
A Software Testbed for Advanced Projects

in Real-time And Distributed Computing

Richard A. Brown*

Department of Mathematics

St. Olaf College

Northfield, MN 55057

rab(lstolaf.edu

1 Introduction

The person in the street takes real-time computing for

granted, even if he or she does not know that term.

Computers may not be trusted by everybody, but the

public nevertheless assumes that they are used to con-

trol complex processes such as space shuttle motion and

automobile carburetion. In practice, real-world applica-

tions are very difficult. Some of the computer science

issues that must be faced include ‘hard” time deadlines,

fault-tolerance, formal specification, verification that a

system satisfies its specification, and coordination of dis-

tributed computing resources [4]. In addition, there are

innumerable complications when attempting to model a

physical process. We take the latter as a major reason

why real-time computing is often omitted from upper-

level work in undergraduate computer science programs.

Few undergraduates have either the computational

capability or the opportunity to design and implement a

significant real-time process-control application of com-

puting. Yet, given the significance of such problems

outside of academia and the recent flurry of research

activity in the area of real-time computing (see, for ex-

ample, [1, 2, 3 and 6]), it is increasingly desirable for

our students to encounter computing problems involv-

ing real-time constraints, distributed computing and re-

lated issues, in advanced courses and/or independent

projects.

The Trainset simulation presents a substantial

process-control problem, namely motion of idealized

*This material is based on work supported in part by the Office

of Naval Research under contract NOOO1 4-91-J-1219 to Cornell

University.

Permission to copy without fee all or psrt of this material is

grantsd provided that the copies are not made or distributed for

direct commercial advantage, the ACM copyright notice and the

title of the publication and its date appear, and notice is given

that copying is by permission of the Association for Computing

Machinery. To copy otherwise, or to republish, requires a fee

and/or specific permission.

ACM-24thCSE-2/93 -lN, USA
@ 1993 ACM o-8g791-566-6/93 /0002 /0247 . ..$l .50

trains along a track, that represents various difficulties

in real-time programming while stripping away gratui-

tous complication. Trainset was designed both for

student projects in real-time courses and for research

in formal methodology. It is the work of the Reliable

Real-time research group at Cornell University, directed

by Prof. Fred B. Schneider. The software requires only

ordinary workstation equipment to use, and provides a

C-language library of routinea that may be used to in-

teract with the simulated trains. The software provides

support for distributed computing and fault-tolerance,

and the simulation lends itself to formal specification.

These features make it accessible and available for a

wide range of advanced student projects in various fields

within computer science.

2 The Trainset software

Trains et is a real-time simulation of a railroad. The

software consists of a simulator, an interactive graph-

ics editor for defining railroad layouts, graphics moni-

tor programs for displaying the state of the railroad

and manually controlling it and a launch utility pro-

gram for coordinated startup of the various programs.

The railroad layout editor enables a user to draw track

configurations of virtually any desired shape, populaked

with one or more trains of various lengths. The graph-

ics monitor programs (described below) are easily oper-

ated, and can be used alone with a simulation even by

inexperienced users to get a sense of the difficulties in

controlling a railroad by computer.

The simulator provides a programmer’s interface,

called the Automatic Control Interface (ACI), that con-

sists of a library of routines and data structures for ex-

erting control actions (actuators) and gathering data

about the current state of a railroad (sensors).

Trainset has been implemented in C language on

Digital Equipment Corp. Unix (Ultrix) workstations us-

ing DECwindows/X-l 1 and either TCP/IP or DEC net.

247

http://crossmark.crossref.org/dialog/?doi=10.1145%2F169073.169473&domain=pdf&date_stamp=1993-03-01

!k.tml 1

=~~ul=or.w~ndow ~ ❑
-r his is sim/&ximulator

Oddcd cllent. channel O. descrlp S. time 2720. protocal O, cllent_id O
ident message “panel/pmnelIX’”

ildded client. channel 1. descrip 6, time 5460. protocol O. client_id 1
ldent message ..&t. viewer/vl cuerIX”

t

Control Panel ~H

&--J E5il
hl c1 St@.,w

‘:k.wd G %&km

&-----JEa
&Ml c! S@wa

~Ea
llrottle R8v9r88
.

GiWtdlcl

w

Figure 1: Sample railroad layout

/*

* Code segment that ini.ti. ates acceleration of

* a train T , allows that acceleration to take

* effect for 25 seconds, then travels until a

* block B is reached (or timeout occurs)

*/

printf(’’beginning acceleration\n”) ;

Accelerate(T, 20.0);

printf(’’continuing acceleration. ..\n”);

Sleep(25.O);

printf(’’polling until block xd is reached. ..\n”,

B);

poll_timeout_flag = O;

InitTimer(POLLING_TIMEOUT, O,

set-poll_timeout_flag) ;

while ((OCC = GetBlockOccupancy(B)) == OC_FREE

&k !poll_timeout-flag)

Sleep(POLLING_INTERVAL) ;

if (OCC == OC-ERROR) {

printf(’’error getting block occupancy!\n”);

exit (l);

3

if (poll-timeout-flag) {

printf(’’polling timed out after ~f sec\n”,

POLLING-TIMEOUT) ;

exit (l);

}

CancelTimero ;

/* assertion: occ

printf(’’performing

EmergencyStop(T) ;

== OC_OCCUPIED */

emergency stop\n”);

Figure 2: An example using the Automatic Control Interface (ACI).

248

The ACI library has been ported to Digital’s VAXELN

real-time kernel. An effort isunderway to port the soft-

ware to other Unix platforms and graphics systems.

When the Trains et software is started up, three win-

dows open on the display, as shown in Figure 1. One

of these, the Simulator Window, is a terminal window

that displays messages from the simulation. The re-

maining two windows make up the graphics monitor.

The viewer window shows the current positions of the

railroad tracks and trains in a simulation. The Control

panel window has controls and indicators, including

pushbuttons and slide bars. It is a graphical interface

for manually controlling trains and switch blocks.

The sample railroad layout displayed in the viewer

window of Figure 1 has two trains and 24 blocks, or

track segments. Each block has maximum and mini-

mum speed limits (not shown). In Figure 1, block cr 5

is a cross block that allows intersection of track paths;

block jn 8 is a join block for merging two paths; and

block sw 14 is a switch block for interactively selecting

between two paths.

The control panel comprises one subwindow for each

train and a pushbutton per switch block for toggling

between the straight and turned settings. Each train’s

subwindow includes indicators labelled Speed (current

train speed) and Goal (present goal speed desired for

that train); a Throttle control for setting a new goal

speed; labels showing the name of the train and its

state (Operational, Derailed or Collided); pushbut-

tons for performing an emergency stop, reversing the

train’s direction or performing station stop, i.e., a stop

at the next station block (such as block st 11); and indi-

cators for the emergency-stop and station-stop features.

A tutorial introduction to the software is provided in

the Trains et documentation.

The ACI routines fall into five categories.

c The GetDownload procedure establishes a network

connection with a running railroad simulator and

●

●

receives a report of the state of the railroad being

simulated.

ACI commands enable a program to change switch-

block positions, accelerate or decelerate a train for a

specified time period, set a new goal speed, change

the direction of a (stopped) train, perform an emer-

gency stop or enable/disable station stopping,

ACI queries enable a control program to obtain lim-

ited discrete state information about a railroad af-

ter a download has been received. They can report

whether or not a block is occupied, what a switch

block’s position may be (straight, turned or chang-

ing positions), whether a train is operational or not

and whether a train is moving or not.

●

●

ACI ~oting service procedures implement a ccJm-

mand arbitration facility in the simulator for use

in fault-tolerant control programs.

ACI utility procedures provide high-level general

purpose timing facilities.

The example control program segment in Figure 2

illustrates the use of the A(X. The GetDownload

procedure is assumed to have been issued before

this code segment is executed. The functions

Accelerate and EmergencyStop are ACI commands;

GetBlockOccupancy is an ACI query, and Sleep,

InitTimer and CancelTimer are ACI utility proced-

ures.

Note that the Accelerate command in Figure 2 re-

quests that a 20-second acceleration begin. That ccjm-

mand does not cause any suspension of the control p,ro-

gram. An explicit 25-second Sleep command is issued

in order to give the acceleration plan enough time to

complete. If a subsequent command affecting accel-

eration were issued before the 20-second acceleration

was complete, it would override that earlier Accelerate

command.

As an illustration of real-time computing issues, con-

sider the state of the system at the end of Figure 2.

Observe that it is not correct to conclude that block B

is occupied at that moment, even though the variable

occ has the value OC_OCCUPIED. This is because network

latency, the method of polling and the execution time

of control-program instructions all introduce delays that

occur after the variable occ is assigned.

3 Some features of the Trains~~t

railroad simulation

Trains et railroads are idealized versions of real rail-

roads. WElle Trains et railroads are simpler than their

real-life counterparts, the simplifications are ones that

do not make it appreciably easier to write programs

to control the railroad. For example, in Trains et the

acceleration of a train is always one of four constant

values A CC, O, –A CC and –Aemer (except during a

station stop). All secondary effects such as friction

are therefore neglected. However, the simulation in-

corporate es other real-time difficulties such as uncertain

knowledge of speed, indirect control of a realistic process

and ‘hard’$ time deadlines.

For example, after the initial download, no precise

knowledge of train speed or position is provided by

the simulator to an ACI control program. Information

about the current speed and position must be deduced

from knowledge of the initial state, of commands that

have been issued (such as a command to set a certain

goal speed) and of queries that have been made (such

249

as the train motion query, which returns only whether

a train is moving or stopped).1

Acceleration and deceleration latency illustrates in-

direct control of a realistic process. For instance,

Trainset trains do not stop immediately when an

emergency-stop command is issued. As in real railroads,

one must plan ahead: If insufficient distance is allowed

for a stop, then a collision or derailment may result.

Also, once a simulated train has derailed or collided, it

remains non-functional for the remainder of that simu-

lation. This cost of failure illustrates the “hardness” of

time deadlines.

Developing a reliable program that simply moves the

trains quickly without violating speed limits on individ-

ual blocks is itself a significant problem [5].

Trainset has also been used in advanced student

projects that do not emphasize real-time computing.

One project in computer network programming focused

on the simulator’s voting mechanism and distributed

computing capabilities. It involved replicating an ACI

demonstration program provided with the Trainset

distribution. In addition, several students have “come

up to speed” in computing by contributing implementa-

tions and ports of the Trainset programs to new com-

puting environments and windowing systems.

4 Summary and future work

The Trainset software provides a software testbed that

is available for advanced programming projects in com-

puter science. Trains et presents a simplified yet chal-

lenging real-time process-control problem that can be

approached as such by users with various levels of so-

phistication, from the novice “getting a feel” for the

difficulties of real-time problems to the researcher in-

vestigating formal methods in real-time computing. The

software may also be applied in student projects on top-

ics including computer networking and distributed com-

puting, with or without a real-time emphasis.

The software system is currently implemented in C

language on DEC equipment. Work in progress includes

porting the software to additional computing platforms.

5 Acknowledgements

I am indebted to Fred Schneider, dke.ctor of the RR project

and conceptual arcldtect of the Trainset software system,

who arranged for financial support that enabled me to visit

Cornell, and who has contributed to my professional devel-

opment in many ways.

Jacob Aizikowitz and Tony Lekas were the primary im-

plementors of early versions of the Trainset software.

6 References

1. Cooling, J. E., Software Design for Real-Time Sys-

tems, Chapman and Hall, 1991.

2. Fuhrt, B., et al, Real-Time Uniz Systems: Design

and Application Guide, Kluwer Academic, 1991.

3. Hooman, J., Specification and Compositional Ver-

ification of Real-Time Systems, Springer-Verlag,

1991.

4. Krishna, C.M. and Lee, Y. H., “Real-time systems,”

guest editor’s introduction, IEEE Computer, May

1991.

5. Marzullo, K., Schneider, F. and Budhiraja, N.,

“Derivation of sequential, real-time process-control

programs, “ in Foundations of Real-Time Comput-

ing: Formal Specijicaiions and Methods (A.M. van

Tllborg and G. M. Koob, eds.)$ Kluwer Academic,

1991, 39-54.

6. van THborg, A. M. and Koob, G. M., editors,

Foundations of Real-Time Computing, Kluwer Aca-

demic, 1991 (two volumes).

1In contrast to ACI control programs, the graphics monitor

programs receive much more complete information about current

speed and position.

250

