsets...
Lzbel-value Cap..
Check Butten Cap...

Figure 6 s d acing speciﬁcations.

= (oad Preferences..

d Save Preferences.

Control of Location and Orientation of OK and Cancel
Buttons

Consistency in screen design is an important design factor that
affects the usability of an interface, and thus of the application.
A designer may want to force a consistent location of the OK
and Cancel buttons in all dialog boxes. The Confirm (OK and
Cancel) button group is considered separately based on either
specified or analyzed location, alignment, and orientation.

Alignment:

(left, center, right, equal-size, none)
Orientation:

(above-below, left-right, none)
Placement:

(top-left, center-left, bottom-left,
top-right, center-right, bottom-right,
top-center, bottom-center,
distribute-top, distribute-bottom,
distribute-left, distribute-right, none)

Figure 7 Possible alignment, orientation, and location
specifications for the OK and Cancel buiton group.

Possible options that a designer can specify explicitly to
generate consistent Confirm button group location are shown
in Figure 7. If preferences are not specified, then the layout
rules analyze the overall content size, shape, and remaining
space available to determine the location and orientation. The
Confirm button group is considered after all content item
bounds are laid out. Two general cases are considered: (1) the
Confirm button group as a whole in any orientation does not
fit in the remainder area (examples shown in Figure 8); (2) the
remainder area is large enough to hold the Confirm button
group (examples shown in Figure 9).

Figure 8 shows a set of few alternative Confirm button group

Figure 8§ Determination of location and orientation
for the OK and Cancel button group.

locations and orientations based on (1) vertically shaped
content bound (left column) and (2) horizontally shaped
content bound (right column). There are many other possible
designs, not shown, with different combinations of location
and orientation. Some combinations are rejected by the system
because they result in awkward layout, as judged by the built-
in evaluaton criteria discussed in Section 4. The sysiem
defaults to a design A for both shapes considered in the
example. The Confirm button group is the last logical item
with which user interacts. Thus, the bottom-right location is an
appropriate default location [4].

If remainder area shape is
horizontally shaped,
then suggest H-orientation.

If remainder area shape is
vertically shaped
then suggest V-orientation.

P

P R

Figure 9 Determination of orientation for the OK and
Cancel button group based on the shape of
the remainder area.

0..

The two examples in Figure 9 show the system default based
on the shape of the remainder area. The horizontal orientation
is preferred for the horizontally shaped remainder area; the
vertical orientation is preferred for the vertically shaped
remainder area.

Encapsulation of Style Knowledge
DON assists a designer in establishing a default style for
interface object classes; this default persists, and is reusable
for different design instances. This idea is similar to that used
in Interaction Transaction Systems [26], which incorporates
reusable style knowledge by allowing style experts to write
style rules that represent both graphic arts and human factors
decisions. The style knowledge consists of hierarchically
structured classes of interface objects that take advantage of
inheritance of attribute values. The advantages of modeling
the style knowledge in this fashion are the following abilities:
« To provide default and ranges of acceptable attribute
values to all interaction objects
» To allow a designer to modify defaults to generate
customized styles
» To allow a designer to specialize style objects for
special purposes
+ To allow a designer to package a set of style
attribute values
The style knowledge facilitates a designer's control of the
presentation style forindividual interface objects. Forexample,
during the layout process, the layout rules use the minimum
acceptable sizes to reduce the size of the interaction objects
when there are too many items to fit into the specified dialog
box size.

The designer can bundle together these high-level style
preferences and the layout constraints to develop acustomized
style guide that satisfies the written style guides [1, 18,21] yet
is suited to a particular application using a particular toolkit.

4. THE GENERATE AND EVALUATE STRATEGY
The generate-and-evaluate method of design facilitates
exploration by allowing a designer to view many automatically
generated dialog box layouts. The designer can not only view
multiple layout structures simultaneously, but also obtain
various evaluation metrics on specific criteria. The designer
can use the metrics to compare many alternative designs.
DON further enhances exploration of the design space by
combining the advantages of both the iterative design strategy
and the generate-and-evaluate strategy. After selecting the
generated layout structure from multiple design alternatives,
the designer can use an iterative strategy to fine tune the
detailed visual attributes.

Evaluation Criteria

A design tool needs quantitative measures to analyze the
spatial properties of the dialog box layout. Streveler and
Wasserman developed quantitative metrics [19] for analyzing
digital screen layouts, and Tullis developed metrics [24] for
evaluating the visual layoutor design of alphanumeric displays.
DON incorporates several evaluation criteria, such as
symmetry, balance, dialog box size ratio, dialog box size
range, and negative space percentage calculations to help a
designer apply graphic design principles in dialog box layout.
The algorithms for the evaluation metrics have been developed
based on graphic design principles [4, 10, 11, 16].

A design achieves balance by placing elements of similar
weight, but not necessarily precisely the same size, in
relationship to one another such that there is weight at the
bottom of layout as well as the top, and to the left and right to
balance the whole [4]. A significant concept that contributes
to balance is that an object located a greater distance away
from the center will have a higher visual weight than will a
more central item. A similar idea holds for two items placed
at opposite ends of a fulcrum: a smaller item placed farther
away from the middle is balanced by a bigger item placed
closer to the middle.

To simplify the evaluation score calculation, we convert the
actual extent of items laid out in a dialog box 10 1s, and we
convert the white space to Os. This step is common to several
evaluation calculations. The bitmapresolution can be increased
for higher accuracy at the cost of computation time, by setting
the parameter to the bitmap conversion function.

The formula for left-right balance calculation is as follows
(top-bottom balance is computed similarly):

Total weight for each side
=Y 1s * f(distance away from the center)

Left-right _ total weight of less heavy side
balance total weight of more heavy side

The method of calculating the symmetry of layout is
straightforward. We can think of symmetry as folding alayout
in half and checking all the matched areas covered by the
elements on each side.

Proper use of white space is critical to an attractive layout.
Nevertheless, when screen space is constrained, a designer
may need to minimize negative space (unused white space).
We compute the negative space by calculating the percentage
of the white space against the total space available.

The evaluation metrics for a selected dialog box design are
shown in Figure 10. From right to left, (1) a designer-specified
acceptable range in each evaluation criteria is shown by
brackets; (2) a designer-specified weight, which can range
from 1 to 9, for each evaluation criteria is shown by the
numbers surrounded by asterisks; (3) computed evaluanon
scores for each criterion are shown in percentages (the higher
the number, the greater the balance and symmetry); each score
is marked by "X" that satisfies the specified range. The left-
right balance score for the example in Figure 10 is 80 percent
(the left side is heavier) and the top-bottom balance score 1s 88
percent (the top is heavier).

DON uses evaluation metrics o constrain the design space
and the layout style, and to compare and evaluate alternauve
designs. The high-level constraints—such as margins, spacing,
and the preferred location and orientation of OK and Cancel
buttons—are reflected in the generation scheme to enhance
designer control in constraining the resulting design.

DON~10
----- T =

O-BOX-CREATE-SHAPE-9 8 =]
fs oo

IX] LR 3alance : 80% sss [39..106]

1 LEFT heavy
1%] T8 Salance : 88% 28 [36..100]
¢ TOP heavy EREE]
-
==
|X] LR Symmetry : 3% s3s [2¢..100] sF—

1%l T8 Symmetry : 553 e3¢ [26..160] D

1X] Meg Space : B3% s3s [0, .85]

%] Stze Ratle : 93% ss5s [30..100] prssmemmary

1%} % 1w range : 355 [300..500] %"D

1%l ¥ in range : 2330 [20e..500] o

Evaluatad Rank : 1

Evaluated Scoroc : 59%

(Evaluation sumsary coapleted ‘ T ==
="
=

Nake this current design? (y/n) : |

Figure 10 Evaluation results of a selected dialog box.

Design Browser

The design browser displays alternative designs that are
generated automatically, and allows the designer to interact
directly with these visual representations. The design browser
maintains the design variants, internally, by instantiating
instances of a dialog box design schema that stores left-right,
top-bottom relations of bounds, exact locations of bounds, and
evaluation scores of a design.

Four important aspects of the design browser are shown in
Figure 11: (1) multiple layout structures can be viewed and
compared, (2) designs that satisfy all the specified evaluation
criteria are indicated by a bold boundary, (3) a numerical
ranking based on the total evaluation score is displayed next
to each visual representation of a dialog box, (4) the designer
can select alternative choices to refine a selected design
iteratively, DON reports detailed evaluation scores
corresponding to a dialog box design when the designer clicks
directly on the visual representation.

DON ranks multiple designs based on the total evaluation
score, which DON calculated using specified weights for each
evaluation criterion. A designer can request a certain number
of designs that satisfy the specified criteria. A designer can
also modify the weights, and request recalculation of the total
score and reranking of multiple designs. This functionality
provides an additional method to compare and evaluate multiple
designs, complementing the visual feedback of the display of
multiple designs.

5. IMPLEMENTATION

DON is implemented with the Automated Reasoning Tool
(Inference Corp.) [11] on workstations (Sun Microsystems).
The final designs from DON can be read into the Devguide
[22], an interactive Ul design tool, for further refinement. The
presentation design representation is generic in that additional
implementation models {14] can be developed that will translate
it into different toolkits.

A T A AR
CREATE-SHAPE
s == "0 =
=y 0o =
i~ o for]
=N 1 T
g = o
=10 = =
j =[] o
T oo
T "!;n pum—
L: e ﬂ
= —] T =
(=] oy
cf:-_—:: =D oeD n "
R — ==3
T o= = ‘ o=
T = e —]
[= =} j]
- T

Figure 11 Automatically generated multiple designs,
shown by the design browser.

6. SUMMARY

DON represents a step forward in UI development tools. It
shows how we can provide high-level control and expert
assistance in the UI presentation design process. These
capabilities assist a designer in generating UI designs and
provide easy ways for a designer to specify constraints. DON
applies graphic design principles in the dialog box layout
process, and uses evaluation metrics to improve visual clarity,
consistency, and aesthetic appearance.

Work can be done to refine the layout rules to use more
semantic information. We are exploring combining shape and
size analysis with more extensive analysis of parameter
relationships, such as parameter sequencing and dependencies.
Visual attribute analysis can be combined with interaction
object type analysis to place similar types next to each other
when there are no substantial differences in the shape and size.

To enhance DON's usability, we can develop more visual tools
based on the framework, such as a graphical tool that allows
a designer to view the layout in progress, and to interact
directly with the dialog box tree nodes to specify constraints.

The knowledge-based framework developed can be used as
the basis for integrating top-down and bottom-up approaches
to Ul design. By sharing representation of various stages of Ul

design, rules can facilitate mapping from either direction. To
build a true link from DON, which is a top-down iterative
design tool, to the interactive UI builders, we must capture the
reasons for modifications made by the designer and incorporate
them back into a set of the layout rules for use during future
designs.

ACKNOWLEDGEMENTS

The Graphics and User Interface Research Group at George
Washington University provided intellectual environment
supporting this work. Thanks to Shelly Heller, Jon Mckeeby,
Lucy Moran, and Lyn Dupre whose comments helped to
improve the clarity of the paper. Special thanks to Samuel
Moiina for his contribution in formulating evaluation metrics.
Financial support was provided by NSF Grant [RI-88-13179
and DMC-84-205-29, Siemens Corporation, and Sun
Microsystems.

REFERENCES

1 Apple Computer, Inc. Human Interface Guidelines: The
Apple Desktop Interface, Addison-Wesley, Reading, MA
1990.

2 Arens, Y., L. Miller, S. Shapiro, and N. Sondheimer.
Automatic Construction of User-Interface Displays, AAA/-
8 Proceedings, St. Paul, MN, August 1988.

3 Cardelli, L. Building User Interfaces by Direct
Manipulation, in Proceedings of the ACM SIGGRAPH
Symposiumon User Interface Software, ACM, New York,
1988, pp. 152-166.

4 Conover, T.E. Graphic Communications Today, West
Publishing Company, St. Paul, MN 1985.

5 Cossey, G. Prototyper, SmetherBames, Portland, OR,
1989.

6 deBaar,D.,J].Foley,and K. Mullet. Coupling Application
Design and User Interface Design, in Proceedings of
CHI'92-SIGCHI Computer-Human Interaction
Conference, ACM, New York, 1992, pp. 259-266.

7 Foley, J., W. Kim, K. Murray, and S. Kovacevic. UIDE-
An Intelligent User Interface Design Environment, in
Sullivan, J and S. Tyler (eds.), Intelligent User Interfaces,
Addison-Wesley, Reading, MA, 1991, pp. 339-384.

8 Foley,J., W.Kim, S. Kovacevic, and K. Murray. Defining
Interfaces at a High Level of Abstraction, JEEE Software,
6(1), January, 1989, pp. 25-32.

9 Galitz, W. Handbook of Screen Format Design, QE.D.
Information Sciences, Inc., Wellesley, MA, 1981.

10 Hurlburt, Allen. Layout: the design of the printed page,
Watson-Guptill Publications, New York, 1977.

11 Inference Corp. ART Reference Manual, Inference
Corporation, Los Angeles, CA, 1987.

12 Kim, W. Knowledge-Based Framework for an Automated
User Interface Presentation Design Tool, Ph.D. Thesis,
Department of Electrical Engineering and Computer
Science, George Washington University, Washington,
D.C., 1993.

13 Kim, W., and J. Foley. DON: User Interface Presentation
Design Assistant, in Proceedings of the ACM SIGGRAPH
Symposium on User Interface Software and Technology;
ACM, New York, 1990, pp. 10-20.

14 Kim, W., and J. Rhyne. Knowledge Base Model for
Automated User Interface Design, Report GWU-IIST-89-
29, Department of Electrical Engineering and Computer
Science, George Washington University, Washington,
D.C., 1989.

15 Linton, M., J. Vlissides, and P. Calder. Composing User
Interfaces with InterViews, IEEE Computer, Feb.. 1989.

16 Marcus, A. Graphic Designfor Electronic Documents and
User Interfaces, Addison-Wesley, Reading, MA, 1992.

17 Messinger, E., L. Rowe, and R. Henry. A Divide-and-
Conquer Algorithm for the Automatic Layout of Large
Directed Graphs, [EEE Transactions of Systems, Man, and
Cybernetics, Vol. SMC-21, No. 1, 1991, pp. 1-12.

18 Open Sofiware Foundation. OSFiMotif Style Guide,
Revision 1.0, Prentice-Hall, Inc., Englewood Cliffs, NJ,
1960,

19 Streveler, D., and A. Wasserman. Quantitative Measures
of the Spatial Properties of Screen Designs, in Proceedings
INTERACT 87,2ndIFIP Conference on Human-Computer
Interaction, Vol. 1, Elsivier Science Publishers,
Amsterdam, 1987, pp. 125-133.

20 Sukaviriya, P.,J. Foley, T. Griffith. A Second Generation
User Interface Design Environment: The Model and The
Runtime Architecture, INTERCHI'93, Conference on
Human Factors in Computing Systems, ACM, New York,
1993.

21 Sun Microsystems, Inc. and AT&T. OPEN LOOK GUI
Application Style Guidelines, Addison-Wesley, Reading,
MA, 1990.

22 SunMicrosystems, Inc. Open Windows Developer's Guide
1.1, Reference Manual, Part No. 800-5380-10, Revision
A, Mountain View, CA, June 1990.

23 Szczur, M., and P. Miller. Transportable Applications
Environment(TAE)PLUS, inProceedings of OOPSLA'S8,
Object-Oriented Programming Systems, Languages and
Applications Conference, ACM, New York, 1988.

24 Tullis, T. A Computer-Based Tool for Evaluating
Alphanumeric Displays, in Proceedings INTERACT 87,
2nd IFIP Conference on Human-Computer Interaction,
Vol. 2, Elsivier Science Publishers, Amsterdam, 1987, pp.
123-127.

25 Walker 11, John. A Node-positioning Algorithms for
General Trees, Software-Practice and Experience, Vol.
20(7), 1990, pp. 685-705.

26 Wiecha, C, W.Bennett, S. Boies,andJ. Gould. Generating
Highly Interactive User Interfaces, in Proceedings of
CHI'89-SIGCHI Computer-Human [nteraction
Conference, ACM, New York, 1989, pp. 277-282.

