
Cache Coherence Using Local Knowledge *

Ervan Darnell t Ken Kennedy

Computer Science Department, Rice University, Houston, TX 77251-1892

Abstract

Typically, commercially available shared memory
machines have addressed the cache coherence problem
with hardware strategies based on global inter-cache
communication. However, global communication lim-

its scalabihly and eficiency.
“Local knowledge’ ’coherences trategies, which avoid

global communication at run-time, ofler better scal-
ability, at the cost of some additional cache misses.
The most eflective Iocalknowledge strategies described
in the literature are those based on generation time-
stamps (TS).

We propose a new strategy, TS1, that requires
less extra storage than TS, only one extra bit per
cache line, and can produce more cache hits by ex-
ploiting sophisticated compiler analysis. TS1 handles
common synchronization paradigms including DCMLL,
I) CIACFtCISS, and critical sections.

Early results show TS1 is, worst case, slightly
slower than TS. Best case, TS1’s flexibility allows for

significant improvements.

1 Introduction

Data race free programs executing on a shared
memory multiprocessor are expected to have the same
semantics as if they were executing on a sequen-
tial processor. For this to be the case, memory
must appear sequentially consistent [10]. Caches on
shared memory multiprocessors must have some global
knowledge about executing programs otherwise they
could fail to preserve sequential consistency by retain-
ing stale values.

Most approaches to the cache coherence problem
have focused on hardware mechanisms to maintain
coherence. Unfortunately, the overhead of maintain-
ing coherence in hardware can be high; scaling sys-
tems based on hardware coherence is a difficult prob-
lem [15]. Snoopy cache strategies, which monitor
some common bus, are now in common use for small

scale systems [16, 18]; however, snoopy strategies are
problematic for large-scale machines because such ma-
chines cannot be based on a single, central broadcast

medium for lack of sufficient bandwidth. Directory
strategies [2, 8, 11, 19], in which a directory entry as-

sociated with each memory location (or cache line)
indicates which processors have cached values for that

location, seem more promising for large-scale systems.
However, directories can require large amounts of ad-

ditional storage and directory maintenance operations
may substantially increase network traffic.

As an alternative to using a hardware mechanism
that supports global communication between caches,
a compiler could perform global analysis and augment
the code with cache control directives to maintain co-
herence. This approach does not hinder the scalabil-
ityy of the machine. However, since compiler analysis
must be conservative, some valid values will be unnec-
essarily removed from cache with this approach, thus
reducing hit rates.

In this paper, we propose a local knowledge only
coherence strategy, TS1 (Time Stamping with 1 bit),

that, for a particular granularity of compiler analysis,
achieves the best hit rate that any such strategy can
at a cost of one additional bit per cache line, sufficiel t
logic to set, reset, or copy this bit to the valid bit, aud
a fast invalidate. We compare TS 1 to previous 10CIJ
knowledge only coherence strategies. We show that
time-stamping and TS 1 achieve the same effect with

naive compiler support but that TS1 can more readiJy
utilize improved compiler analysis.

Section 2 provides an overview of some of the termi-
nology we use. Section 3 discusses some of the better

previous local strategies. Section 3.5 shows that time
stamping strategies provide optimal hit ratios for a

given granularity of compiler analysis. Section 4 de-
scribes our new strategy for achieving the same effect
as time-stamping at lower hardware cost. It also dis-
cusses the impact of the accuracy of compiler analysis.

Section 5 gives some preliminary results comparing TSI

and TS 1. Section 6 discusses extensions to other types
of synchronization. Section 7 concludes and discusses

possible future directions.

*This work was supported in part by the National Sci-

ence Foundation under Cooperative Agreement CCR-91 20008
through its research contracts with the Center for Research on

Parallel Computation at Rice University.
t corresPon&g author: ervan@cs.rice.edu

720
(3 1993 ACM 0-8186-4340-4/93/0011 $1.50

Penni5sim to copy without fee df or PM of this matrmd is granted,
provided that the copies rue not made or diwibuted for dired commercial
advantage, the ACM copyright make and the title of the publication and
its date appear, and notice is given that copying is by fwmission of k
As.Y.N<ationfor Compming Machineq.. To copy otherwise, or to republish,
requires a fee andk specific pmimion.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F169627.169821&domain=pdf&date_stamp=1993-12-01

DOALL I

A(I)=. . . A(2) write allocatedon processor 2
2.1 Semantics of fork-join

ENDDO
The semantics of fork-join, e.g. DOALL, parallelism

DOALL I is that the fork-join loop be data race free; there can be. .

A(I+I)=. . . A(2) write allocated on processor 1 no carried dependence, i.e. a value cannot be written

ENDDO in one instance (iteration) and read on another within

DOALL I

B(I)= A(I)+ I Access stale A(2) on processor 2
ENDDO

Figure 1: Example of stale access in the absence of
coherence control

2 Definitions and framework

Fork- “oin programs are composed of a series of

Iepochs[4 . Each epoch consists of one or more instances

which run in parallel. Each epoch is either a (fork-
join) paralleI loop with no internal synchronization,

e.g. a Fortran DOALL, or a serial region between par-
allel loops. Serial regions can be nested serial loops
and/or those parts of serial loops enclosing parallel
loops. A serial region is an epoch with one instance.

The instances (iterations) of a parallel loop are
scheduled on processors at run time. The compiler
must aasume that a given instance could be executed
on any processor. All coherence strategies known to

us make this assumption. If scheduling is known at
compile time, a different set issues arises and different

techniques are applicable.

We regard non-unit cache line size aliasing as an
orthogonal problem. Our discussion assumes that the
cache line size is one word.

Staleness occurs when a location is accessed on pro-
cessor pi, written subsequently on processor Pj, ~ # i,

and read again still later on processor pi (without its
cache being updated to reflect the new value). For
example, in figure 1, if processor pi gets iteration i,
the reference to A(2) in the last epoch would be stale
(without coherence). Any additional references that
happen between the first and second epochs will not

change the situation. If A(2) were written on pi be-
tween the second and third epochs (not shown in the

figure) it would again be valid (on pi) without coher-
ence control.

Numerous previous authors have tried to capture
this notion in various analytical ways [4, 6, 9]. Here
we simply note the dynamic behavior that causes stal-
eness without addressing its detection at compile time.

Coherence is maintained by making sure that val-
ues are communicated between caches when necessary.

Values are updated from cache to main memory either
by using write-thru cache or write-back cache trigged

by synchronization events. Values are moved from
main memory to cache on demand when they are not

found in the cache. Stale values are removed from
caches at the correct time so that subsequent reads
will load the new values. This removal may be done
by anything from explicit operating system calls that

the compiler inserts to the hardware failing to register
a hit because of some combination of bits.

the same epoch ‘(DOALL .‘
JA value can be rea on several processors in the

same epoch so long as none write it. The lack of car-
ried dependence might be proven by the compiler or

asserted by the programmer. In either case, it has the
following important implication: If a value, x, is ac-
cessed in epoch e on pi it will be coherent in epoch
e + 1 on pi without any coherence control or commu-

nication with main memory. This is true because z
being accessed on pi during e means that it could not
have been written on pj during e. By the definition of
staleness, x is still coherent in epoch e + 1 on pi.

The same value being read on different processors
during epoch e does not present a problem because

it cannot be written on any processor during epoch
e. These properties are trivially preserved by serial

regions.

2.2 Local versus global knowledge

To avoid staleness, each cache must account for
what is written by every processor, including those to
which it is not directly connected. This set of writes

can be exactly the locations written or any approxi-
mating superset. If this global knowledge of what is

written is shared at run time, we would characterize

it as a global strategy. Global strategies are usually
thought of as hardware strategies, e.g. snoopy caches
[16, 18] and directory based caches [2, 11, 19]. Othe~

global strategies? e.g. OS level page strategies [17], are
software strategies.

Cache misses have four causes: initial loading,
cache size, cache organization (e.g. aasociativity), and
invalidation to preserve coherence between processors
(sharing induced). Coherence strategies are concerned

only with the last category, sharing induced misses.
No currently existing global strategy causes a logically

unnecessary sharing miss. They are in that sense opti-
mal. The drawback of global strategies is the that scal-
ability is impaired by the cost of maintaining global
knowledge at run time.

If no global knowledge is shared at run time, the,l
coherence must rely on locally collected knowledge
plus whatever global knowledge was collected at conl-
pile time. Previous local knowledge strategies have
been referred to in the literature as software [4, 6] or
hardware [14] strategies depending on whether most
of the work was done in software or hardware. We
consider all of these strategies to be similar and refer

to them collectively as local strategies.

A local strategy will likely never result in a globally
optimal hit ratio for a processor because some useful
runtime knowledge will be unavailable, The effective-
ness of local strategies can vary widely depending on
the program being run and the strategy being used
The principal advantage of local strategies is that they
are scalable because no global knowledge need be com-

721

DOALL I=I,N

A(I)=. . .

E??DDO

DOALL I=I,N

A(I)=. . .

ENDDO

DOALL I=I,N

IF (ci) A(I+I)=. . .

ENDDO

DOALL I=I,N

B(I)=A(I)+I

ENDDO

Figure2: Global versus Loc.al coherence

municated at run time to maintain coherence. They
rely on what could happen not what does. We use

couid happen to mean that the compiler cannot dis-
prove it.

The fundamental limitation of local strategies is
that if an instance (task) could write a value (and
it cannot be determined for certain at compile time),
other instances must assume that it has. A task need

make no assumptions about what it itself does be-
cause sufficient marking bits can be used locally to

make whatever determinations are useful regardless of
the incompleteness of compiler analysis.

Figure 2 gives an example of where a local strategy
would fail to achieve the same hit ratio as a global
strategy. If condition cl is always false (for a given
execution) but is not analyzable by the compiler, all
potential reuse of cached values of A between the first
and third epochs will be lost using a local strategy but
preserved using a global strategy.

2.3 Dynamic versus static coherence

Local strategies are either static. or dynamic. Static

local strategies decide which cache lines to invalidate
and when that invalidation should occur, using only
compile time knowledge. In contrast, dynamic strate-
gies can use run time information as well; which data

actually gets invalidated depends on the actual execu-
tion path of the program. This comes in two forms,
knowing (part of) the processor schedule and intra-
instance control flow. Dynamic strategies take advan-
tage of reuse that exists only because of a particu-

lar run time schedule. Static strategies must assume
worst case scheduling (though they can still exploit
some inter epoch reuse).

Dynamic strategies strictly improve on static
strategies. Any static strategy can be changed to a.

dynamic strategy that will not cause any more shar-
ing misses and will usually do much better. The trade-
off is that dynamic strategies require some additional
hardware support to handle marking bits. Static
strategies require no hardware support other than the
ability to invalidate cache lines under software con-
trol, Static strategies can be used on some existing
machines, such as the BBN TC2000[6, 7].

Figure 3 shows an example for which static strate-
gies are inherently inefficient. The value of A written

DOALL 1=1, N

ALA+...
ENDDO

DOALL 1=1, N

B(I)= A(I)+ I

ENDDO

Figure 3: Dynamic versus static coherence

in the first epoch cannot be allowed to reach the third
epoch. Since the second epoch (with the write) might

have a different schedule than the first, an invalidate
must remove the value from cache that was loaded in
the first epoch. This will cause either the read in the
second epoch or the third epoch to miss (depending

on where the invalidate occurs). But if the schedules
for all epochs are actually the same at run time this

would be unnecessary. A dynamic strategy could rec-

ognize this and preserve reuse in both the second and
third epochs.

3 Previous approaches

We briefly survey some previous local strategies in
order to give credit to previous authors in this area

and to show what improvement TS 1 makes. Knowing
the different approaches helps for understanding the

core issues of local strategies and not being distracted
by often disparate implementation approaches. Those

aspects of previous strategies not directly concerned
with coherence are covered in section 6.3.

3.1 Fast Selective Invalidation

One of the first strategies was Fast Selective In-
validate (FSI) [4]. FSI determines at compile time

which references access shared variables that might
have been previously written. These are designated

memory reads. For memory reads to be cache hits they
must be found in the cache and have a special epoch bit

set (originally called a change bit). Accesses to shared
variables set the epoch bit. All of the epoch bits are
reset at every epoch boundary. With this. strategy, no
shared value crosses an epoch boundary m cache, en-
suring that caches are coherent. The penalty is that
no inter-epoch reuse is preserved for shared variables.
FSI is a static strategy.

3.2 Life Span Strategy

Life Span Strategy (LSS) [3] is an improvement

over FSI. Instead of resetting the epoch bit after ev-
ery epoch, the epoch bit for a given cache line is reset

7’22

after the end of the next epoch. This is implemented

with an extra bit in each line, the stale bit, that marks
the passage of one epoch boundary. Thus any refer-

enced value is preserved into next epoch. This is valid

by DOALL semantics as previously noted (section 2.1).
LSS is a dynamic strategy.

The LSS paper describes an extension to preserve
a value in cache for any fixed number of epochs. The
number of epochs it survives must be determined at
compile time. Its maximum value is the shortest path
(in number of epochs) that could be taken before an-
other write. The actual path between writes at run

time could be much longer. The count is stored in

unary so that updating the count can be done with a

shift and checking for validity can be done by examin-
ing the last bit. Values which are not referenced will
eventually be removed from cache. If, in practice, val-
ues stay in cache for only a few epochs due to cache
size limitations, a small number of bits can be used
for the extended LSS at no great cost. Additional bits
would not help because the values would already be
evicted before the count runs out.

3.3 Parallel Explicit Invalidation

Parallel Explicit Invalidation PEI) [12] works by
icombining an invalidate with eac write instruction.

Writing an element in an array invalidates everything
in the array except for the element itself. This achieves
coherence because anything written on a different pro-
cessor will be removed from the cache of this proces-
sor before the next epoch (sufficient dummy writes are

added to make sure this invariant is maintained in the
presence of uncertain control flow and serial epochs).
The PEI strategy preserves inter-epoch reuse by leav-
ing the value written on this processor in cache. PEI
is a dynamic strategy.

The implementation uses a bit mask to control the

region invalidated. This requires that write instruc-
tions have enough additional bits to contain the mask.

It does, however, allow for essentially constant time in-
validation. It also allows for many special cases to be
handled with more precision (assuming the compiler
analysis is sufficient). In some instances, it can im-
prove on the hit ratio time-stamping would achieve.
However, in general, it fails to preserve intra-epoch

reuse when there are multiple references to the same
array in one instance. Those values that are lost to
int ra-epoch reuse are also lost to inter-epoch reuse.

The use of an epoch bit alone would not suffice to pre-
vent this. For PEI to achieve good results, arrays,
or in the worst case, each dimension of an array, must

occupy an amount of memory equal to a power of two.

3.4 Time Stamping

Time stamping (TS) strategies [4, 14] are more ef-
fective at preserving reuse than any of the previously
mentioned strategies. For a given quality of compiler

analysis, it is impossible to achieve a better hit ra-
tio with any other local strategy. The trade-off is that

they require several extra bits per cache line, extra bits

per memory access instruction, several extra counters

per processor, and extra logic in the cache controller.
Time stamping is a dynamic strategy.

In time stamping, there is a counter (referred to

aa a clock) for each array which tracks the number of

epochs in which the array was possibly written. Each
processor has a copy of all of the clocks. At the end of
an epoch, each processor increments its clocks for each
array that might have been written during that epoch
on any processor. This requires no global communica-
tion. The clock value for an array represents the last
epoch where the array could have been written.

Each cache line has a time stamp. When a value

is accessed, its time stamp is set to what the current
clock value for its array will be in the next epoch.

Example, if the current clock value for array A is 5, a
write to A(1) is loaded into cache with a time stamp
of 6 because the clock will be incremented at the end
of this epoch. A read of A (1) in a loop with no write
would set the time stamp to 5 because the clock will
not be incremented at the end of the epoch.

A value becomes stale when its time stamp is less
than the corresponding clock. If the time stamp equals
the clock value, there has been no write since the last
access to the cache line. By DOALL semantics (section

2.1) this also holds for the epoch where the value is
written. For an epoch after a write, the cache line will

contain its prior time stamp value, but the clock will
have been incremented. The cache hardware will find
that time stamp < clock, conclude the value is stale,
and issue a miss.

Both previous time stamping strategies operate on
the whole array level. This is not necessary. It would
be possible for time stamping to operate on the section
level. However, it would require a separate clock for
each section of each array. This would not only requi] e
extra clocks but extra bits in the instruction word to
specify which clock was relevant.

There is a peculiar limitation to TS. The clocks can

overflow. When that happens all cache lines which
depend on that clock must be invalidated. This is

the same problem extended LSS suffers. Time stamp-
ing uses binary counters and the impact is much less.
Time stamping ages its cache lines by incrementing
clocks on the processor while leaving the cache lines
unchanged. Extended LSS ages its cache lines by

decrementing counters in the cache line. This distinc-
tion will prove useful as explained in section 4.

3.5 A unified view of previous approaches

Despite very different implementations, all of these

approaches are variants of the same essential strategy
During epoch e~ location $ (some array element) is
written on processor pi; at the end of epoch ew, pro-

cessor pi, j # i, invahdates location $ m lts cache
Processor pi might not know exactly what location z
is. It approximates with the smallest set of locations
sure to contain x.

FSI and LSS make the pessimistic assumption that
x could be anywhere. TS assumes all of the array
which z is in could have been written. PEI USW

the best available compiler analysis, which is at least
as good as the same array analysis of TS. Extended

723

LSS also uses the best available analysis to determine
where z could be, but it unions the results over all

paths causing it to invalidate more. TS and PEI are
concerned only with the run time (inter epoch) path

and are in this respect superior to extended LSS.
Dynamic and static strategies both must make the

same estimate about how large the set is that encom-
passes z. Static schemes must also estimate the pro-
cessor schedule, which means they must assume the
worst case. Dynamic schemes, however, know part of
the schedule? the part that occurs on the local pro-
cessor. If x IS accessed on pi in epoch eW, a dynamic
scheme knows that pj never actually wrote z (section

2.1) regardless of the compile time analysis. It can
then avoid the invalidation of Z. LSS, TS, and PEI all

take advantage of this.
After the end of epoch eW, if z was not referenced

on pj during eW, pi has no run time information about

z and it must rely entirely on the compiler’s analysis
for whether or not pj might write x in e~. If the

compiler then indicates that pj appears to write x, a
local strategy must invalidate z on pi before the next
read of z on pi (if the next reference to z on pi is a
write> then it does not matter whether or not x was
invahdated). If a strategy invalidates only when these

two conditions are met x not referenced on pi and

\apparently written on pj , it is optimal in the sense
that no local strategy, with the same granularity of
compiler analysis, could have a better hit rate. This
is how time-stamping behaves. It is an optimal local
strategy. PEI is not optimal because it invalidates

before it knows that x is not referenced on pi. LSS is

optimal only in the trivial sense that it uses a know-
nothing compiler.

In practice, this utilization of DOALL semantics can

make a dramatic difference because it captures reuse

when subsequent loops have the same schedule and
same reference pattern, for inst ante a DOALL inside of

a serial loop will likely meet this condition. Deliber-

ate attempts to increase loop affinity [13] will further
improve the benefit of dynamic strategies.

4 One-Bit Time Stamping

Even though both proposed time-stamping strate-
gies [4, 14] are hit-rate optimal local strategies, they
require subst ant ial additional hardware. TS 1 achieves
the same optimal hit ratio with fewer special bits per
cache line and no special bits per instruction word. It
also avoids the need for special hardware to load and
compare the proper time stamp in a cache line. But,
it does require a more sophisticated invalidate.

4.1 Hardware support

TS1 requires a valid bit per cache line and an addi-
tional bit, the epoch bit. In TS1, caches set the epoch
bit on any reference to that line (read, write, hit, or
miss). At the end of a given epoch, e, a special instruc-

tion resets the epoch bit for every line in the cache. We
assume that the cache implementation can do this in

O(1) time by having every cache line respond in par-
allel. Since all of the epoch bits were reset on entry
to epoch e from the end of epoch e – 1, the epoch bit
reflects which cache lines have been accessed during

epoch e.
By the assumed semantics of DOALL loops (section

2.1), any cache line with its epoch bit set in epoch e
can be left in cache for epoch e + 1 without causing
a stale access. We use this observation in defining a
special invalidate that operates optimistically. When
a particular cache line is the object of an invalidate,
it is actually invalidated only if the epoch bit is re-

set, otherwise it remains valid and in cache? i.e. the
invalidate copies the epoch bit to the valid blt.

4.2 Implementation of the invalidate

There are several choices for the actual implemen-
tation of the invalidate that trade-off hardware cost

for run time e%ciency.
A slow but inexpensive implementation would be

to have a low level invalidate instruction which could
invalidate either a particular line or a particular
page. The high level invalidate would then loop over
the proper range of pages and lines. Even though
this would take O(lsectionl), acceptable performan.x
could still be achieved. Previously, we examined th~!
efficiency of this kind of invalidate for a static strategy

[7].
A faster, but more complex, invalidate could work

by using a bit mask to determine which addresses

to invalidate. With only ‘=’ comparators and no
extra storage, a section could be invalidated in

O(log(lsectionl)) time. Special layouts and strides
could reduce this further. This is similar to what PEI
does.

Other authors have proposed O(1) time invalida-
tion implementations which work by accessing cache

row and column addresses [1].

4.3 Software support

To determine what to invalidate, TS 1 uses compile

time analysis to determine what 1s written for each
epoch. The compiler makes its best estimate that is

sure to include every address actually written. The
main task of this analysis is to determine which parts
of shared arrays are written. A naive analysis could
simply note which arrays appear on the left hand sid(>
of an assignment and then conclude that every ele-
ment of any such array is modified. More sophist i-
cated analysis could try to determine which sections
of arrays are actually modified. For every section (or

whole array) that is modified, the compiler inserts an

invalidate for that range of addresses at the end of the
epoch being analyzed. Since schedules are not known,
the same set of invalidates is used for every processor.

At run time, for each epoch, some accesses occur,
setting the epoch bits, then the invalidates are exe-
cuted as the next to last instruction, removing soon
to be stale values, and finally all of the epoch bits ax.
reset in preparation for the next epoch.

For a value, x, to be stale for epoch e, on processor

724

Blt Assignments
Operation Applies to Valzd Bit IN poch Bit

Read word 1 1
Write word 1 1

Invalidate section Epoch Bit
end of epoch all of cache - i

Table 1: Effect of operations on TS1 control bits

Pi, it must shave been written during epoch eW, eW < e.
on pj, ~ # a and have been m pi’s cache on epoch eu —1.
TS 1 Drevents staleness because z would armear in an,,
invalidate on pi at the end of epoch eW. The value in
cache in epoch eW – 1 would be removed since pi did
not access x on epoch eW and left its epoch reset from
the end of epoch eW – 1.

If compile time analysis were perfect, TS1 would
have the same hit rate as a global scheme. The con-

servative assumptions that must be made at compile
time cause some reuse to be missed. This is the loss

that any local scheme must suffer.

4.4 Contrast between TS 1 and previous
strategies

The best way to understand why TS1 and TS have

the same behavior is to return to TS and see it from
a different point of view. There are only three states
that a cache line can be in with respect to its clock, just
referenced, not yet stale, and stale (Table 2). Taking

these in reverse order, the stale state indicates that

for a value z in epoch eW + 1 a new value might have

been written in epoch, eW, after z was loaded in the
cache in an earlier epoch, e.. The not yet stale state
persists from afler epoch e. when z waa last accessed
through epoch eW which actually makes the line stale

(DOALL semantics, section 2.1). The just accessed state
sets the time stamp so that it will be in the not yet

stale state in the next epoch. The just accessed state

persists only for epoch e=. The time stamp will be
either clock+l or clock depending on whether or not
there is a write in epoch e..

TS1 implements these same three states by using
the epoch bit in addition to the valid bit. This econ-

omy is possible because TS 1 invalidates only those
locations which could have been written. TS 1 ages
cache lines explicitly by updating bits in the cache line.
TS ages cache lines implicitly by updating a processor
clock for later comparison. TS is a lazy strategy.

TS as proposed enforces coherence on the whole
array level. TS 1 can be used to enforce coherence
at the finest available resolution of compiler analysis.

This is no worse than the whole array level and often
better. TS could in principle do this well too by having
a distinct clock for every section of an array which can
be recognized at compile time. The cost of that could

grow large.
LSS could utilize the same high level of analysis but

it makes the pessimistic assumption that all paths are
taken. Also, its counters quickly overrun regardless of

.

I State I l’s TS1
Time Stamp Epoch Bit Valid Bit

Just accessed = clock[+l] = 1 = 1

not yet stale = clock = =

stale < clock = : =:

Table 2: Possible ‘ages’ of a cache line

the path taken. TS1 achieves at least the same hit

rate-as PEI because both can use the best available
compiler analysis.

Another way to view this distinction of different
strategies is the manner in which global information
is passed. In FSI and LSS, global knowledge is never
passed. In TS, global knowledge is passed implic-
itly by each processor incrementing an array clock for
those arrays which might have been modified. In TS1
and PEI, global knowledge is passed implicitly by in-
validating a section of memory that could have been

written on a different processor. For local strategies,

there is no way to avoid the invalidate because it is
responsible for conveying the global information. The
invalidate can be implicit, explicit, pessimistic., or rea-
sonably precise, but it still has the same function. Ta,-
ble 3 summarizes the costs and capabilities of the dif-
ferent strategies.

4.5 Example

In figure 4, DOALLS are expanded into the workshar-
ing part (PDO) where each processor gets some num-

ber of iterations, the common part that all proces-

sors execute, and the BARRIER, which is the end of
the DOALL. Applying the TS1 compile time phase in-
serts the IN VALIDA TE’S. For each of the three DO ALL

epochs, there is an invalidate to cover what was writ-

ten in that epoch. Table 4 shows the effect on TSI
control bits for the simple schedule, processor 1 gets

iteration 1 on each epoch. At line 11, A(1) and B(1 ,*)
have been referenced on pl in this epoch. So all c,ache
lines holding these values are valid and have the epoch
bit set. At line 12, the invalidate removes everything
written on p2 from pl’s cache. If B (2, 1) were present

on pl itwould be removed at this point. B (1,1) hotv

ever has its epoch bit set and stays in the cache on
pl. All epoch bits are reset at the barrier. At line 21
only B (1,1) has its epoch bit set on pl since it was the
only reference. The invalidate does not reference A or
columns of B other than the first. So, all of those stay
in cache. The invalidate of B (1,1) finds the epoch bit
set and leaves it in cache. At line 30, all references arc
then hits.

Using the same example for TS, the write to B in
the second epoch would cause all columns of B to be
invalidated. Thus, in the third epoch, all but one ele-

ment of B would be a miss on PI.
For LSS, A would suffer the same as the oth[r

columns of B and would miss in the third epoch.

For PEI, the second epoch would be handled pw-
fectly by only invalidating the first column of B. How-

725

Granularity” of analysis

bits/cache line
bits/instruction

special bits/processor

cost of invalidate

handles DOACROSS

Ii

12

21

22

30

ever,

N/A whole program array section array array section

23 0 ‘2 ● nclO=k

1 2 n 5 + r=lock (for reads) :

2 + rcloc~ (for writes)

00 0 S * 7Zdcjck o
s

o(1) o(1) o(1) o(s) o(~log(si))

No No No Yes
i=l

Yes

Notation
n number of address bits

nCIOC~ number of bits needed to hold clock value
rcloek number of bits to designate a clock

s number of distinct sections (or arrays) which are written in an epoch
Si size of the ith section out of S total sections

Table 3: Comparison of methods

PDO 1=1, N
DO J=I, N

B(I, J)= A(I)+ I

ENDDO
ENDDO

CALL INVALIDATE (B(l, l), B(N,N))

BARRIER

PDO 1=1, N
B(I, I)=O

ENDDO

CALL INVALIDATE (B(l, l),B(N, 1))

BARRIER

PDO 1=1, N
DO J=I, N

C(I, J)=B(I, J)+A(I)
ENDDO

ENDDO

CALL INVALIDATE (C(l, 1), C(N,N))

Figure 4: Example compiler output for TS1

the first epoch would leave only the last column
in cache. In the third epoch, the first and last column
of B plus all of A would hit. The rest of B would miss.

5 Performance

The execution time of TS versus TS 1 depends on
two factors, the hit rate and the additional cycles used

by a more sophisticated invalidate. We present exper-

imental data on the former. We analyze the latter
using reference traces from a real program combined

Array Element on Processor 1

Statement A(1) B(l,l) B(1,2)
I

12 l~o i:o “-1,0

21 1,0 1,1
22 1,0 1,0 :::

30 hit hit hit

Table 4: Example of bit handling in TS 1, Entries”
valid bit, epoch bit

with a hypothetical implementation of an invalidate

We compared TS and TS 1 on a small test suite of
scientific Fortran programs. These were chosen be
cause they were available, familiar to the authors, and

easily convertible to use with simulator. Our method-
ology was to apply t he TS and TS 1 algorithms by hand
to parallel Fortran programs. For TS1, the same in-
validate calls were added at the end of each epoch as

the compiler would have produced. We assumed the
compiler could recognize only affine subscript expres-
sions. For TS, invalidate calls were applied to whole
arrays in an epoch for which the array appeared on the

left hand side of an assignment. This has the same ef-
fect on hit rate as the suggested TS implementation
These modified programs were then run through th(,
the RPPT [5] simulator. This simulator operates by
modifying the assembly code to trap at every global
memory reference which is then passed off to a partic
ular architecture simulator.

For identical runs of the test programs, we corm

pared TS, TS1, and hardware coherence. For hard-
ware coherence, we simulated write back caches with
an invalidate protocol (WB).

Cyclic work distributions were used. Statistics re..
fleet only shared data and not local data or instruc-
tion caching. Caches of sufficient size were simulated

726

Procs Size TS TS1 WB

::g~

Table 5: Hit Ratios (’%0) for different strategies

so that no evictions occurred due to cache size or or-

ganization limitations.

Our test programs were:

LU decomposition - a blocked right looking LU de-

composition with a blocking factor of5.

Heat Flow - a simple 2-D heat flow relaxation

Direct - a simplex solver

Erlebacher - a tridiagonal solver for finding deriva-
tives

Procs Size

1 2
24

6
i8
5 10
6 12
7 14
8 16

1: ;:

11 22
12 24

Refs Miss Cost Penalty
Margin

7 00’s / processor —

[.8 1 0.8 ().2

16.2

31.9
52.8
79.2

110.8
147,9
190.3

238.1
291.2

349.7
413.6

0.1
0.3 :::
0.6 5.6
0.9
1.3 1!::

1.7 15.0
2.2 19.0

2.8 24.1
3.4 29.1

3.7 34.5
4.8 40.3

0.3
0.4
0.5
0.5
0.5
0.6
0.7

0.7
0.7

0.8
0.8

13 26] 482.8 5.1 49.0 0.8
557.45 6.4 56.2 0.914 28 ___

15 30 637.33 7.4 63.9 0.9

cost: Invalidate cycles for logz(s~) metric
Penalty: Invalidate cycles for whole array invalidates

Table 6: Erlebacher Profitability

5.1 Hit rates

Table 5 shows the hit rates for our test suite. Simi-
lar relative hit ratios resulted from different combina-
tions of processor and block sizes, except for extreme
cases. For larger problem sizes with evictions, the gap
narrows.

In both LU and Heat Flow, TS1 managed to find
extra hits by not invalidating the whole array in loops
that set border elements of the (sub-)arrays. Direct
made heavy use of indirection arrays which defeat all
attempts at analysis. TS1 could do no better than

TS in this case. For Erlebacher, TS1 was able to find
substantial benefit because the main computation was

distributed through several loops, many of which only
modified a small section of a given array.

5.2 Invalidate overhead

Erlebacher is more than a computational kernel (so

is Direct, but it showed no improvement). So, we focus
on Erlebacher.

To better analyze this case, we looked more care-
fully at the miss margin, the number of extra misses

per processor that TS suffers compared to TS1. For a
fixed problem size, TS1 does worse as the number of

processors increase because the total hit rate is only
slightly affected causing the number of misses per pro-

cessor to drop almost linearly. For a fixed number of
processors, TS1 is favored by the same reasoning (for
all but the simplest of invalidate implementations).
Most importantly, as main memory latency increases
TS1 is favored. For an invalidate cost model(section
4.2), we assumed that a contiguous section can be in-
validated in 1 + [log. $lsectionl)j “invalidate cycles”
(by “invalidate cycle’ we mean the time it takes to

invalidate a single, aligned, power-of-2-sized block)
We applied this cost model to a series of Erlebacher

runs where the problem size was varied from 2 to 30

as the number of processors varied from 1 to 15. We

chose this as a natural scalability condition because
the hit rate for TS stayed fairly constant with this
condition. The raw data is summarized in table 6.

For each run, it lists the total shared data references,
the miss margin, the invalidate cost (for invalidating

precise sections), and worst case TS 1 penalty (in in-
validate cycles). All of these are normalized to be per

processor. Profitability depends on the relative cost
of a miss versus the cost of an invalidate cycle. Figule

5 shows the profitability region for some hypothetical
miss costs. The profitability is expressed as the pel -

cent speed up for a completely memory bound pro-
gram (compute time is completely overlapped) with
the assumption that cache hits take 1 processor cycle
and an invalidate cycle takes 2 processor cycles. Fcr
different invalidate cycle costs, figure 5 would look es-
sentially the same by scaling the miss cost the same
amount. For real machines, we expect the cost of a
miss to be 10’s of cycles. We expect an implement a-

tion of invalidate to be possible where one invalidate
cycle takes only 2 processor cycles.

For this test case, if the cost of a miss is almost
negligible (1 invalidate cycle) then careful invalidation

gains nothing and loses in overhead. If the cost of a
miss is 20 cycles, it is a break even proposition. For
higher miss costs, TS1 improves performance by pay-

ing for the invahdate overhead with time saved from
more cache hits.

For miss costs less than 20 cycles, it is possible to
switch from a precise invalidate to one which invali-
dates the whole array. This has the same hit rate as
TS, but greatly reduces overhead. For instance, in the
15 processor case the overhead of invalidating whole

k
arrays is about O.3’%O(0.9/637* 2 processor cycles/ in-

validate cycle)), even lf every re erence were a hit. The
“loss lower bound” line in figure 5 represents this.

TS1 can often perform better than TS. Where it

does worse, there is a fall back option, whole array

invalidates, to cushion the loss to a tolerable amount.

727

Figure 5: Erlebacher Speed Up

6 Other issues

6.1 DOACROSS

The assumed model for DOACROSS is that later iter-
ations (inst antes) can wait on earlier iterations. There

can be multiple waits on the same previous iterations
or several different previous iterations. The compiler
cannot necessarily determine anything about the na-

ture of the synchronization. The only guarantee is
that no dependence go from later to earlier itera-
tions. A legal schedule for any DOACROSS would be
to do the first p iterations with proper posting and
waiting, then synchronize all p processors, and do the

next p iterations, etc. Unlike DOALL, there can be car-
ried dependence between iterations of a DOACROSS. So,

each instance of a DOACROSS epoch must conceptually
be treated like a different mini-epoch.

The leverage that local strategies get from the se-
mantics of DOALL (section 2.1) must be abandoned
here. For DOACROSS, the epoch bit in TS1 indicates
that values can be reused on subsequent instances

(not epochs). Since two subsequent iterations are al-
most certain to be scheduled to different processors,
the epoch bit is useless.

Of the previous strategies surveyed, only Min and
Baer’s TS [14] handles DOACROSS. It increments the
version number for an array at the end of a DOACROSS
epoch. To preserve the semantics inside of the
DOACROSS, any reference which could be overwritten
in a later instance of the same DOACROSS epoch, is
marked so that it will be removed at the end of the
inst ante. Conversely, any read which could have been
preceded by a write in a previous instance is invali-
dated on entry to this instance (intra-instance locality

is still preserved).
Min and Baer’s TS still preserves inter-epoch reuse

if it can be proven (via the best available compiler

analysis) that a given access will not be over-written
on a later inst ante in the same epoch. Likewise, a read
need not be forced to miss if it can be proven that
no write on a previous instance of this epoch could

reach it. Min and Baer’s TS handles this situation
with extra bits in the instruction word to specifically

mark this condition. This is no longer optimal, even in
the restricted sense of local strategies being optimal.

Certain kinds of inter-instance intra-epoch reuse could
be recognized by a local strategy, but are lost here.

TS1 could work in essentially the same way aa TS
for DOACROSS by adding the same extra bits. These ex-
tra bits could be avoided by changing the invalidation
strategy. Instead of invalidating at the end of each
epoch, the invalidate could be moved to the start of
each instance. The invalidate would then handle those

values written since this processor was last scheduled.
For instance, if processors are assigned to iterations in
strictly cychc order and there are 5 processors. Then,
processor 5, when it gets assigned iteration 11, would
invalidate everything written on iterations 7 through
10. Iteration 6 writes were previously performed on
processor 5 and do not need to be invalidated. Itera-
tions before 6 were handled when processor 5 was as-

signed iteration 6. At the end of the DOACROSS, every

processor must invalidate writes that occurred since

it was last scheduled. This preserves the same inter-

epoch reuse as Min and Baer’s TS strategy.
In some cases involving DOACROSS, a hve value is

guaranteed to be invalidated before its next reference.

In this case, there is no need to allocate a cache line.

Read-thru and write-thru could selectively be used to
advantage. Min and Baer [14] discuss this at length.
This can be done with the bits already present in their
strategy. TS1 could accommodate this with extra in-
struction bits performing the same function as in the
Min and Baer strategy.

6.2 Critical sections

For critical section semantics that require inter-
instance dependence to be entirely within critical sec-
tions, it is a simple matter to maintain coherence.

Whatever is written in the critical section must be
updated before the end of the section. Whatever is
read in the critical section that could be written in__——
another critical section must be invalidated on ent

to the critical section.

6.3 Cache line size

cache lines larger than one word cause aliasi
problems. Values are read when they do not appear to
be (as seen by the compiler). These values must also
be keDt coherent. There are several ad hoc methods of
deali~g with the aliasing problem, e.g. padding of ar-

ray dimensions, changing layout order, and stripping
loops. In truly desperate cases, it maybe necessary to
always use write-thru or not use caching at all. We as-.
sume that such objects are allocated on special cache

pages in order to indicate different handling.

728

7 Conclusions

We believe the proper way to consider coherence
strategies is in a framework of local knowledge versus
global knowledge, and not aa software versus hard-
ware. This paper contributes to that framework.

As local strategies continue to improve their hit
rates and decrease their implementation costs, it be-

comes feasible, at least for scientific codes, to build
shared memory multiprocessors which rely on local
strategies instead of global strategies for cache coher-
ence. These machines have fewer obstacles to scalabil-

ity, They may also be less hardware intensive than the
sophisticated global strategies which have been pro-
posed for medium and large scale parallelism.

In this paper, we propose a new local strategy, TS1
that improves on the best previously existing local
strategy, time-stamping, by achieving better hit ra-
tios, requiring fewer bits per cache line, and no extra
bits per instruction. For a given granularity of com-
piler analysis, no local scheme could ever achieve a
higher hit ratio. TS1 requires an epoch bit per cache
line, a mechanism to invalidate an address range of
cache lines, and a compiler that can recognize which
array sections are written in a given epoch. If the
compiler can only recognize arrays, and not sections,
TS1 will have the same hit rate as time-stamping.

Simulation studies show that T$ 1 almost always
has better hit ratios than TS and never worse. TS1

occasionally has slightly worse performance, but often

appreciably bet ter performance. An open question is
to determine how efficiently a range based invalidate
can be implemented. If only inefficient or hardware
intensive implement ations can be found, TS 1 will not
be aa effective as our data suggest.

Acknowledgments

We would like to thank 1
Dwarkadas for their assistance
simulator to handle the specifi~

Rajagopalan and S.
n modifying the RPPT

needs of a local strat-
egy. We would also like to especially thank John
Mellor-Crummey for his many useful suggestions on
improving this paper.

References

[1]

[2]

[3]

[4]

D. A. Abramson, K. Ramamohanarao, and M. Ross. A

scalable cache coherence mechanism using a selectively

clearable cache memory. The Australian Computer Jour-
nal, 21(1), Feb. 1989.

L. M. Censier and P. Feautrier. A new solution to coherence

problems in multicache systems. IEEE Transactions on
Computem, C-27(12):1112-1118, Dec. 1978.

H. Cheong. Life-span strategy - a compiler-bsaed approach

to cache coherence. In Proceedings of 1992 International

Conference on Supercompuiing, July 1992.

H. Cheong and A. Veidenbaum. Compiler-directed cache

management for multiprocessors. Computer, 23(6):39-47,

June 1990.

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

R. Covington, S. Dwarkadas, J. Jump, J. Sinclair, and

S. Madala. Efficient simulation of paralle computer sys-

tems. International Journal in Comuter Simulation, 1:31--

58, 1991. overview of RPPT.

R. Cytron, S. Karlovsky, and K. McAuliffe. Automatic

management of progr auunable caches. In Proc. of the 1988

International Conference on Parallel Processing, pages

229-238, Aug. 1988.

E. Darnell, J. Mellor-Crumm ey, and K. Kennedy. Auto-
matic software cache coherence through vectorizat ion. in

Proceedings of 1992 International Conference on Super-

computing, July 1992. Also available as expanded Techni-

cal Report CRPC-TR92197, Center for Research on Par-

allel Computation, January 1992.

D. James, A. Laundrie, S. Gjessing, and G. Sohi. Scalable

coherent interface. Computer, 23(6), June 1990.

S. Karlovsky. Automatic management of programmable

caches: Algorithms and experience. Technical Report 89-

8010, Center for Supercomputing Research and Develop-

ment, University of fllinois, Urbana, IL, July 1989.

L. Lamport. How to make a multiprocessor that correctly

executes multiprocess programs. IEEE Transactions on

Compuiem, C-28(9), Sept. 1979.

D. Lenoski, J. Laudon, K. Gharachorloo, W. Weber,

A. Gupta, J. Hennessy, M. Horowitz, and M. Lam. The

Standford DASH multiprocessor. Computer, 25(3):63-79,

Mar. 1992.

A. Louri and H. Sung. A compiler dkected cache cohel -

ence scheme with fast and parallel explicit invahdatic,n.

In Proc. of the 1992 Intemtational Conference on Parallel

Processing, pages 2–9, Aug. 1992.

E. P. Markatos and T. J. LeBlanc. Using processor affinity

in loop scheduling on shared-memory multiprocessors. ir.

Proceedings of 1992 International Conference on SupcT-

comptiting, pages 104–113, Nov. 1992.

S. Min and J. Baer. Design and analysis of a scalabl:

cache coherence scheme based on clocks and timestamps.

IEEE Transactions on Parallel and Distributed System?,

3(1):25–44, Jan. 1992.

S. Min, J. Baer, and H. Kim. An efficient caching support

for critical sections in large-scale shared-memory multipro-

cessors. In Proc. of the 1990 International Conference [n

Stipercomputing/Computer Architecture News, pages 4–47,

June 1990. Special issue of Computer Architecture New+,

18(3), Sept. 1990.

A. Osterhaug, editor. Guide to Parallel Programming on

Sequent Computer Systems. Sequent Technical Publica-

tions, San Diego, CA, 1989.

K. Peterson and K. Li. Cache coherence for shared men~

ory multiprocessors based on virtual memory support. in

Proceedings of the 7th International Parallel Processing

Symposium, Apr. 1993.

D. Schanin. The design and development of a very high

speed system bus - the encore multimax nanobus. In

Proceedings of the Fall Joint Computer Conference, pages

410–418, Nov. 1986.

J. Willis, A. Sanderson, and C. Hill. Cache coherence

in systems with parallel communication channels & many

processors. In Supercomputing ’90, pages 554–563, 1990

729

