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Mobile and Replicated Alignment of Arrays in Data-Parallel Programs

Siddhartha Chatterjee" John R. Gilbert t Robert Schreiber *

Abstract

When a data-parallel language like Fortran 90 is corn-

pried for a distributed-memory machine, aggregate data

objects (such as arrays) are distributed across the processor
memories. The mapping determines the amount of residual

communication needed to bring operands of parallel opera-

tions into alignment with each other. A common approach

is to break the mapping into two stages: first, an alignment

that maps all the objects to an abstract template, and then a

distribution that maps the template to the processors.

We solve two facets of the problem of finding align-
ments that reduce residual communication: we determine

alignments that vary in loops, and objects that should have

replicated alignments. We show that loop-dependent mo-
bile alignment is sometimes nece.ssary for optimum perfor-

mance, and we provide algorithms with which a compiler

can determine good mobile alignments for objects within do

loops. We also identify situations in which replicated align-

ment is either required by the program itself (via spread

operations) or can be used to improve performance. We

propose an algorithm based on network flow that deter-
mines which objects to replicate so as to minimize the total
amount of broadcast communication in replication. This

work on mobile and replicated alignment extends our ear-

lier work on determining static alignment.

1 Introduction

Parallelism is expressed in data-paralld array languages
like Fortran 90 [1] in the form of operations on arrays and

array sections. Compiling such a program for a distributed-

memory parallel machine requires a model for the mapping
of the data to the machine. We view the mapping as an

alignment to a Cartesian index space called a template,
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followed by a distribution of the template to the proces-

sors. The alignment phase positions all array objects in the

program with respect to each other so as to reduce realign-
meat communication cost. In the distribution phase that

follows, the template is distributed to the processors. This

two-phase approach separates the language issues from the
machine issues, and is used in Fortran D [7], High Perfor-

mance Fortran [10], and CM-Fortran [16].

The goal of compilation is to produce data and work

mappings that reduce completion time. Much of this goal
can be achieved by judicious alignment of the arrays. We

consider only alignment here.

Completion time has two components: computation and
communication. Communication can be separated into in-

trinsic and residual communication. Intrinsic communica-

tion arises from computational operations such as reduc-

tions that require data motion as an integral pan of the

operation. Residual communication arises from nonlocal

data references required in a computation whose operands

are not mapped to the same processors. As we only con-

sider alignment in this paper, we take the view that objects

are mapped identically to processors if and only if they are

aligned. We use the term realignment to refer to residual

communication due to misalignment; we seek to determine

array alignments that minimize realignment cost. Commu-
nication for transpose, spread, and vector-valued subscript

operations can in some cases be removed by suitable align-
ment choices. Our theory makes these forms of communi-
cation residual rather than intrinsic, and thus encompasses

such optimizations [5].

A suitable alignment for the code fragment of Figure 1(a)

is shown in Figure 1Co). Note that V moves at each iteration

of the loop; it has a mobile alignment.

In this paper, we present algorithms to automatically de-

termine good mobile alignments. We develop a detailed

and realistic model of realignment cost that accounts for

control flow in loops, and we formulate the alignment prob-

lem as a constrained optimization of the realignment cost.

We present approximate solutions for mobile stride and

offset alignment for array objects occurring within loops,
where we allow the offset alignment to be a compiler-

determined affine function of loop induction variables. We

also show that replication may be viewed as an extension of

offset alignment, and show that the problem of determining



real A(100,100), V(200) real *(lO0,100), V(200)

template T
align Z(i,j) with T(i,j)

do k = 1, 100

A(k.l:lO0)

enddo

= A(k,l:lO0) + V(k:k+99)

do k = 1, 100

realignV(i) with T(k,i-k+l)

A(k,l:lO0) = A(k,l:lO0) + V(k:k+99)

enddo

(a) (b)

Figure 1: (a) A Fotlxan 90 program fragment requiring mobile alignment. Co)A mobile alignment for the program fragment.

the optimal replication strategy can be reduced to a network

flow problem.

Several other authors have considered static align-
ment [2, 9, 12, 13, 17]. Our earlier research [4, 5, 8]

dealt with static alignment. We extend that work to handle
mobile alignment here. Knobe, Lukas, and Steele [12] and

Knobe, Lukas, and Dally [11] address the issue of dynamic

alignment. Their notion of dynamic alignment is alignment

depending on quantities whose values are known only at

runtime, which may include loop induction variables as
well as other arbitrary runtime values. This paper focuses

on mobile alignment in the context of loops, where the

alignment of an object is an affine function of the loop
induction variables.

The paper is organized as follows. Section 2 formalizes

the notion of alignment and defines mobile alignment. It
also introduces our graph model for the alignment problem.

Section 3 poses and solves the problem of mobile stride

alignment. Section 4 poses and solves the problem of

mobile offset alignment, covering fixed- and variable-sized

objects and loop nests. Section 5 describes an algorithm for

determining replicated offset alignments. Finally, Section 6

presents conclusions, open problems, and future work.

2 The alignment problem

An alignment is a mapping that takes each element of

an array to a cell of a template. The template is a con-

ceptually infinite Cartesian grid, with as many dimensions

as necessary; it is a piece of "graph paper" on which all

the array objects in a program are positioned relative to

each other. Tile alignment phase of compilation aligns all
array objects of the program to the template. The disrribu-

tionphase then assigns template cells to actual processors.

This paper discusses only the alignment phase.

If A is a d-dimensional array, and g_ through g, are

integer-valued functions,we write

A(iz,..., id) [] T[gl(iz, • • •, id),..-, g,(il,..., id)]

to mean that the specified element of A is aligned to the

specified element of the t-dimensional template T. Multi-

pie templates may be useful in some cases, but this paper
only considers alignment to a single template. Thus we

omit the template name and just write A(i) [] [.q(i)], where
i is ad-vector and # is a function from d-vectors to t -vectors.

We restrict our attention to alignments in which each axis

of the array maps to a different axis of the template, and

arrayelementsareevenlyspacedalongtemplateaxes.Such

an alignmenthas threecomponents: ax/s(themapping of

arrayaxes totemplateaxes),stride(thespacingof array

elementsalongeachtemplateaxis),and offset(theposition

of thearrayoriginalongeach templateaxis).Each gt is

thuseitheraconstantft orafunctionofasinglearrayindex

oftheform sti,h+ ft. The arrayisalignedone-to-oneinto

thetemplate.(InSection5,we extendthistoone-to-many

alignmentsinwhich anarraycan bereplicatedacrosssome

templateaxes.)

An array-valuedobject(objectforshort)iscreatedby

everyarrayoperationand by everyassignmenttoa section

ofanarray.The compilerdeterminesanalignmentforeach

objectoftheprogram ratherthantoeachprogram variable.

The alignmentof an objectina loopmay be a functionof

theloopinductionvariable;such an alignmentismobile.

2.1 Examples

We now give examples of the various kinds of alignment.

Example 1 (Offset alignmen0 Consider the statement

ACI:N-1) = ACI:N-1) + B(2:N).

If the alignments areA(i)[][i] and B(i)[][i], then aone-unit

nearest-neighbor shift is necessary. However, the statement

can be executed without communication if A(i) [] [i] and
B(i) [] [i- 1].

Example 2 (Stride alignment) Consider thestatement

A(I:N) = A(I:N) + B(2:2*N:2).
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If A(/) [] Is]and B(i) [] [z'],thengeneral communication
is needed to bring A and the section of B together. The

alignments A(i) [] [21] and B (i) [] [s] avoid communication.

Example 3 (Axis alignment) Consider the statement

B = B + transpose(C),

where B and C are two-dimensional arrays. If B(it, i2) []

[it, i2] and C(il, i2) [] [il, i2], then general communication
is needed to transpose C. However, if B(il, i2) [] [il, i2]

and C(il, i2) [] [i2, fi], then the operands are aligned, and

no communication is necessary.

Example 4 (Mobile offset alignment) Consider the code

fragment in Figure 1. This can be executed optimally if

A(il, i2) []k [il,i2], and V(il) []k [k, il - k + 1]. We
use the symbol []k to emphasize the dependence of the

alignment on the loop induction variable k.

Example S (Mobile stride alignment) Consider the code

fragment

real A(IO00), B(IO00), V(20)

dok= I, 50

V = V + A(l:20*k:k)

B(l:20*k:k) = V

enddo

Suppose A(i) m_ [i] and B(i) []k [,]. If the stride alignment

of V is static, then any alignment of V is equally good, with

a cost of two general communications per iteration. The

cost drops to one general communication per iteration with
the mobile stride alignment V(i) []k [k:].

2.2 Alignment-distribution graphs

Our main tool in this paper is a modified and anno-

tated data flow graph that we call the alignment-distribution

graph, or ADG for short. In this section we briefly describe
the ADG and formulate the alignment problem as an op-

timization problem on the ADG. A companion paper [3]

presents a more formal and complete treatment of the ADG.

The ADG is closely related to the static single-assignment

form of programs developed by Cytron et aL [6]. Figure 2
shows the ADG for the program fragment in Figure 1.

Nodes in the ADG represent computation; edges repre-

sent flow of data. Alignments are associated with endpoints

of edges, which we call ports. A node constrains the rel-
ative alignments of the ports representing its operands and

its results. An edge carries residual communication cost if

its ports have different alignments. The goal is to provide

alignments for the ports that satisfy the node constraints

and minimize the total edge cost.

0Kd:100)

Fanout

Atn

Section

(k_+99)

Faneut

Figure 2: The ADG corresponding to the program fragment

of Figure 1.



2.2.1 Edges

The ADG has a port for each (static) definition or use of an

object. An edge joins the definition of an object with its

use. Multiple definitions or uses are handled with merge,
fanout, and branch nodes as described below. Thus every

edge has exactly two ports. The purpose of the alignment

phase is to label each port with an alignment. All communi-
cation necessary for realignment is associated with edges;

if the two ports of an edge have diffexent alignments, then

the edge incurs a cost that depends on the alignments and
the total amount of data that flows along the edge during

program execution.

2.2.2 Nodes

Every array operation is a node of the ADG, with one port

for each operand and one port for the result. Figure 2

contains examples of a "+" node representing elementwise
addition, a Section node whose input is an array and whose

output is a section of the array, and a SectionAssign node
whose inputs are an array and a new object to replace a

section of the array, and whose output is the modified array.

(SectionAssign is called Update by Cytron et al. [6].)

When a single use of a value can be reached by multiple
definitions, the ADG contains a merge node with one port

for each definition and one port for the use. (This node

corresponds to the _-function of Cytron et al. [6].) When
a single definition reaches multiple uses within the same

basic block, the ADG contains a fanout node. When a

single definition can reach multiple alternate uses (e.g., due
to conditional constructs), the ADG contains a branch node.

Figure 2 contains examples of merge, fanout, and branch

nodes. Fanout nodes represent opportunities for so-called

Steiner optimization, as discussed in Section 6. Finally, the

ADG for a program with loops contains transformer nodes

that delimit iteration spaces as described below.

Nodes constrain the alignments of their ports. An ele-

mentwise operation like "+" constrains all its ports to have

the same alignment. A merge or fanout node enforces the

same constraint. If at is a two-dimensional array in a two-

dimensional template, a node _;ramspo s e (A) constrains its

output to have the opposite axis alignment from its input;

thus any communication necessary to transpose the array is

assigned to the input or output edges rather than to the node

itself. Section and SectionAssign nodes enforce constraints

that describe the position of a section relative to the position

of the whole array; for example, the node for the section

at (10: S0: 2) constrains its output object to have the same

axis as its input, twice the stride of its input, and an offset
equal to 10 times the stride of A plus the offset of A.

2.23 Iteration spaces

The ADG represents data flow, not control flow. To model

communication cost accurately, we must account for the
fact that data can flow over a particular edge many times

during the program's execution, and each time the data

object may have a differeat size. Section 6 discusses how
to model arbitrary control flow. Here we deal with the

important special case in which the only control flow is in

the form of do loops.

An edge inside a nest of k loops is labeled with a k-

dimensional iteration space, whose elements are the vec-

tors of values taken by the loop induction variables (LIVs).

Both the size of the data object on an edge and the align-

ment of the data object at a port are functions of the LIVs,

so they may vary ovar the iteration space.

For every edge that carries data into, out of, or around a

loop, we insert a transformer node to describe the relation-

ship between the iteration spaces at the two ports. Figure 2

contains examples. A loop-back transformer node, in a

loop do k -- 1: h: a, constrains the alignment of its input

as a function of k + s to equal the alignment of its output as

a function of k. Consider a ( 1, k� 1, k + 1) transformer node

as in Figure 2. An offset alignment of 2k + 3 on the input

("k") port and of 2k + 1 on the output ("k + 1") port satisfies
the node's constraints. The (1/1, 1) transformer node on

entry to this loop constrains its input position (which does

not depend on k) to equal its output position for k = 1.

2.3 Cost model

Finally, we describe the communication cost of the pro-

gram in terms of the ADG. A position is an encoding of

a legal alignment. The distance d(p, q) between two po-

sitions p and q is a nonnegative number giving the cost

per element to change the position of an array from p to q.

The set of all positions is a metric space under the distance
functiond [4].

In this paper we will use two metrics: the discrete metric,

in which d(p, q) = 0 if p = q and d(p, q) = 1 otherwise,

and the grid metric, in which p and q are grid points and

d(p, q) is the Li (or Manhattan) distance between them.
We use the discrete metric to model axis and stride align-

ment, since any change of axis or stride requires general
communication. The discrete metric is a simple model

of general communication that abstracts away from such

machine-specific details as routing, congestion, and soft-

ware overhead. We use the grid metric to model offset

alignment. The grid metric is separable, meaning that the

distance between two points in a multidimensional grid is

equal to the sum of the distances between their correspond-

ing coordinates in one-dimensionalgrids. This property

allows allows us to solve the offset alignment problem in-
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dependentlyforeachaxis [4].
We model the communication cost of the program as

follows. Let E be the set of edges of the ADG, and let

27_ be the iteration space for edge (z, y). For a vector i in

Zxy, let w_y(i) be the data weight, which is the size of the
data object on edge (z, y) at iteration i. Finally, let _r be

a feasible mobile alignment for the program--that is, for

each port z let x_(i) be an alignment for z at iteration i

that satisfies all the node constraints. Then the realignment

cost of edge (z, y) at iteration i is w_(i), d(Tr=(i), _ry(i)),

and the total realignment cost of the program is

C(r) = Z Z w_(i).d(Tr,(i),r_(i)).
(x,y)EE iE_fv

(1)

Our goal is to choose _r to minimize this cost, subject to the
node constraints.

2.4 Restrictions on mobile alignment functions

So far we have not constrained the form that mobile

alignments may take. In principle, we could allow them to

be arbitrary functions of the LIVs. For reasons of tractabil-

ity, we consider only the (important) case in which mobile

alignments of objects to be affine functions of the LIVs.
Thus, the mobile offset or stride alignment function for an

object within a k-deep loop nest with LIVs it, ..., ik is

of the form ao + alil + • • • + a_ik, where the coefficient

vector a = (ao,..., ak) is what we must determine. We
write this alignment succinctly in vector notation as ai r ,

where i = ( 1, it,..., ik). Both a and i are (k + 1)-vectors.

This reduces to the constant term ao for an object outside

any loops.
Likewise, we restrict the extents of objects to be affine

in the LIVs, so that the size of an object is polynomial in

the LIVs.

3 Mobile stride alignment

We use the discrete metric to model communication

costs arising from stride changes. Let the strides at the
ports of an edge be a( r and a'[ r. If a = a', then the ports

will be aligned at every iteration; if the constant terms ao

and a_ differ but all other components are equal, then they
are always misaligned; otherwise, they are almost always

misaligned. We approximate this situation by considering
the objects to be misaligned in all iterations unless a = a'.

As the distance function in equation (1) is independent

of the LIV, we can move it outside the summation over

the iteration space, and write the communication cost of

edge (z, y) as the product of a weight and a distance. The

distance is the discrete metric on (k+ 1)-vectors; the weight

is the sum over all iterations of the size of the object at

each iteration, W = _,iez w,_v(i)" Since the weight is
polynomial in the LIVs, the's_m can be evaluated in closed

form. We can now use compact dynamic programming, a

technique we have previously developed for static axis and

stride alignment [5], to solve this problem.

4 Mobile offset alignment

Consider an object with offset alignment at q'. Since the

problem is separable, we can determine offsets with respect
to one template axis at a time. If there are no loops in the

code, the solution reduces to our earlier solution for static

offset alignment [5].
The contribution of edge (z, y) to the residual commu-

nication is

C_u = _ w_(i)l(a- _,)ir[, (2)
iE_z_

where _r_(i) = c_[r, _rv(i ) = a'f, and _ is the iteration

space associated with the edge. Even if w_v (i) is constant,
the absolute value in equation (2) makes its closed form

complicated. Rather than seek an algorithm to minimize
this cost function, we choose instead to approximate it

by one for which the solution is straightforward. After

reviewing the solution for static offset alignment, we show
the solution for fixed-size objects in singly-nested loops

(k -- 1), and then generalize to variable-size objects and to

loop nests.

,1.1 Offset alignment by linear programming

We review how the static offset alignment problem for

the grid metric can be reduced to linear programming [5].
Let the integer a-_ be the offset alignment of port z. Then

the residual communication cost (which is the function we

want to minimize) is C(Tr) = _,(,:,z,)_e C,:_(r); so

c(.): E
(x,y)EE

Nodes introduce linear constraints relating the offsets of

their ports. See [3] for more details. To remove the ab-

solute value from the objective function, we introduce a

variable 0_ for every edge (z, y) of the ADG, and add two

inequality constraints,

O_:u+r=-Tr u >_ 0

O_y - Tr,: + Tr_ > O,

that guarantee that 0_ > lTr, - rul. The new objective
function is then

Z WxyOzy"

(z,y)EE



The transformed problem is equivalent to the original one,

becauseO.v = [_r.-Tru[ at optimality. This transformation

introduces IE[ new variables and 2[E[ new constraints.
If the offsets that result from the linear program are frac-

tional, we round them to integers. The rounded solutions

are not necessarily optimal integer solutions; in ganeral,

rounding an 1.2 solution may not even preserve feasibil-

ity. However, in the case of offset alignment with the grid

metric, we argue that rounding is a reasonable approach. It

is straightforward to round the offsets so as to satisfy all

the node constraints. The template can be thought of as

a discrete approximation to a continuous L1 metric space

in which the edge costs are continuous functions of real-

valued offsets. The unfounded LP optimizes this problem

exactly, so we expect that the discrete optimum is not very

sensitive to rounding. We will refer to this algorithm as

rounded linear programming, or RLP. (We have also exper-

imented with using mixed integer linear programming.)

4.2 Fixed-size objects and singly-nested loops

Assume for this section that the data weight of edge

(x,y) is constant and equal to 1, and that Zz_ = t:h:s.

Call (,_ - a')i T the span of edge (x, y) at iteration i. If

the span does not change sign in the interval It, h] (as

shown in Figure 3(a)), the summation and the absolute

value in equation (2) can be interchanged. Then Czu =

I_,iet: h: ,(a - a'), q" [, the closed form for which is

g+h,
c. - h - 8t + 8I( o - + - (3)

Note that the team inside the absolute value is the average

distance spanned by edge (z, y). We can reduce this to
RLP with one new variable per edge.

In general, however, the span may change sign in the

iteration space, and interchanging the summation and the

absolute value is incorrect, as shown in Figure 30a). In

this case, we partition the iteration space into m equal sub-

ranges I],..., Z,,, each subrange corresponding to a set of

consecutive iterations, and decompose the communication
cost as follows:

m

C=_ = _ _ I(a- d)irl . (4)

j----1 iEIj

We then pretend that the span does not change sign within
any subrange, which leads to the approximate cost model

fn

c,, = -  ')iTI. (5)
j----I iEIj

Now we fix m, expand the outer sum explicitly, and eval-

uate each inner sum using equation (3), as shown in Fig-

ure 3(c). Clearly, the span can change sign in at most one

(a)

(b)

(e)

'Commm_lcation at iteration I

D

G

B

Iteration

E

A B H C Iteration i

l Comnmnlcation at Iteration 1

A B P Q C Iteration

Figure 3: Approximating the cost of communication in

loops. The actual communication cost is equal to the area

under the heavy curve. (a) If the communication function

does not have a zero crossing, then ABDC = A BGE, and

our approximation is exact. (b) If the communication func-

tion has a zero crossing, then ABD + BCE _ ACGF.

The maximum relative error in approximation occurs when

B coincides with H, and is proportional to AC. (c) To re-

duce the maximum relative error, we partition the iteration

space AC into subranges AP, PQ, and QC. As there are
no zero crossings in subranges PQ and QC, the approx-

imations there are exact. The approximation in subrange
AP is incorrect, but the maximum relative error is reduced.

In general, at most one of the subranges can have a zero

cmssing.



subrange; therefore, at least (m - 1) of the subrange sums
are correct. We then reduce to RLP with m new variables

per edge.
We now bound the error. We can show that the cost

C at the approximate solution exceeds the cost at the best
possible solution by at most a factor of (1 + 2/m 2). (We can
further reduce the error bound by using unequal intervals.)

The discussion above suggests several possible algo-
rithms for solving the mobile offset alignment problem,
which we now list.

1. Unrolling: Make every iteration a subrange, and use
RLP. This is equivalent to unrolling the loop. It is
exact, but is impractical unless the number of iterations
is small.

2. State space search: Approximate the iteration space
as a single subrange, and use RLP. Using this solution
as an initial guess, optimize the exact cost equation (4)
by, for example, steepest descent.

3. Tracking zero crossings: Split the iteration space
into two equal subranges, and use RLP. If the span has
a zero crossing in the range, locate it, and move the

subrange boundaries to coincide with this point. Now
solve the new RLP and iterate until convergence. This
solves a sequence of fixed-size problems, each with

2[EI new variables. Convergence of this method is
not gnaranteed.

4. Reeursive refinement: Approximate the iteration
space as a single subrange, and use RLP. Now ex-
amine the solution to determine subranges (at most

one per edge) in which the span has a zero crossing.
Break each subrange in two at the zero crossing, and
formulate and solve a new RLP. Continue the refine-

ment until some stopping criterion is satisfied (e.g.,
there are no more subranges to be refined, the ob-

jective function shows no further improvement, we
run out of time). This requires solving a sequence of

progressively larger problems.

5. Fixed partitioning: Partition the iteration space into
three subranges, and use RLP. The solution is guar-
anteed to be within 22% of optimal. This requires

solving a single problem with 31El new variables. (A
five-way partition would reduce the error bound to
8%3

We advocate the fixed partitioning method as a good com-
promise between speed, reliability, and quality.

4.3 Variable-size objects in singly-nested loops

Now suppose that Z=_ = t: h : s and that the data weight
of edge (z, y) at iteration i is/_o + fill, where/_o and fll

are integer constants. Then the communication cost of the
edge is

C=y= E (fl°+flli)l(a--_')iT["
/El:h:#

Assuming the span does not change sign in [l, h], we
can write the communication cost of edge (z, V) as

where t70 -- _-_iEt:h:, l, trl = _"_.iEt:h:, i, and tr 2 =

_"_iEt: h : • i2 can be evaluated in closed form:

_o = (h-t+s)/s:

_r, = (S_ro2 + (2e - s)_ro)/2.

_r2 = (2s2¢03 + (6St-- 3S2)a02 + (6t 2 -- 6St + S2)a0)/6.

We then determine the alignment coefficients as in Sec-
tion 4.2.

4.4 Loop nests

The method generalizes to loop nests as follows. Divide
the index range for each LIV into three subranges. The
Cartesian product of this decomposition divides the itera-
tion space into 3k subranges, over each of which we assume
that there is no sign change in the span; we sum the cost over
each subrange, yielding one term in the approximate cost.
We then solve for the minimizer of the approximate cost as
in Section 4.2. It is also possible to use other quadrature

rules to approximate the cost over each subrange.
For a k-deep loop nest, the problem has 3k IEI variables.

This technique will therefore not scale well for deep loop
nests. We do not expect this to be a problem for Fortran 90,
where array operations and forall loops are used to ex-
press in parallel what would be loop code in a sequential

language.
The Cartesian product formulation handles imperfect

and trapezoidal loop nests quite naturally. The key to this
is the transformer nodes that bridge the different levels of

the loop nest.

5 Replication

Until now we have considered alignment as a one-to-one

mapping from an object to the template. We now relax our
definition and make it a one-to-many mapping, introducing
the notion of replication. We define replication as an offset
alignment that is a set of positions rather than a single
position. We restrict the possible sets of positions to be
triplets 1: h: s.



A d-dimensional object aligned to a t-dimensional tem-

plate has d body axes (which require axis, stride, and offset

alignments) and (t - d) space axes (which require only off-

set alignments). Our notion of replication allows the offset

alignment along a space axis of an object to be a regular

section of the corresponding template axis. We use the

• symbol • to indicate replication across an entire template

axis. For example, A(i) [] [i, 10] aligns A with one posi-

tion along the second template axis; A(i) [] [i, 10:20:2]

aligns A with a subset of the second template axis; and

A(i) [] [i, .] replicates A across all of the second template

axis. A broadcast communication occurs on an edge along

which data flows from a fixed offset to a replicated offset.

5.1 Replication labeling

Offset alignment begins with a phase called replication

labeling, whose purpose is to decide which ports of the

ADG should have replicated positions. In this section, we
propose an algorithm for replication labeling. Our algo-

rithm labels ports as being replicated or non-replicated, but

does not determine the extent of replication. Instead, we

plan to generate the extents of replicated alignments in a

storage optimization phase that follows replication.

There are three sources of replication:

• A spread operation causes replication.

• The use of lookup tables indexed by vector-valued

subscripts is more efficient if the lookup table is repli-

cated across the processors; we will replicate them

with the programmer's permission.

• A read-only object with mobile offset alignment in a

space axis can be realized through replication.

Subject to these sources, we want to determine which other

objects should be replicated, in order to minimize broadcast

communication during program execution. We model the

problem as a graph labeling problem with two possible

labels (replicated, non-replicated) and show that it can be
solved efficiently as a rain-cut problem.

Figure 4 shows why replication labeling is useful. In the

example, a broadcast will occur in every iteration if A is

not replicated, while a single broadcast will occur (at loop

entry) if it is replicated. "Inks ks the solution found by our
method.

After replication labeling, we discard from the ADG

every edge with a replicated endpoint and proceed to find

offsets for the non-replicated ports as described in Sec-

tion 4. The justification for this is that an edge whose

tail is replicated requires no communisation, while an edge

whose head is replicated requires the same amount of com-

munication regardless of the offsa of the (non-replicated)
tail.

real t(lO0), B(100,200)

do K = 1,200

t = cos(t)

B = B + spread(t, dim=2, ncopies=200)
enddo

Figure 4: Replication of the array A.

5.2 Labeling by network flow

Recall that we determine offsets independently for each

template axis. We call the axis we are currently labeling the

current axis. We must label every port of the ADG either

"replicated" (R) or "non-replicated" (N). The constraints

on this labeling are as follows:

1. A port for which the current axis is a body axis has
label N.

.

.

.

.

The node for a spread along the current axis has its
input port labeled R and its output port labeled N. 1

A port for a read-only object with a mobile alignment
in the current axis, and for which the current axis is a

space axis, has label R.

Some other ports have specified labels, such as ports
at subroutine boundaries, and ports representing repli-

cated lookup tables.

At every other node, all ports must have the same
label.

Subject to these constraints, we want to complete the

labeling to minimize replication communication. We as-

sociate with each ADG edge a weight that is the expected

total communication cost (over time) of having the tail non-

replicated and the head replicated; the weight is therefore

the sum over all iterations of the size of the object commu-
nicated.

The object is to complete the labeling, satisfying the

constraints, and minimizing the sum of the weights of the

edges directed from N to R ports. We now show that this is

a rain-cut problem and can be solved by standard network

flow techniques.

Theorem 1 An optimal replication labeling can be found
by network flow.

tThis soundsstrange,but it correctlyassigns any necessary commu-
nicationto the inputedge ratherthan to the node. Thus a spread node
performs neithercomputationnor communication, but just converts a
replicated objectto ahigher-dimensionalnon-replicatodone.



Proof: Wedefineaweighted,directedgraphG, which is

a slightly modified version of the ADG. The vertices of G
are as follows: Each node of the ADG except current-axis

spreads is a vertex of G. If the node has a port labeled N
or R, the vertex of G has the same label. (No node except

a current-axis spread can have two ports with different la-

bels.) Each current-axis spread corresponds to two vertices

of G, one for each port, with the input-port vertex labeled R

and the output-port vertex labeled N. Finally, G has a new
source vertex s labeled N and a new sink vertex t labeled

R. The edges of G are as follows: Each directed edge of the

ADG corresponds to an edge of G with the same weight.

Also, there is a directed edge of infinite weight from the

source, to every vertex with label N, and a directed edge

of infinite weight from every vertex with label R to the sink
t.

A cut in G is a partition of its vertices into two sets X
and X, with s 6 X and t E -X. The cost of a cut is the total

weight of the edges that cross it in the forward direction,

that is, thetotal weight of directed edges (z, V) withz E X

andv 6 X.

Every replication labeling is a cut, and the cost of the

labeling is the same as the cost of the cut. Every cut of

finite cost is a replication labeling (since no infinite-cost

edge can cross it in the forward direction), and hence a
minimum-cost cut is an optimum replication labeling. The

max flow/min cut theorem [14, Theorem 6.2] says that
the cost of a minimum cut is the same as the value of a

maximum flow from the source to the sink. []

Both the max flow and the min cut can be found in low-

order polynomial time by any of several algorithms [14,15].

In particular, it can be solved using linear programming.
This is ideal for us, since we already require a linear pro-

gramming package for determining mobile offset align-
ments. This is less efficient asymptotically than other meth-

ods, but should be adequate for our purposes.

6 Remarks and Conclusions

We have presented compiler optimizations for determin-

ing replication and mobile offsets within loops. We have

proved that an optimal replication labeling can be found by
network flow. For mobile alignment, we have presented

an approximate reduction to rounded linear programming,
with exror bounds on the solution quality.

We now describe several extensions we are currently

pursuing.
The framework for determining mobile offset alignment

can be extended to handle user-defined runtime functions.

The idea is to incorporate such functions in the offset align-

ment, and treat a mismatch in positions as a shift of un-

known distance. This allows us to use techniques similar

to those used in Section 4 to solve the problem.

While we have concentrated on loop programs, our

framework can in fact deal with arbitrary control flow.

Static single-assignment form can be constructed for pro-

grams with arbitrary control flow graphs. In the presence of

arbitrary control flow, we can use the control dependence

graph [6] to associate a control weight c, of execution with

every edge e of the ADG, and minimize the expected re-

alignment cost

Z y_ c=v(i), wxv(i), d(r,_(i), _rv(i)).
(x,lt)EE iEZ=_

Fanout nodes in an ADG represent the possibility of

Steiner optimization, in which we determine an optimum

fanout tree for communicating an object from the position

in which it is defined to the positions in which it is used [5].

The fanout node is an approximation to a Steiner tree, which

should be constructed in a pass after alignments have been
determined.

Our replication algorithm does not determine the extent

of replication for an object. This could be handled after

replication labeling by propagating lower bounds on such

extents. The algorithm also does not deal with storage

allocation issues for replicated objects. In particular, it does

not deal with the possibility of storing just one copy per

physical processor rather than a copy per template cell. We
feel that this decision fits with other storage optimization

decisions in a separate phase of the compiler.

A chicken-and-egg situation exists between replication

labeling and determining mobile offset alignment, as repli-
cation can be motivated by a mobile alignment for a read-

only object. Our current proposal is to iterate the replication
labeling and mobile alignment phases until quiescence.

The only reason for restricting replication to space axes

is that we do not yet completely understand the ramifica-

tions with regard to storage and communication of allowing

replication in body axes. Extending the notion of replica-

tion to body axes would provide a more elegant theory.

We do not, however, foresee extending the definition of

alignment to make it a many-to-one mapping (collapsing).

This complicates the alignment phase, and we feel that it

is best handled in the distribution phase by mapping some

template axes to memory. Clearly, there are interactions be-
tween alignment and distribution, as decisions taken in the

distribution phase (such as mapping certain template axes

to memory) can radically alter the assumptions made in the

alignment phase. We propose handling such interactions

by iterating the two phases until quiescence.

We now have a comprehensive theory of alignment anal-

ysis within a single procedure. Our next major efforts are

to validate our approach by implementing these techniques,



to develop a theory of distribution, and to understand the

interprocedural aspects of alignment and distribution anal-

ysis.
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