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Abstract

This paper addresses the problem of collective data

distribution, specifically multicasi, in wormhole-rouied

hypercubes. The system model allows a processor

to send and receive data in all dimensions simul-

taneously. New theoretical results that characterize

contention among messages in wormhole-routed hyper-

cubes are developed and used to design new multicast

routing algorithms. The algorithms are compared in

terms of the number of steps required in each, their

measured execution times when implemented on a

relatively small-scale nCUBE-2, and their simulated

execution times on larger hypercubes. The results

indicate that significant performance improvement

is possible when the multicast algorithm actively

identifies and uses multiple ports in parallel.

1 Introduction

The recent trend in supercomputer design haa been to-

wards scalable parallel computers, which are designed

to offer corresponding gains in performance as the

number of processors is increased. Many such systems,

known as massively parallel computers (MPCS), are

characterized by the distribution of memory among

an ensemble of processing nodes. Each node has its

own processor, local memory, and other supporting
devices.

In parallel scientific computing, data must be

redistributed periodically in such a way that all

processors can be kept busy performing useful tasks.

Because they do not physically share memory, nodes
in MPCS must communicate by passing messages

through a communications network. Some com-

munication operations are point-to-point, that is,

they involve only a single source and a single

destination. Other operations are collective, in that
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they involve more than two nodes. Examples of

collective communication include muiticast, reduction,

and barrier synchronization. The growing interest

in the use of such routines is evidenced by their

inclusion in many commercial communication libraries
and in the Message Passing Interface (M PI) [1],

an emerging standard for communication routines

used by message-passing programs. Besides mesaage-

passing, collective communication operations are also

important in implementing data-parallel languages,

such as High Performance Fortran [2].

Communication performance depends on several

characteristics of the network architecture, including

the network topology, routing algorithm, and switching

st rat egy. Network topologies of commercial and

research MPCS vary widely and include the 2D

mesh (Intel Paragon), 3D mesh (MIT J-machine),

hypercube (nCUBE-2), 3D torus (Cray MPP), and

the Fat Tree (Thinking Machines CM-5). Most

routing algorithms used in commercial machines are

deterministic, that is, the path between a particular

source and destination is fixed. The predominant

switching technique is wormhole routing [3], in which

a message is divided into a number of fiiis that

are pipelined through the network. The two salient

features of wormhole routing are: (1) only a small
amount of buffer space is required in each router, and

(2) the network latency is almost distance insensitive

if there is no channel contention among messages [4].

In wormhole-routed MPCS, communication among

nodes is handled by a separate router. As shown in

Figure 1, several pairs of ext ernal channels connect the

router to neighboring routers; the pattern in which the

external channels are connected defines the network

topology. Usually, the router can relay multiple

messages simultaneously, provided that each incoming

message requires a unique outgoing channel. In addi-
tion, two messages may be transmitted simultaneously

in opposite directions between neighboring routers.

A router is connected to the local proces-
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Figure 1. Generic MPC node architecture

sor/memory by one or more pairs of internal channels.

One channel of each pair is for input, the other for

output. The port model of a system refers to the

number of internal channels at each node. If each

node possesses exactly one pair of internal channels,

then the result is a so-called “one-port communication

architecture” [5]. A major consequence of a one-port

architecture is that the local processor must transmit

(receive) messages sequentially. Architectures with

multiple ports reduce this bottleneck. In the case

of an all-port system, every external channel has

a corresponding internal channel, allowing the node

to send to and receive on all external channels

simultaneously.

In this paper, the specific problem of efficient mul-

ticast communication for all-port wormhole-routed

hypercubes is addressed. Formally, a hypercube (or n-

cube) consists of 2“ nodes, each of which has a unique

n-bit binary address. For each node v, let v also denote

its n-bit binary address, and let II v II represent the

number of 1‘s in v. A channel c = (u, v) is present in

an n-cube if and only if II u @ v II = 1, where @ is the

bitwise exclusive-or operation on binary numbers. The

hypercube topology has been used in multicomputer

design for many years [6]. The nCUBE-2 [7] is the

first hypercube to support wormhole-routing, as does

the recently announced nCUBE-3 [8].

The remainder of the paper is organized as follows.

Section 2 illustrates the issues and problems involved

in supporting efficient multicast communication in

all-port hypercube systems. Section 3 gives new
theoretical results - that provide the foundation for

this work. Section 4 presents the new algorithms

that have been produced to support multicast in

all-port wormhole-routed hypercubes. Section 5

compares the algorithms using analysis, simulation,

and implementations on a 64-node nCUBE-2. Finally,

conclusions are presented in Section 6.

2 Background and motivations

Collective communication operations may be imple-

mented in either hardware or software. However,

most existing wormhole-routed multiprocessors sup-

port only point-to-point, or unicast communication in

hardware. In these environments, all communication

operations must be implemented in software by

sending one or more unicast messages; such implemen-

t ations are called unicast- based. A multicast operation

may be implemented by sending a separate copy of
the message from the source to every destination.

An alternative is to use a multicast tree of unicast

messages. In a multicast tree, the source node actually

sends the message to only a subset of the destinations.

Each recipient of the message forwards it to some

subset of the destinations that have not yet received

it. The process continues until all destinations have

received the message. Using this approach, the time

required for the operation can be greatly reduced.

Although implemented in software, unicast-based

collective communication algorithms must exploit the

underlying architecture in order to minimize their

execution time. In a wormhole-routed system, the

implementation should not only exploit distance-

insensitive unicast latency [4], but must also avoid

channel contention, that is, no two messages involved

in the operation should simultaneously require the

same channel. Avoiding channel contention depends

on the underlying unicast routing algorithm of the

MPC; hypercubes often adopt E-cube routing, in

which messages are routed through dimensions in

either ascending or descending order. Also, the

implementation should involve no local processors

other than those affected by the operation. For

example, in a multicast, only source and destination

processors should be required to handle the message.

Finally, the implementation should account for the

port model, which affects how fast nodes can send and

receive messages.

The following (small-scale) example illustrates the

issues and difficulties involved in implementing

efficient multicast communication in hypercubes.

■ source node

● destination node

O .tAer nude

Figure 2. An example of multicast in a 4-cube
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Figure 3. Unica.st-based software multicast trees

Consider the 4-cube in Figure 2, and suppose that a

multicast message is to be sent from node 0000 to eight

destinations {0001,0011, 0101,0111,1011,1100, 1110,

1111 }. (In this example and all subsequent examples,

we assume that the E-cube routing algorithm resolves

addresses from high order bits to low order bits. In

the nCUBE-2, the opposite resolution strategy is used,

but this difference does not affect any of the results

presented.)

In early hypercube systems that used store-and-

forward switching, the procedure shown in Figure 3(a)

could be used. At step 1, the source sends the message

to node 1000, At step 2, nodes 0000 and 1000 inform

nodes 0100 and 1010, respectively. Continuing in this

fashion, this implementation requires 4 steps to reach

all destinations. In this example, five nodes (0010,
0100, 0110, 1000, and 1010) are required to relay the

message, even though they are not destinations. Using

the same routing algorithm in a one-port wormhole-

routed network also requires 4 steps, as shown in

Figure 3(b). In this case, however, only the rout crs

at two of the non-destination nodes (0010 and 0110)

are involved in forwarding the message. For example,

the message may be passed from 0000 to 0011 in one

step; the message is relayed at node 0010 by the router,

not the local processor. However, because the message

must be replicated at nodes 0100, 1000, and 1010, the

local processors at those nodes must still handle the

message.

Figure 3(c) illustrates the result of using the U-

cube a/gor-ithm [9] to solve the problem on a one-

port wormhole-routed system. (U-cube, which waa

designed specifically for one-port wormhole-routed

architectures, will be discussed further in Section 4.)

The only local processors required to handle the mes-

sage are those at destination nodes. Furthermore, on

a one-port architecture, all messages are guaranteed

to be contention-free [9]. Although common channels

are used between the 011 l-to-101 1 path and the 0111-

to-1 100 path, these messages are sent sequentially,
so contention does not arise. Details of avoiding

contention in one-port architectures can be found

in [9].

Although the algorithm used to construct the tree

in Figure 3(c) still requires four steps, this approach
is optimal for multicasting to 8 destinations on a one-

port architecture. Specifically, [logz(m +
tight lower bound on the number of steps

1)1 is a

required
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to reach m destinations on a one-port hypercube.

Since the U-cube algorithm was designed specifically

for one-port systems, however, it makes no attempt

to take advantage of multiple ports. For example,

if the algorithm were implemented on an all-port

hypercube, it would still require four steps to complete

the multicast in the above example, as illustrated in

Figure 3(d), although some destinations are reached

earlier than in Figure 3(c). Notice that three steps

are required to reach destination node 1011, since

that unica.st message must traverse a channel in the

path required to reach node 1100, thereby delaying its

transmission.

Figure 3(e) shows a multicast tree that accounts for

both wormhole routing and an all-port architecture.

The algorithm requires only two steps, no local

processors other than the source and destinations are

involved, and contention among constituent messages

is avoided. This particular tree, which is based on

the methods presented in this paper, is optimal for

multica.st to the given set of nodes on an all-port

architecture. In the next section, we develop the
theoretical results necessary to guarantee that our new

algorithms, presented in Section 4, are contention-free.

3 Theoretical foundations

In this section, we present new theoretical results that

will serve as a basis for subsequent algorithms. First,

we formally define terms related to dimension-ordered

routing and subcubes. Then we present several

theorems that are useful in determining that certain

pairs of paths are guaranteed to be arc-disjoint (and

hence, contention-free). Finally, we formally define

contention in an all-port hypercube architecture, and

present a related theorem.

3.1 Notation and definitions

Bitwise and, or, and exclusive-or are represented by

symbols 8, 1, and (3, respectively. Logical and and
or are represented by A and V, respectively. We use

N to represent the number of processors. Since n

represents the dimensionality of the hypercube, N =

2n. For each node, say z, the outgoing (and incoming)

channels of node z are labeled O through n — 1, where

channel d connects node z to node x @2d. We say that

channel d is used to travel in dimension d.

The path from a source node u to a destination

node v resulting from dimension-ordered routing is

denoted P(u, v). P(u, v) = (u; wl; w2; . . ..wP. v) is

the sequence of nodes visited on the path. Note that
p + 1 = Ilu @ vII. Under E-cube routing, a unique

shortest path is always taken. In particular, a message

will always travel over the required dimensions in de-

scending (alternately, ascending) order. For example,

the path from source node 0101 to destination node

1110 is P(O1O1,111O) = (0101 ;llO1;llll; 1110). A

unicast from node u to node v occurring at time step

t is denoted (u, v, P(u, V))t).

The following definition simplifies references to the
initial channel in a dimension-ordered route, that is,

the first dimension in which a message will travel.

Definition 1 6(u, v) represents the highest-ordered

bit position in which u and v differ. Formally,

6(U, v) = [logz(u @ V)J . If u = v, then 6(u, v) is

undefined.

In order to specify a subset of the nodes of a

hypercube, we may explicitly state some of the n

address bits, and allow the other address bits to range

over all possible values. We define a subcube to be

such a subset of nodes, where the explicitly-stated

address bits are the high order bits, and the free-

ranging address bits are the low order bits.

Definition 2 A subcube S = (ns, Ms) is defined by

a dimensionality rLS E {O . . n}, and a mask Ms E
{0 . z(~-~s) – 1}. Informally, subcube S consists of

those nodes whose htghest-ordered (n – ns) bits have

a value equal to Ms. Formally, for any node u, u ~

S iff (u >> rLS) = Ms, where “U >> i“ indicates a

right-shij? of U by i bits.

3.2 Basic results

This section contains lemmas that will be used to

facilitate subsequent theorems. These lemmas are also

useful in understanding later sections of the paper.

Due to space limitations, proofs of all lemmas and

theorems are omitted here, but can be found in [10].

Lemma 1 Let P(z, y) = (z; wl; w2; . . .; WP; Y) be any

E-cube path (For clarity, let wo = z and WP+l = Y-),

and let (wi ~ W;+l) 6 P be any arc in P(r, y). Let

d be the dimension over which (wj + wj+l) travels,

2d = Wi @ W~+l, Then the following conditions hold:

1. Vj 6 {l..i}, V k c {0..d}, Wj@Zk =X@Zk

‘2. vjE {;:l..$J’ k E {d+l..n– 1},
Wj@2 —y

3. x@2d#y@2d.

Lemma 1 characterizes the behavior of dimension-

ordered routing in a hypercube. In particular, the

lemma formalizes the notion that any unicast travels
in a particular dimension at most once, and that
the unicast travels in a strictly decreasing order of

dimension.
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Lemma 2 For any three nodes x, y, z, and for any

subcube S, if x, z G S and x ~ y s z, then y E S.

Lemma 2 states that the node addresses within any

sub cube are contiguous.

3.3 Arc-disjoint paths

In implementing a multicast algorithm, whenever the

paths of two constituent unicast messages share an arc

(channel), care must be taken to ensure that the paths

do not attempt to use the shared arc simultaneously.

Alternativelyj when two paths have no arc in common,

contention (between these two particular paths) is

always avoided. Paths with no common arc are said

to be arc-disjoint.

Each of the following theorems state sufficient

conditions on two paths such that any two paths

meeting these conditions are arc-disjoint. Each

theorem is stated formally. Where needed for clarity,

theorems are stated informally within a parenthetical

block of text.

Theorem 1 Consider any two paths P(z, y) and

P(z, v) originating from a common source node. If

6(z, y) # 6(z, v), then P(z, y) and P(z, v) are arc-

disjoint. (Paths leaving a common source on diflerent

channels are arc-disjoint.)

Theorem 2 Consider any two paths P(u, v) and

P(x, y). If there exists a subcube S such that u, v E

S A z, y @ S, then P(u, v) and P(z, y) are arc-

disjoini. (A path with source and destination within

subcube S is arc-disjoint from any path with source

and destination outside S.}

3.4 Contention

As previously stated, any two unicasts having arc-

disjoint paths are contention-free. Unicasts whose

paths share an arc may or may not contend for
that arc, depending on the relative timing and

communication latencies of the unica.sts. Due to

the nondeterministic characteristics of communication

latency, we must establish necessary conditions for

avoiding contention, such that when these conditions

are met, it is guaranteed that contention will not occur.

In order to study contention between messages, the
definition of the reachable set of nodes in a multicast

implementation is needed [9].

Definition 3 A node v is in the reachable set of node

u, denoted RU, if and only if one of the following holds:

l.v=u; or

2. There exists a unicast (w, v, P(w, v), t) such that

WERU.

The reachable set of a node u contains those nodes

in the multicast that receive the message, either

directly or indirectly, through node u. If the multicast

is viewed as a tree of unicast messages, then R. is the

set of nodes in the subtree rooted at u. Using this

definition, the characteristics of a multicast necessary

to avoid contention between messages sent in different

time steps, called depth contention, can be formally

defined.

Definition 4 A multicast implementation is con-

tention-free if and only if its constituent unicasts

are pairwise contention-free. For any two unicasts

(u, v, P(u, v), t) and (z, y, P(z, y), ~) where t < r, the

two unicasts are contention-free if and only if either:

1. P(u, v) and P(z, y) are arc-disjoint; or

2. (t< T) A (T c Rv).

When viewing a multicast as a unicast tree, the

second item in the above definition allows two unica.sts

to share an arc under the condition that either (1) one

unicast is an ancestor of the other (this case occurs

when z E R.), or (2) one unicast is an ancestor of

a later sibling of the other. The latter case occurs

when (t < r) A (z E RU), but x < R“. From the

above definition of contention-free unicast pairs, we

can conclude that no two unicasts from a common

source node will experience contention, as shown in

the following theorem.

Theorem 3 Any two unicasts (u, v, P(u, v), t) and

(u, y, P(u, y), r) with a common source node are

contention-free.

4 Algorithms

In this section, we define several algorithms whose per-

formance was compared on all-port hypercubes. The
performance evaluation data are given in Section 5.

4.1 Algorithms based on dimension-

ordered chains

We begin with a brief review of the U-cube algo

rithm [9]. This algorithm, designed for one-port ar-
chitectures, produces multicast trees on such systems
that are of minimum height and are guaranteed to be

contention-free. The U-cube multica.st algorithm relies

on the binary relation “dimension order,” denoted

<d, which is defined between two nodes a and b

as follows: a <d b if and only if either a = b or

there exists a j such that a @ 2j < b @ 2j and

a@2i=b@2iforalli, j +l<i<n–1. A
sequence {do, dl, d2, . . . dP } of source and destination
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addresses in which all the elements are distinct and

di <d dj for all O ~ i < j g p is called a dimension-

ordered chain [9]. A sequence {dl, dz, . . . . dm} is called

a do-relative dimension-ordered chain if and only if

{do@dl, do@dz,..., do@ dm } is a dimension-ordered

chain.

If address resolution is performed from highest

(left) to lowest (right), then dimension order is the

same aa the usual increasing order. For example,

dimension ordering of 1O1OO,00110, and 10010 results

in the chain: 00110, 10010, 10100.

On the other hand, if addresses are resolved from

lowest to highest, then a dimension-ordered chain is:

10100, 10010,00110.

Figure 4 gives the U-cube algorithm, The source

do and the destination addresses are sorted into a dO-

relative dimension-ordered chain, denoted @, at the

time when multicast is initiated. The source node

successively divides @ in half and sends a message to
the first node in the upper half of the chain. That

node is responsible for delivering the message to the

other nodes in the upper half, using the same U-cube

algorithm. At each step, the source deletes from @ the

receiving node and those nodes in the upper half. The

source continues this procedure until @ contains only

its own address.

Algorithm 1: The U-Cube Multicast Algorithm [9]

Input: Dimension ordered address sequence

{~iejt, die~t+l, . . . . dright} ! where d~e~t

is the local address, and a message M.

Output: Send out one or more copies of message M

Procedure:

repeat

1. x = ~(d~eft, draght), the position of the first bit
difference

2. let dhighdim be the leftmost destination in the

chain such that 6(d/eft, dhjghdim )=Z

3. center= Iejt + [-l

4. next = centeT

5. D = {dne=t+l, dnezt+z,. . . . dright};

6. Send a copy of message M to node dnezt with
the address field D

7. right = next – 1

until ( left = right)

Figure 4. The U-cube multicast algorithm

Figure 5 gives an example of this method in a one-

port 4-cube. The source node 0100 is sending to

a set of eight destinations {0001, 0011, 0101, 0111,

1000, 1010, 1011, 1111}. Taking the exclusive-or
of each destination address with 0100 and sorting

the results produces the do-relative dimension-ordered

chain @ = {0000, 0001, 0011, 0101, 0111, 1011, 1100,

1110, 1111 }. (The reader will notice that this do-

relative chain represents the same multica.st operation

examined in Figure 3.) The corresponding U-cube tree

is shown in Figure 5. It takes 4 steps for all destination

processors to receive the message.

~-....: .........
I OciIO.

[1]/+-”-””’
~“’”%

. . ... ..

\ y m owl O@ll 0101 0111 10,, ,,00 ,,,, ,,,,

\

\die o,~ mu ~“.”.,

i.-~

do-relative chain ‘W’W ‘tie Oestirntion Ncde only Router Used

Figure 5. Multicast chain in a one-port 4-cube

It has been previously shown that message trans-

mission in U-cube tree is contention-free regardless of

startup latency and message length [9]. Furthermore,

the U-cube algorithm achieves minimum time for

a one-port architecture by requiring only p =

[Iogz(m + 1)1 time steps for m destinations. For

details of the theory behind the U-cube and the

accompanying U-mesh algorithm, please refer to [9].

The U-cube algorithm, however, makes no attempt

to parallelize message transmissions from a given

sender. when executed on an all-port hypercube,

the algorithm will often fail to take advantage of

that architectural property. In the tree shown in

Figure 3(d), for example, step 1 of the algorithm

“mistakenly” selects node 0111 as the first destination

to which the message is transmitted. This decision

leaves node 0111 responsible for delivering the message

to four nodes, all of which differ from 0111 in

the highest dimension. Better message-forwarding

decisions, shown in Figure 3(e), result in a tree of

height two.

This observation leads to two simple variations on

the U-cube algorithm. In fact, both algorithms differ

from U-cube in a single statement, which determines

the degree to which they exploit the all-port capability

of the system. In the Jfaxport algorithm, a sender

transmits (in parallel) to the maximum number of

destinations permitted by the architecture and the

specific destination set. Step 4 in the body of the main

loop is next = highdim, rather than next = center,

as in U-cube (Figure 4). This choice can sometimes
lead to performance worse than U-cube, however. For

example, if node 0000 is the source of a multicast to

nodes 1001, 1010, and 1011, the resulting Maxport
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“tree” will require three steps, as shown in Figure 6(a).

The U-cube solution shown in Figure 6(b) requires

only two steps.

IEiF’’%r%hl
(a) Maxport algorithm

(b) U-cube algorithm

m u ...J _
~---’ [i]

source node destination node intermediate nede messagesent
(router used) in step i

Figure 6. Simple Maxport and U-cube comparison

Just as U-cube does not account for dimension,

neither does Maxport account for the number of des-

tinations for which each node is responsible. A simple

modification to the algorithm solves the problem. As

the name implies, the Combine algorithm exhibits

characteristics of both the U-Cube and Maxport

algorithms. This algorithm attempts to use multiple

ports, but not at the expense of leaving a single node

responsible for a large subset of the destinations. In

order to obtain the Combine algorithm, step 4 in

the body of the main loop is changed to next =

max(highdim, center-). The performance of all three

algorithms is compared in Section 5.

4.2 An algorithm based on cube-
ordered chains

In this section, we present an alternative approach to

multicasting, in which the source node and destination

nodes are considered as elements of subcubes.

Definition 5 A chain D = {d~r.t, dj,st+l, . . .. ~/ast}

is a cube-ordered chain of dimension n iff

1. foralld Gll,0~d<2n; and

2. for all subcubes S = (rzs, Ms), where ns < n

for all i, j, k where jirst ~ i ~ j ~ k ~ last,

if di, dk E S, then dj E S.

(A chain D is cube-ordered iff the nodes of D within

any subcube are contiguous.)

Theorem 4 1~ D = {dfirst, dfi,.t+l, . . .. dla,t} is a

dimension ordered chain, then D is also a cube-ordered

chain.

In the Maxport algorithm, for each participating

node, say x, the unicasts originating at node x are

transmitted on different outgoing channels. In this

approach, the message is always forwarded to different
subcubes; when node x receives the message over

channel d, it also receives a list of destination nodes,

D, which are in the same d-dimension subcube as x,

say subcube S. In turn, x issues one unicast into each

subcube within S which (1) does not contain x, (2)

is maximal, and (3) contains at least one destination

node. As will be shown later, it is possible to input

any cube-ordered chain, not just a dimension-ordered

chain, to Maxport and still be able to avoid contention

among messages. An ordinary dimension-ordered

chain may not be the most appropriate cube-ordered

chain to use. In fact, performance increase may be

gained by exchanging sub cubes of the chain, where

possible, so that source nodes (including intermediate

source nodes in the multicast tree) always choose

the most “crowded” destination node among available

destination nodes.

Figure 7 shows the weighted-sort algorithm, which

permutes a cube-ordered chain so that the most

“crowded” node appears as the first node of each

subcube. This is accomplished by exchanging subcube

halves (these halves are themselves subcubes) so that

the most populated half occurs first in the chain.

Notice that the cube-center function is applied to a

cube-ordered chain of addresses that are contained

within a sub cube of dimension ns. This function

returns the starting position of the second (ns – 1)

dimension subcube “half” of the input subcube. (If

one of the (ns — 1) dimension subcubes contains no

destination nodes, then cube-center returns a value of

last+ 1.)

The weightedsort algorithm, as shown, is a

centralized algorithm with computational complexity

0(m2), where m is the number of destination nodes.

lVe have also developed a distributed version that

has complexity O(m /ogzm). For details, please

refer to [10]. To use the weightedfiort algorithm

with Maxport, the list of destinations is first sorted

according to dimension-order, then sorted using the
weighted sort algorithm, and finally input to Maxport.
Let us call the combination of these techniques the W-

sort routing algorithm.

Figure 8 illustrates the behavior of the W-sort

algorithm in a 4-cube. As shown in Figure 8(a), the

set of destination nodes is D = {O, 1, 3, 5, 7, 11, 12, 14,

15}. (Their binary equivalents are given for reference.)

Since the nodes of D are in ascending order, D is a

cube-ordered address sequence, by Theorem 4.
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Procedure: weighted=ort (D, jirst, last, ns)
Input: Cube-ordered chain D = {d~r$t, d~r$t+l, . . . . dIa~t}

and a subcube size ns.
Output: Upon exit, D is a weighted cube-ordered chain.
Procedure:

if last – jirst ~ 2 then
centeT = cube. centered, jirst, last, ns)

weighted=ort(D, ji@ cente~ – 1, ns – 1)

weighted=ort(D, center, last, ns – 1)
if (first # O) A

((center - jimt) < (last - center+ 1)) then
/“ swap subcubes “/
D = {dCenter, dcenter+l ,..., dla$t,

djirst? d~rst+l, . . . . dcenter_l}

endif
end if

Figure 7. The weighted.sort procedure

Figure 8(a) shows the U-cube algorithm executed

on an all-p”ok architecture, which requires 4 time

steps to perform the multicast. Each arc represents

a unicast, and is labeled with the time step in which

it occurs. In this example, intermediate routers are

not represented. Notice that node 7 cannot send to

nodes 11 and 12 during the same time step, since both

unicasts require the same outgoing channel.

Figure 8(b) shows the Maxport algorithm applied

directly to address sequence D. In this example,

the Maxport algorithm also requires 4 steps to reach

all destination nodes. Notice that all unicasts with

a common source node are transmitted on different

outgoing channels, and thus can be sent during the

same time step in an all-port architecture.

Now, we consider rearranging the nodes in the

destination address sequence before beginning the

multicast. Applying the weighted_sort algorithm to

address sequence D produces a new address sequence

D = {O, 1,3,5, 7, 14, 15, 12, 11}. Subcube S = (3,1)

contains destination nodes {11, 12, 14, 15}. The

two halves of subcube S, SO = (2, 10) and SI =
(2, 11), contain destination nodes {11} and {12, 14,

15}, respectively. Thus, the weighted-sort algorithm

interchanges SO and S1, since SO contains fewer

destination nodes than S1. This interchange results

in the more populated sub cube (S1 ) receiving the

message first. Continuing recursively, the two halves

of subcube S1 are also interchanged. Figure 8(c) shows

the resulting W-sort multicast, which requires only 2

steps.

Theorem 5 The weighted-sort algorithm applied to

u cube-ordered chain D = {dfi~~t, dfirst+l; . . . . dla.t}
. .

results in D = {dfirst, djrst+l, .? JfaSt}, where:

y———

o 1 s 5 7 11 12 14 15

(a) U-cube multicast algmithm

[t]

M [3] [4]

II llW II 1110 1111
1

0 1 3 5 7 tl 12 14 15

(b) Msxpxt multicast algorithm

I
o 1 3 5 7 t4 ts 12 11

(c) W–sort multicast algorithm

Figure 8. Examples of multicast communication

1. D is a cube-ordered chain;

2. D is a permutation of D; and

3. d~r,t = dfi,,t (the source node remains in the first

position).

Theorem 6 The W-sort algorithm applied to a cube-

ordered chain D = {dfi~~t, dfirst+l, . . . . dla$t} results in

a contention-free multicast from source node dfir.t to

destination nodes {d$~.t+l, dfi~,t+z, , . . . . d/ast}.

5 Performance evaluation

In order to understand the relative performance of the

algorithms presented in Section 4, they were compared

in three ways on destination sets in which the nodes

are randomly distributed throughout the hypercube.

First, we compared their performance in terms of the

average and maximum number of steps required to

reach the destinations. Second, we compared the

algorithms by implementing them on an nCUBE-2

and measuring the average and maximum delay, across

destinations, for messages of various sizes. Third, we

simulated the performance of the algorithms using a

simulation tool that has been validated against the

nCUBE-2. Since we had access to a real system with

only 64 nodes, simulation allowed us to compare the

algorithms on larger systems.
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5.1 Stepwise comparisons

Figures 9 and 10 plot the averages, among random

sets of destinations, of the maximum number of steps

needed to multicast data in a 6-cube and a 10-cube,

respectively. For each point in a curve, 100 destination

sets were chosen randomly. In addition to reducing the

number of steps, the new algorithms “smooth out” the

staircase behavior of the U-cube algorithm.

Avg
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Steps

I I I I I I
6 1

5

4

3

Combine +
2

1
t

W-sort +
-i

o~
10 20 30 40 50 60

Number of Destinations

Figure 9. Stepwise comparisons on a 6-cube
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100 200 300 400 500 600 700 800 9001000

Number of Destinations

Figure 10. Stepwise comparisons on a 10-cube

5.2 Implementations on an nCUBE-2

Figures 11 and 12 plot the average and maximum,

among destinations, of the measured delay between

the sending of a 4096-byte multicast message and its

receipt at the destination. For each point in a curve,

20 destination sets were chosen randomly in a 5-cube.

These plots show that all the algorithms designed

to take advantage of the multiport architecture offer

some benefit over the U-cube algorithm. However,

any advantage of among Maxport, Combine, and W-

sort, is unclear. Interestingly, Figure 11 shows that

the average delay for U-cube is actually worse for

multicast than for broadcast. This anomaly occurs

because the algorithm sometimes forces multiple

messages out the same channel instead of taking

advantage of multiple channels. In Figure 12, we see

clearly the staircase behavior of U-cube. As predicted

by the stepwise comparisons, the new algorithms tend

to smooth the relative delays among various sized

destination sets.
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5000

4000

3000

2000

1000
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, ,- /. f
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W-sort +
1

[J I I I I I 1 I
o 5 10 15 20 25 30

Number of Destinations

Figure 11. Average delay comparisons on a 5-cube
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Sooo

6000
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I I I I I I
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o tj 10 15 20 25 30

Number of Destinations

Figure 12. Maximum delay comparisons on a 5-cube

5.3 Simulations of larger systems

In order to compare the algorithm for larger hy-

percubes, we relied on simulation. As part of an

earlier project [1 1], we have developed a CSIM-based

simulation tool, called MultiSim, which can be used

to simulate large-scale multiprocessors. In particular,

MultiSim uses novel methods to efficiently simulate

wormhole-rout ed systems. In addition, the simulator

has been validated against an nCUBE-2 hypercube

multicornputer [11].
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Figures 13 and 14 plot the average and maximum,

among destinations, of the delay between the sending

of a 4096-byte multicast message and its receipt at

the destination. For each point in a curve, 100

destination sets were chosen randomly in a 10 cube.

These plots show that all the algorithms designed

to take advantage of the multiport architecture offer

advantages over the U-cube algorithm. For the

larger systems, the advantage of W-sort becomes more

obvious in both the average and maximum cases.

20000~
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Delay
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15000
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Figure 13. Average delay comparisons on a 10-cube
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Delay 15000
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Figure 14. Maximum delay comparisons on a 10-cube

6 Conclusions

Efficient data distribution is critical to the perfor-

mance of new generation supercomputers that use

massively parallel architectures. In this paper, the

problem of collective data distribution, specifically

multicast in all-port wormhole-routed hypercubes, has

been addressed. It has been demonstrated why the

U-cube multicast algorithm [9], which is optimal for

one-port architectures, fails to take advantage of

multiple ports when they are present in the system.

New theoretical results regarding contention among

messages in wormhole-routed hypercubes have been

developed and used to design new multicast routing

algorithms and to prove that these algorithms are

contention-free. The algorithms were compared in

terms of the number of steps required in each, their

measured execution times when implemented on a

relatively small-scale nCUBE-2, and their simulated

execution times on larger hypercubes. The results

indicate that significant performance improvement

is possible when the multicast algorithm actively

identifies and uses multiple ports in parallel.
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