
A Superimposition Control Construct for
Distributed Systems

SHMUEL KATZ

The Technion

A control structure called a superimposition is proposed. The structure contains schematic

abstractions of processes called roletypes in its declaration. Each roletype may be bound to

processes from a basic distributed algorithm, and the operations of the roletype will then execute

interleaved with those of the basic processes, over the same state space. This structure captures

a kind of modularity natural for distributed programming, which previously has been treated

using a macro-like implantation of code. The elements of a superimposition are identified, a

syntax is suggested, correctness criteria are defined, and examples are presented.

Categories and Subject Descriptors: D. 1.3 [Programming Techniques] Concurrent Program-
ming; D.3.3 [Programming Languages] Language Constructs and Features—control
structures; modules, packages

General Terms: Design, Languages

Additional Key Words and Phrases: Distributed programming, control construct, formal and

actual processes, modularity, roletype, superimposition

1. INTRODUCTION

A control construct called a superimposition is proposed in order to capture a

type of decomposition appropriate for distributed systems. In this procedure-

like control structure, both formal processes and schematic abstractions of

processes called roletypes are declared, each with formal parameters and a

sequential communicating algorithm using those parameters. The declaration

captures a distributed algorithm that is separately designed, but is intended

to be executed in conjunction with other activities in the same state space.

The construct is combined with an existing collection of communicating

processes by instantiating the formal processes and associating each process

of the collection with one roletype. The actual parameters connect the formal

superimposition roletype to the state of the actual process. During execution

the operations of the roletype declaration are interleaved with those of the

This work was supported in part by the Argentinean Research Fund at the Technion under grant

120-749.

Author’s address: Technion, Israel Institute of Technology, Computer Science Department, Haifa

32000, Israel.

Permission to copy without fee all or part of this material is granted provided that the copies are

not made or distributed for direct commercial advantage, the ACM copyright notice and the title

of the publication and its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or

specific permission.

01993 ACM 0164-0925/93/0400-337 $1.50

ACM Transactions on Pmgranmnng Langwiges and Systems, Vol. 15, No. 2, AP.11 1993, Pages SS7-S56

http://crossmark.crossref.org/dialog/?doi=10.1145%2F169701.169682&domain=pdf&date_stamp=1993-04-01

338 . Shmuel Katz

actual processes. Thus, the roletype can be seen as additional code to aug-

ment each actual process with which it is associated.

A schematic diagram intended to indicate the combination of a super-

imposition declaration with an existing set of basic processes is shown in

Figure 1. At the left of the figure are shapes that represent both roletypes

and formal processes. After combination of the superimposition and basic

processes (represented as circles), the combination has each basic process

augmented by one of the roletypes, and the formal processes of the super-

imposition added as additional processes of the combination.

Before turning to a fuller examination of the syntax and operational

semantics of the construct, including scoping rules and correctness criteria,

some motivation seems called for. A superimposition is intended to provide

one of several concepts of modularization appropriate for the design of

distributed systems. These concepts should aid in the decomposition of a

system specification to more manageable subunits, supplementing the usual

groupings such as blocks, conditionals, and procedures seen in sequential

programming.

The first, and most obvious, decomposition of a system design is to isolate

into a module a collection of processes operating in parallel with the remain-

der of the system. Some processes in the collection accept request messages

from outside the collection, and eventually some processes in the collection

send messages outside as appropriate responses. The necessary computations

occur in parallel to the other processes of the system. This “vertical” division

into groups of processes is the natural way to treat, for example, distributed

implementations of data structures.

However, as noted already by Lamport [20], the type of decomposition

described above is inappropriate for the many situations in which a modular-

ization is required that cuts across process boundaries. A second type of

decomposition defines what can be termed a layer of execution. In this case, a

collection of already existent processes temporarily cooperate in some pattern

of interaction in order to accomplish a subtask, and then continue in separate

computations. Once a process begins executing the code of the layer, it will

not execute operations that are not in the layer until it has finished its role

within the layer. This type of modularization was first suggested in the

communication-closed layers of [11] and extended somewhat in [15].

Both the script mechanism in [14], and the team of the Raddle language

[12] are syntactic mechanisms for isolating interaction patterns among collec-

tions of processes. In these constructs, processes fill roles, which can be
viewed as formal parameters of the script or team, and then return to their

normal operation. A script thus amounts to an n-way subroutine mechanism.

Note that while a script is executing, the participating processes are execut-

ing only operations of the script, and no other operations of those processes

are interleaved.

Neither of the above types of decomposition are appropriate for a class of

examples that has emerged over the last decade. Thus, superimposition, a

third category of modularization, is needed. In this category, the module is an

algorithm designed to be executed in processes also performing other tasks,

ACM Transactions on Programmmg Languages and Systems, Vol. 15, No. 2, April 1993.

Superimposition

Deckumion

Roletypes Formal

r] Z

A Superimposition Control Construct . 339

Basic

-t—~— Combmation

00 •~
o 9

0

0
Fig. 1. A schematic combination.

with the operations of the algorithm interleaved with the operations for the

other tasks. The initial specification is thus divided into two subtasks, one to

be solved by a basic algorithm, and another by an algorithm to be interleaved

with the basic algorithm, over the same state space.

An early use of the term “superimpose” is in the termination detection

algorithm of Dijkstra and Scholten [8]. Numerous examples are explicitly

intended to be used as superimpositions, starting with the termination

detection algorithm of Francez [13] for nondiffusing computations, algorithms

for deadlock detection ([7] and many others) and the global snapshot of [4].

All of these instances were developed and presented without considering the

general issue of superimposition. They are characterized by the separate

description of the algorithm to be superimposed and a rather informal

description of the way in which the algorithm is to interact with the other

tasks being performed in the processes. The sometimes implicit assumption is

also made that the result of superimposing is a complete interleaving of the

basic computation and the superimposed code.

More recently, the notion of superimposition (but termed superposition)

has been investigated by Chandy and Misra in the context of their Unity

approach to programming [5, 6]. A view of superimposition with somewhat

different properties than the version seen here has been developed indepen-

dently by Bouge and Francez [3]. Refinements used to distribute a centralized

action system are also viewed as superimpositions in [2]. A detailed compari-

son among the approaches to superimposition is made in Section 5.

As may be seen from the examples in the literature, superimposition is

particularly appropriate for adding functionality to a system in stages. For

example, a distributed system might be required to be deadlock-free, to

eventually terminate once it reaches an “inactive” global state, to guarantee
eventual service to every request, and to guarantee that certain sections of

code not execute concurrently, while at the same time executing some basic

computation with a functional specification of its own. Each of these tasks

ACM Transactions on Programming Languages and Systems,Vol. 15,No. 2, April 1993.

340 . Shmuel Katz

can be accomplished by superimposing an algorithm on a basic computation

(which might in itself be the result of a previous superimposition on an even
more basic algorithm). Superimposition is also appropriate for describing

more mundane tasks such as monitoring, accounting, and debugging other

algorithms.

In the remainder of this paper, the superimposition of one algorithm on

others is examined in greater detail, and a language construct to isolate a

superimposition in a separate program module is defined and illustrated. In

Section 4, the generic proof of a superimposition with respect to its specifica-

tion is considered, as are the proof obligations when an instance of a

superimposition is combined with a basic computation.

In the continuation, a superimposure, or combination, will be considered as

the result of merging a basic algorithm (or computation) and a new algo-

rithm, called the superimposition. The merge allows an interleaving of the

operations of the two algorithms and establishes a correspondence between

the processes of the basic computation and the roletypes of the superimposi-

tion. Each process and roletype that are associated are, at least conceptually,

operating on the same local state.

In order to keep the superimposition declaration independent of any spe-

cific basic algorithm, when the combination is made the superimposition

must be adapted to the architecture of the basic algorithm. Moreover, any

required adjustments in the basic algorithm should be described uniformly in

the superimposition declaration. The degree to which such adjustments are

allowed is discussed in Sections 4 and 5.

Although the ideas presented here can be applied for any model or type of

program, for the sake of concreteness, distributed reactiue systems [16] will

be treated. These are distributed systems where each variable is local to some

process, and values are passed between processes using explicit communica-

tion commands. A process is organized in a top-level loop that examines a

variety of possibilities in guarded commands, where each possibility has a

condition for execution (called a guard) determined by the values of local

variables and including possible communications among processes. When a

guard in a process is true, it may be selected (“passed”). The process then

reacts by receiving a possible message and then executing associated local

statements (including possible sending of messages if sending is nonblocking,

and therefore local). Execution then returns to the top level. A guard and the

associated local statements are called a step. Invariants and other temporal

assertions are all expected to be true at the top level of the loop, before the
selection of a guard for execution. Interleaving of basic and superimposed

computations will mean that additional steps will (at least conceptually) be

added by the superimposition to the steps of the basic computation. A finer

interleaving, of every atomic statement, would have similar definitions but be

more difficult to implement and verify. Note that if a shared-memory model

were being treated, it might have been necessary to view several statements

collected into a step as an atomic unit of execution in order to guarantee that

a consistent state is maintained. In the distributed model, this is not neces-

sary: any delay between the execution of local statements that together make

ACM Transactions on Programmmg Languages and Systems, Vol 15, No 2, Aprd 1993

A Superimposition Control Construct . 341

up a step and their (conceptual) interleavings with executions of statements

from other processes do not affect the correctness of the algorithms. A process

P involved in a step cannot do any other step until it has completed all of the

associated local statements, and statements executed in any other process

cannot affect the state of P until it has completed all local statements of the

step—because all blocking communication and global tests are done at the

beginning of the step. (A formal discussion of when execution sequences

of distributed programs can be considered equivalent for the purposes of

correctness can be found in [18].)

The normal form [1] of a CSP program is a reactive system. Also, in the

Raddle model [12] the processes have such a reactive top-level organization

and are composed of a collection of rules. In the context of superimposition,

the basic rules are transformed and additional high-level rules are added.

This terminology will be used in the continuation. When general control

constructs are used in the basic algorithm, a mechanism is needed to link the

superimposition actions with (abstract) locations in the basic program. This is

briefly treated in Section 2.

2. A LANGUAGE CONSTRUCT FOR SUPERIMPOSITION

In an explicit superimposition language construct, a syntax is required both

for the declaration of a superimposition and for a combination operator, in

which a basic algorithm and a superimposition declaration are associated in

order to produce a superimposure (i.e., an augmented algorithm). The super-

imposition declaration remains as a module of a program in the language.

This is done for the same reasons that procedures are used in sequential

programming: the code is isolated and thus easy to modify, renaming local

variables is treated automatically by the scoping rules, parameter passing

increases the generality of the module, and code need not be expanded.

Although the specification of a superimposition needs to relate to the state

space of the basic computation, it would clearly be too restrictive to require

identifiers in the basic computation with particular names fixed by the

superimposition in advance. Instead, it is sufficient to use the parameter

mechanism to specify that some variable in the basic algorithm corresponds

to each formal variable in the superimposition and that it satisfies appropri-

ate conditions. In order to further increase this generality, the formal process

names appropriate for the superimposed code need not be (and usually are

not) the same as those of the processes of the basic computation. Since each

process of the basic algorithm is to be augmented, it is natural to define

several role types, such as initiator, follower, gatherer. In the combination

operator, each process of the basic computation will be associated with one

roletype, and variables or constants of the process are bound to the parame-

ters of the roletype. The specification of the superimposition may include

restrictions on the processes (or the number of processes) that may be of each
roletype. The formal processes of the superimposition declaration are instan-

tiated with actual variables in place of the formal parameters, as additional

processes in the combination.

ACM Transactions on Programming Languages and Systems,Vol. 15,No. 2, April 1993.

342 . Shmuel Katz

Operationally, this means that each basic process is augmented with code

“serving” the superimposition, and then during execution control is occasion-

ally transferred from the code of the basic process to that of the roletype, the

parameters are passed, one rule is tried (if it is enabled it will be executed),

and control is returned to the actual process, with the parameters updated.

How often the control should be transferred and which rules should be

tried are questions of fairness. It has been left open whether the rules in a

superimposition are automatically guaranteed to execute due to a fairness

assumption, or whether this guarantee must be coded into the transforma-

tions and rules. It seems desirable to maintain internal consistency in any

programming language that adopts superimposition. Thus, whatever is true

about the fair choice of rules in a process (or, in general, whatever is true for

choices among alternative actions) should also hold for the interpretation of a

superimposition under the macrosubstitution view. As a minimal require-

ment, within finite time the formal roletype should be activated. If no guard

is then enabled, control is returned to the actual process without performing

any action, while otherwise any one of the enabled rules of the roletype is

chosen. This will guarantee what is known in [21] as justice for the roletype.

It would also be possible to require that each rule of the superimposition that

is continuously enabled is eventually executed, giving justice at the level of

the rules. This is similar to the fairness condition of [6].

A superimposition declaration consists of type declarations, regular process

declarations, and a collection of roletype declarations. There may also be a

global result section stating a specification for the entire algorithm and a

global condition giving global applicability conditions.
Each roletype contains a header and possible (subsections. The header

consists of the keyword roletype followed by a name, a formal parameter

list, and some restrictions. The sections of a roletype are a var section

containing declarations of variables local to the roletype, a transform section

describing the syntactic augmentation of the processes of the basic computa-

tion bound to that roletype, an initialize section with code to be executed

when the combination operator is invoked, a rules section to express the part

of the new algorithm to be (conceptually) interleaved with the code in basic

processes of that roletype, and a finalize section to be executed when the

basic algorithm is terminated. Each of the sections are optional, and will not

appear if not needed for that roletype. In addition, each roletype may have a

result section containing the result assertions about the combination for

each process of that roletype and a condition section for the applicability
conditions of the associated process from the basic computation that are not

amenable to a syntactic transformation.

The outline of a typical superimposition declaration is seen in Figure 2. The

(global and local) applicability conditions and the result assertions in this
construct may be seen as comments not affecting the implementation. They

are part of the specification of a superimposition, but will be given informally

in the examples here. Their role in defining correctness will be seen later, in

Section 4.
It should also be noted that although the emphasis here is on the code

associated and interleaved with existing processes using the roletype mecha-

ACM Transactions on Programming Languages and Systems, Vol. 15, No. 2, Aprd 1993.

A Superimposition Control Construct . 343

werimp ~-
<typedeelaratiom

global result

(result assdorl for rhesupxirnposition]
gfobaf emsdition

(global applicability eondiliofr)
rdetype aolenarn- (qsmmeter lisp) (, crestricti-]

var decal deelssadow

result

(result Sssernons for this roletyp)

condition

(applicability emditions for processesto usethisrdetype]
transform

(description of trsmformations to tbe basic eompuration]

initialize

[code to be executed before rhe basic computation begins)

rules

[rules for this rdetype]

tlnalize

(wale to be executed sfter ttse basic computation is completed)

endrolet ype

rdetype . . .

endsrsperimp

Fig. 2. The form of a superimposition

nism, some new processes could be added as part of the superimposition.

With the simplifying assumptions given in the previous section, the declara-

tion simply has the word process in place of roletype and does not have

transform or finalize sections. In general, the syntax for adding new

processes depends on the language into which the superimposition construct

is to be incorporated. Section 3.1 has a straightforward example of adding a

process.

The parameter list in the header of each roletype represents the formal

interface to the processes of the basic algorithm to which the roletype will be

bound. The transformations and rules are expressed in terms of these param-

eters. Thus, indirectly, through the binding done by the combination opera-

tor, these parameters connect the superimposition to the state space of the

basic computation. Any variable in the superimposition declaration that is

not a parameter must be assigned values within the superimposition code

and does not return values to the basic algorithm.

The scope of all variables in the declaration, both parameters and any

other variables in the superimposition, is local to the superimposition. That

is, even if there are variables of the same name in the basic computation,

they are unrelated to those in the superimposition declaration. It is as if a

consistent renaming had occurred in either the superimposition declaration
or in the basic algorithm.

The binding mechanism that seems most reasonable for a superimposition

is call-by-reference (i.e., associating the address of the actual parameter with

the formal parameter). If well-known restrictions on aliasing are obeyed [101

ACM Transactions on Programming Languages and Systems, Vol. 15, No. 2, April 1993

344 . Shmuel Katz

(the same actual parameter cannot be associated with more than one formal

parameter), the call-by-reference mechanism as used in the rules section is

equivalent to a call-by-value-result. That is, each time the superimposed

algorithm is to be activated, it may be considered as if the value of the actual

parameter in the basic computation is transferred to the formal parameter in

the superimposed algorithm, a rule is executed, and the value of the formal

parameter is transferred back to the actual parameter in the appropriate

process.

The restrictions after a role name involve the number of processes of that

type in the resultant superimposure (e.g., unrestricted, atmost 1, or atleast 1)

or structural requirements (e.g., single-neighbor).

If the basic programs do not have the simple loop structure assumed so far,

it is possible to use the parameter mechanism to indicate which operations of

the roletype are to be associated with which locations in the basic process.

Just as for variables, a label parameter is used to represent “abstra et”

locations associated with the possible choice of indicated activities. These

locations can be restricted in the conditions section. When a combination is

created, labels from the basic process must be provided satisfying the restric-

tions. This approach is only reasonable if a generic identifier or comment can

be used to indicate the type of label required at the time the combination is

made (e.g., choice-point, after-loop, or end-of-loop-body).

The transform section contains those changes and additions to the basic

algorithm that cannot be expressed as independent rules because they are

associated with particular events in the basic algorithm. Such changes are

difficult to describe uniformly, and sometimes [3] it is assumed that the basic

algorithm has already been hand-tailored to suit the needs of the superimpo-

sition. However, that assumption makes the superimposition declaration

incomplete and requires the designer of the basic algorithm to be aware of the

requirements of the superimposition.

Here the description of transformations to the basic algorithm is in the

form of rewrite rules. A pattern is followed by the keyword to and another

pattern that includes new program statements. If the first pattern is only to

be augmented with additional code, a “*” is used to indicate the pattern

identified. These may be viewed as a modification to the BNF description of

the syntax of a program. The intended meaning is that in parsing the basic

algorithm, the new expression to the right of the keyword to, with the formal

parameter names replaced by the actual parameter names, and * replaced by

the identified pattern to the left of to, should be used instead of the identified

pattern. The effect of these transformations is to syntactically modify the

original basic algorithm. Thus the transformation

(assignment) to*; count := count + 1

means that each assignment statement will be augmented by incrementing

the local variable count. This mechanism is potentially dangerous because

arbitrary changes to the basic computation can be introduced in this section.

Thus it is reasonable to limit the type of permissible transformations. Which

transformations should be allowed is considered in greater detail in Section 5.

ACM Transactions on Programmmg Languages and Systems, Vol 15, No 2, April 1993.

A Superimposition Control Construct . 345

As an alternative to using transformations, when only additional statements

are added at crucial locations of the basic program, the abstract labeling

mentioned above can be used with the rules section.

A superimposure is formed by combining a group of processes that consti-

tute the basic algorithm with a superimposition declaration. To summarize

the effect of such a combination, the resultant superimposure has a process

for each explicitly declared process of the superimposition declaration and an

augmented process for each process of the basic algorithm. For the aug-

mented processes, a correspondence is established between the processes of

the basic algorithm and instances of the roletypes of the superimposition, and

actual parameters are provided for each instance. The syntax for producing

superimposures again depends on the facilities in the language for grouping

processes. For simplicity, here, the correspondence is established by writing

the line

use (supername)

after the name of a group of processes that constitute the basic algorithm,

and then after the heading of each basic process, the line

include (supername). (rolename) ((actual parameter list)).

The actual parameter list gives the variables of that process that are to be

associated with the formal variables in the declaration. There, clearly, is a

syntactic check that all of the restrictions of the superimposition are satis-

fied. For a new process of the ‘superimposition, the include line only serves

to instantiate parameters and is not associated with a basic process. (It uses

variables in the actual parameters from the scope at that point.) Note that

several superimpositions on the same basic computation are possible, but

they are not necessarily commutative. The resultant superimposure should

be seen as a new collection of processes, and the original basic algorithm is

still available if needed.

3. EXAMPLES OF SUPERIMPOSITIONS

3.1 Monitoring Execution

The text in Figure 3 concisely expresses a trivial superimposition to gather

statistics on the number of assignments executed in a basic algorithm.

Generalizations of the same idea should be useful for bookkeeping and

debugging. In this version the compilation of information gathered is not

superimposed on an existing process of the basic algorithm, but occurs in an

additional “monitoring” process.

Note that it is not far from an informal description: it is assumed that only

one assignment is executed per step. Each participant process increments a

local variable each time an assignment is executed. The count is sent to the
monitoring process every c assignment statements (by making the regular

guards false, the superimposed code becomes the only thing left to do). Then
the local variable is reset to zero. When the basic computation has finished

ACM Transactions on Programming Languages and Systems, Vol. 15, No. 2, April 1993.

346 . Shmuel Katz

superimp monitoring
global result wkn done, assignsum.momtoruxrrd. sum d assignments executed in bask algorirhm

global condition single assignment per szep

roletype participant (c: integer)

var ccwrm irrtegez

result count. sum of assignment statements m zhe process since last reprz

transform assignrnenp to *; eourm=count+ 1

<glsanb to emmt?%; *

initialii emsnt:= O

rules

[count = c + send count to monitorcoord;
count := o]

tinafize

send count m monitorccord;

send doneo zo monitoreaxd

endroletype (parrscipant)

process monitormord(N: inzeger)

var aswgnsum, t, donccount imegm, continue. bolcan;

initialize assigrrsum:= 0, donecount:= O;continue:= tree;
rules

[continue; dommunt < N, receive t from psrtIcpaM + as.signsum = a.wgnsum + t]

[continue; donemmt < N; recmve don~ from @rncipant --+ &3nezcmnL= donecoun[+ I]

[continue; doneccum = N + “report”; commue = false]

endprocess (monizorcomd)

endsuperimp

Fig. 3. A superimposition for monitoring assignment statements.

executing, the remaining count is sent to the monitoring process, which will

tabulate the results (indicated by the word “report”).

Each instance of the roletype participant has a parameter indicating after

how many assignments an update should be sent, while the added process,

monitorcoord, has a parameter with the number of processes that will be

instantiated with the roletype. By writing include participant(100), a pro-

cess could send messages to monitorcoord every 100 assignments. Another

process could send at dynamically changing intervals by using a local vari-

able v that will, due to the internal logic of the basic computation, occasion-

ally become equal to the counter, by stating include participant u). After

the global use monitoring, the line include monitorcoord(15) could appear
to indicate that 15 basic processes will act as participants.

Note that if assignsum were to be returned to the basic algorithm so that it

could subsequently use that information, the variable would have had to be

given as a parameter. Also, for a more realistic situation where numerous

assignments could be executed in each step, a variant without the restriction

in the global condition clause could modify the participant roletype, using

count < c instead of count # c in the transform of the guard, and count 2 c

instead of count = c in the guard of the new rule. In that case, a message

with the value of count would be sent when it was detected that at least c

ACM TransactIons on Programming Languages and Systems, Vol. 15, No. 2, Aprd 1993

A Superimposition Control Construct . 347

assignments had been executed. In the situation described, it is simply

inefficient to send count precisely when c is reached, even though this could

be done at the cost of comparing the values after every assignment within a

step, using transformations to express the superimposition.

3.2 Termination Detection

Turning to problems more specific to distributed programming, consider the

superimposition declaration seen in Figure 4. This is a version of a termina-

tion detection algorithm due to Topor [24] (which in turn is based on several

earlier algorithms, as explained in the reference). The idea of the superimpo-

sition is that a “wave” of colored tokens will travel from the leaves to the root

of a spanning tree of the processes. If the basic algorithm has not terminated,

this will be sensed in the root, and a repeat wave is sent to the leaves, so that

the token wave can be reinitialized. The computational model is a distributed

language with either synchronous send and receiue operations, or at least

with an assumption that a message will be sensed by the receiving process

before an entire wave can traverse the spanning tree. This assumption is

expressed in the superimposition declaration by the phrase “semisynchro-

nous communication” in the global condition section. If it did not hold, the

algorithm could be shown to be incorrect for messages that remain in nontree

channels for an entire round of a token wave and a repeat wave.

The information on whether termination has occurred is encoded into the

color of the tokens and a node variable from each process. Whenever a node

sends a (basic) message, it will color its node variable black, in order to

denote that it may have disturbed one of the nodes that was previously idle.

An idle leaf sends a white token. An internal node will pass on a white token

only if it has received a white token from all its sons and is itself white, and

otherwise will send a black token after receiving tokens from all its sons. If

the root is white and has received white tokens from all its sons, then

termination has been detected. The correctness of the superimposition is

proven in [24], although the crucial assumption on semisynchronous commu-

nication is expressed somewhat vaguely. In fact, the details of the justifica-

tion are of little interest to the designer of a system interested in applying the

superimposition.

The connection of the basic computation to the superimposition is through

the formal parameters idle and finished, while the needed spanning tree is

encoded into the parameters parent and children. The condition section

expresses that if the variable that will be bound to idle is true, then the

(augmented) basic algorithm in the associated process will only respond to

new incoming messages. The (implicit) requirement that the variable node

must be set to black whenever a message is sent (and before idle becomes

true) can be achieved by adding the indicated assignment in the transform

section immediately after every send statement. Thus, node can be local to
the declaration. As may be seen in the result section of the source role type,

the variable that is associated with the formal parameter finished in the

source process indicates when termination has been detected.

ACM Transactions on Programmmg Languages and Systems, Vol. 15, No. 2, April 1993.

348 . Shmuel Katz

auperimp temminaticmdetection

type color = (Ma&, wh!te);

global condition nodes in children form a spanning tree, c c children(p) =$ p = parent(c),

Serni-synchmw ccmrnonication

rdetype smrce(idle: bookan; cMldremst of process; numkcbildinlegm, f~bdean); exxtly 1

var token, node, x :CO1OCmmsbiokens:integev

result (finished = basic computation is done) and (basic computation is done =$ eventually ftied)

condition idle =$ basic commmdonW occuronIy if a message is received
o

transform send arscssage to aargeqnwew to”; node:= black

initialize node= white; token:= white; numbtokens= O fmisbed= fafse

ruks

[nurnbchild = numbtokens A (--iidle v ncde=black v token=bfack) +

send repeato to chifdren;

node= white; numbtokens:= 0 token:= white]

[receive tokenrnsg(x) -+ if x=black Usen token: =bfack

nombtokem:=numbtokens+ 1]

[numbchild=numbtokens A (iffe A ncmie=white A token=white) -+ finished: =truez

numbtokens:= O]

endroletype source

rdetype imexnaf(idfe:bookao; chiklren:w of preess; parenq-mcoss; nombchild:integer}

var token, node, XCQIOC numbtokem integen

condition idfe = basic computauon will occur only if a message is rezeived

transform send unessage to aargetproc~ to * ; node:= bl~k

initialise node. wfsitcz token:= white; numbtokenx. O

ruks

[idle A numbchihi=munbtokens + if tokrm=white then send tokenmsg(node) to parent
else send rokenmsg(liack) to paren~

node= whste; numbtokens:-, token: =wtute]
[receive tokenrnsg(x) -+ if x.bkk them token:.blac~

mmsbtokens=nurnbtokens+ 1]

[receive mpeaI() + SCM repemo to children]
endroletype mternaf

rdetype kaf(idle:bookan; Parentproc.s);

var token, node coloc

cossdition idfe =3 basic computadon wdl caur only if a message is rweived

transform send am.ssage to .aargerp~ to ● ; node := bkwk
initialize node= whi~; token: =whlte

ruks

[idfe A token=whitc -+ xnd tiamsg(nede) to PSSWIL
token: =bhk; ncde:.white]

[receive repeato -+ tokem.white]

endroletype leaf

endsuperimp

Fig. 4 A superimposition for termination detection

3.3 Bounding Monotonically Increasing Values

Even in somewhat more specific contexts, this type of modularity can

be useful. One such example can be seen in [19], where an algorithm is

ACM TransactIons on Programmmg Languages and Systems, Vol. 15, No. 2. April 1993

A Superimposition Control Construct . 349

presented for preventing the formation of a cycle in a distributed directed

graph with dynamic addition and deletion of edges. The algorithm uses

monotonically increasing ranking values in order to prevent the formation of

a cycle, but the values may become arbitrarily large. In order to bound the

range of the rankings, a superimposition is used over the basic algorithm.

The superimposition determines that a value outside the desired range is

about to be assigned, adjusts other values to ensure that the ordering relation

is maintained, and then assigns a value from within the permissible range.

Superimpositions with similar goals of bounding counters or timestamps may

be seen in [17] and [9].

The specification of such a superimposition should generalize the specific

context so that it might be applied in other situations as well. Thus the

applicability conditions only require that the collection of variables in the

basic computation to be associated with the rank have a partial ordering

relation at each moment (and the relation may vary according to the com-

putations of the basic algorithm). However, the absolute values of those

variables are not needed in the specification. The result assertion then

guarantees that the partial ordering is maintained in the combination, and in

addition the range of the variables is bounded by bound.

The first part of the superimposition declaration is:

superimp rankbound
roletype any(val, bound: integer)

var activate: boolean; t: integer
transform

val ,= (expr) to t := (expr);
if t > bound then activate := true else val := t

(guard) to T activate; *

This means that the basic computation must be augmented, so that if in

the original computation the rank variable corresponding to val exceeds the

bound, then this is sensed in the superimposition, and the regular computa-

tion is temporarily disabled in that process so that appropriate steps can be

taken by the code in the rules section of the declaration. The algorithm to

achieve this is complex and is not presented here. Of course, it will include

the resetting of activate to false, so that the basic computation may continue

after the superimposition part has adjusted the rank values. There clearly

will be assignments to val, thus changing values from the basic algorithm.

Note that in this example the superimposition modifies the values of

variables from the basic algorithm. In the previous examples, the superimpo-

sition adds auxiliary variables and may modify the control flow of the basic

algorithm, but only changes the values of basic boolean variables. In many

examples, these can be assumed to affect only the control of the basic

algorithm. Although sometimes this is defined to be a requirement of a

superimposition, it seems too restrictive and does not cover many natural

examples, including the one here. Thus, the more liberal requirement of not
modifying the basic specification is adopted, as explained in the following

section.

ACM Transactions on Programming Languages and Systems, Vol. 15, No. 2, Aprd 1993.

350 . Shmuel Katz

4. SPECIFICATION AND CORRECTNESS

A more precise statement of the assertions in a superimposition declaration

requires a formalism for their expression. One possibility is to use a logic

based on (past and future) temporal operators [22] and additional predicates

about the state of the basic computation. In this formalism, the ❑ modal

operator is interpreted as “from now on” (or “always” if it appears on the top

level of the assertion), the O modality is to be read as “eventually,” while S

is the “since” operator. Among the predicates we might have regarding the

state are assignments x), which is true when x is an assignment state-

ent, executed(s) true when a statement s has just been executed, or

tenninated(B) if no more statements of B can be executed in the possible

executions from the present state.

An assertion that “b is true iff a statement t of the basic algorithm has

executed since b was last false” could then be written as

❑(b - (executed).

An assertion that “the predicate ~ b repeatedly becomes true” would be

The result assertion involving the variable finished from the source roletype

in the termination detection superimposition is then

❑ ((finished s terminated basic)) A (terminated basic) = Gfinished)).

A superimposition is correct if, whenever processes from the basic algo-

rithm are bound to roletypes with actual parameters so that (a) the restric-

tions on the bindings to the roletypes hold and (b) the global and local

conditions are true for the appropriate actual parameters, then the assertions

in the result section, with the actual parameters substituted, will be true of

the superimposure. A frame axiom also holds, stating that the specification of

the basic algorithm is true for the superimposure.

Note that it is an oversimplification to define the specification of the

combination as the conjunction of whatever is done by the basic computation

and the result assertions of the superimposition, since there may be contra-

dictory assertions in the result of such a conjunction, which is not the

intention. For example, in a termination-detection superimposition, the basic

computation usually has the property that it may deadlock. On the other

hand, since this is the purpose of the detection superimposition, the combina-

tion clearly does not deadlock and instead will properly terminate. Thus, it
seems necessary to specify that the result assertions hold, as well as any

property of the basic computation that is “not affected” by superimposition.

It is not always trivial to separate those properties superseded by the

result assertions and those that continue to hold. Here it is assumed that any

properties superseded were semantically true in the basic computation, but

were not part of its specification. This is reasonable because those properties

were presumably undesirable. Under such an assumption, the conjunction of

the basic specification and the superimposition’s result assertions will hold in

the superimposure.

ACM TransactIons on Programmmg Languages and S: stems, Vol. 15, No. 2, April 1993.

A Superimposition Control Construct . 351

To summarize this view in a precise statement, the assumption is also

made that a semantic interpretation is available both for programs and for

specifications, and that both in fact define families of possible execution

sequences. The following notation is used:

B a basic distributed algorithm

P a specification of B (including desired properties only, as noted

above)

(S, C, R) a superimposition, with S, the superimposition code; C, the

applicability conditions and restrictions on roletype bindings;

and R, the result assertions.

A; the assertion or code A, with y substituted for x (where x and y

may be tuples of the same arity).

(B + S;) a superimposure of S on B with y the actual parameters of B
corresponding to the formal parameters x of S. Note that this

includes the transformations to the basic algorithm, the addi-

tional rules added by the superimposition, the initialization, and

the finalization.

(D + S) a dummy superimposure on an arbitrary basic program D, with

actual parameters identical to the formal ones in the declaration

of s.

x-y semantic implication. The program or assertion X defhes execu-

tion sequences that are a subset of the set of sequences defined

by Y.

Using the notation above, a combination of a superimposition (S, C, R) and

a basic algorithm B with specification P is correct if whenever B - P, and

B = Cl (for variables y of B and parameters x of the superimposition), then

(B+ S;)* R;AP.

That is, if a basic algorithm satisfies both its specification and also the

conditions for applying a superimposition when y is substituted for x, then

the superimposure with that binding satisfies both the result assertion with

that substitution and the specification of the basic algorithm.

To show that a superimposition declaration is correct, independently of a

specific basic algorithm, prove that if both C and (D = C) are assumed, then

(D+ S)*R

holds. The assertion C contains all relevant information about the basic

algorithms to which the superimposition may be applied, and D is a dummy

basic program about which nothing is known except that C can be assumed

true. Note that any specific basic algorithm can never change variables from

the superimposition (due to the scoping rules), and that the condition C must

be shown to hold for any basic algorithm to which a superimposition is to

be applied. Therefore, if the above semantic implication holds for a superim-
position, any possible combination will satisfy the superimposition result

assertion.

ACM Transactions on Programming Languages and Systems, Vol. 15, No. 2, April 1993

352 . Shmuel Katz

For the examples from the literature, the assertion above is demonstrated

through either informal or formal program-correctness techniques. Thus, in

the termination detection example (3.2), the proof of [24] shows that the

specification holds for any basic program and configuration of processes that

obey the restriction on the variable idle (that no spontaneous messages are

sent while idle is true) and for which a spanning tree is given.

It remains to show that, in the combination, the basic specification is not

violated. If the superimposition does not change variables that are formal

parameters, and none of the statements of the basic algorithm are removed or

modified (except to add assignments to superimposition variables), it follows

from the definitions that the computations of the basic algorithm are un-

changed in the superimposure, and thus they continue to satisfy the specifi-

cation as previously. Of course, it can be determined syntactically whether a

superimposition satisfies these conditions. Otherwise, in the case of more

general transformations, for each superimposure (i.e., set of bindings seen in

the include and use statements), it must be shown that the basic specifica-

tion is indeed unchanged in the superimposure, again using verification

techniques.

In order to show this generically, the condition C must include the proper-

ties of the basic program that guarantee the invariance of the basic specifica-

tion under the augmentation due to the superimposition. Then assuming C,

and D * (C ~ P), the semantic implication

(D+ S)=P

should be true. That is, if the dummy basic program is assumed to satisfy C

and some specification P, the combination must still satisfy P. Thus, for

examples of the type seen in Example 3.3, C includes the fact that only the

relative order of the rank or timestamp is significant for the correctness of

the basic algorithm, and not the precise values. The superimposition may

only be applied to basic algorithms with that property.

It would clearly be desirable to identify an intermediate level of “accepta-

ble” transformations that exclude a complete rewriting of the basic algorithm.

This is discussed in the following section.

5. VARIETIES OF SUPERIMPOSITIONS

As mentioned in the previous section, one way to guarantee that the basic

algorithm is unaffected by the superimposition is to forbid modifying the

execution sequences of the basic algorithm in any way, as in [6]. Thus, since a

monitoring superimposition (e.g., Example 3.1) and the basic computation are

presumably unrelated, in this case the result assertion guarantees all of the

specification of the basic computation, plus assertions about the values in the

statistical summary (e.g., that a variable assignsum represents the number

of assignments executed in all the processes). However, this seems too

restrictive, especially outside of the (global state) Unity context. The only

possible superimpositions are those to monitor or detect properties, without

ACM TransactIons on Programmmg Languages and Systems, Vol. 15, No. 2, April 1993.

A Superimposition Control Construct . 353

any possibility of changing the computations so that the basic variables

satisfy additional properties.

A more liberal approach is taken in [3], where a superimposition can only

affect the control of the basic algorithm. For example, guards could be made

untrue, thereby closing previously available control paths. If the variables

that correspond to the parameters idle and finished could be shown not to

affect the “real” variables of the basic computation, and only to close some of

the guards, this restriction would hold for Example 3.2. The intention of this

restriction is to ensure that all safety properties of the basic program

continue to hold automatically in any superimposure, although liveness

properties could be changed. If the basic program of each process has the

form of a single loop, in the normal form assumed in most of the paper, this is

indeed true. However, if a process may have any code following the first loop,

even such a limited superimposition could cause proper termination of the

first loop where previously it deadlocked. In that case, assertions that were

invariants for the basic program could now be invalid when the code after the

loop is reached and executed. Thus, even safety properties cannot be guaran-

teed to still hold if the form of the program is slightly more general.

Moreover, such a view is inadequate for examples where the values of basic

variables may be changed, without disturbing the specification. Example 3.3

and other algorithms to bound counters or timestamps have all of the

characteristics of a superimposition: they act in conjunction with another

basic distributed algorithm over the same state, add the property of keeping

the counters within a bounded domain without violating the specification of

the other algorithm, and they are described uniformly, independently of the

basic algorithm. Yet they only make sense if the counters or timestamps of

the basic program can sometimes be modified so as to guarantee remaining in

the bounded range of values. Other examples naturally included in the

category of superimpositions are algorithms to reorganize a data structure of

the basic algorithm in order to increase efficiency, without affecting the

abstract data operations of the basic algorithm.

If it is desired that later stages of the basic algorithm take some action

based on the result of the superimposition, the approach of not affecting the

basic variables is insufficiently expressive. For example, when deadlock has

been detected, the superimposition could include a breaking of the deadlock

by sending messages to be treated by the basic code, or by changing the

values of variables that indicate a passive local state. An approach that

allows closing control paths (guards) can be used to force proper termination

on a program that otherwise would have the processes indefinitely waiting

for messages that will never arrive, but cannot be used to break a general

deadlock where a (minor) correction and continuation is desired.

As another example, a reliability superimposition could guard against

message loss by requiring that an acknowledge message be received in the

process sending a message, before it continues to its next instruction. How-

ever, this activity is only reasonable if, occasionally, an acknowledgment is

not received within a period known as the time-out. In this case, the basic

ACM TransactIons on Programming Languages and Systems, Vol. 15, No. 2, Aprd 1993.

354 . Shmuel Katz

message must be resent. But the other approaches have no way to indicate

this to the basic algorithm, or to have the basic algorithm receive and treat a

message sent by the superimposed part. Information may be transmitted

back to the basic algorithm only by changing basic variables.

Such transformations should at least capture many of the modifications

that seem intuitively natural and appear in examples, informally called

superimpositions. The quality and elegance of a superimposition is inversely

proportional to the complexity of the interface with the basic algorithm, and

in particular to how much is done by the transform section.

Besides the addition of parametrization, which other definitions of super-

imposition do not treat, there is a difference in the assumption about the

degree of similarity of the configuration of basic and superimposed code, In

particular, here new processes can be added by the superimposition, as well

as new communication channels. That is, two augmented processes in the

superimposure may communicate (through the superimposed code) even

though the corresponding basic processes did not. If it is required that no new

channels be added by the superimposition (as is assumed in [3]), this may be

given as a restriction on the possible processes of each roletype.

6. CONCLUSIONS

A control structure has been presented to allow convenient expression of the

superimposition of one algorithm on another. Although an interleaving at the

level of guarded commands or rules has been assumed, the ideas are orthogo-

nal to the degree of interleaving. In general, superimposition can be adapted

to any distributed model, much like the script mechanism seen in [14] serves

as a general construct for communication-closed layers.

For most distributed languages, the view seen here of augmenting the basic

processes is appropriate. Another convenient framework for adding a slight

variant of superimposition may be seen in the Guardian construct of Argus

[23], where processes with shared memory can be combined into a guardian.

In that context, instead of interleaving rules of the superimposition with the

basic code, a roletype of the superimposition would be adjoined to each

process of the basic computation in the same guardian. The added roletype

can examine the common memory and execute the superimposed code in

parallel to the basic computation. In this case the roletypes involved in the

superimposition remain distinct from those of the basic computation, even

though they are distributed among the guardians,
It is still somewhat unclear when a decomposition to a basic computation

and a superimposition is desirable or possible. The difficulty is similar to that

of any other method of decomposition. One approach would be to develop a

library of potential superimpositions, which are applicable to large classes of

basic computations. At least in those cases it is clear that an algorithm that

is only loosely linked to the basic computation can be found for the additional

functionality guaranteed by the superimposition. This is the natural way to

treat general superimposition algorithms found in the literature, since they

have wide applicability. However, it should be noted that the concept can also

ACM TransactIons on Programming Languages and Systems, Vol. 15, No. 2, Aprjl 1993

A Superimposition Control Construct . 355

be useful for the decomposition of a specific task to relatively independent

subtasks, even when the superimposition part is not of general applicability.

ACKNOWLEDGMENTS

Mike Evangelist, Ira Forman, and Nissim Francez have provided valuable

comments on the ideas presented here.

REFERENCES

1. APT. K. R., AND CLERMONT, PH. Two normal form theorems for CSP programs. RC 10975,

IBM, T. J. Watson Research Center, Yorktown Heights, N.Y., Feb. 1985.

2. BACK, R. J. R., AND KURH-SUONIO, R. Decentralization of process nets with centralized

control. Dist. Cornput., 3, Springer-Verlag, Berlin, Germany (1989), 73–87.

3. BOUGE, L., AND FRANCEZ, N. A compositional approach to superimposition. In Proceedings of

ACM POPL88 Symposium (Jan. 1988).

4. CHANDY, K. M., AND LAMPORT, L. Distributed snapshots: Determining global states of

distributed systems. ACM Trans. Comput. Syst., 3, 1 (Feb. 1985), 63-75.

5. CHANDY, K. M., AND MISRA, J. An example of stepwise refinement of distributed algorithms:

Quiescence detection. ACM 8, 3 (July 1986), 326-343.

6. CHANDY, K. M,, AND MISRA, J. Parallel Progranl Design: A Foundation. Addison-Wesley,

Reading, Mass., 1988.

7. CHANDY, K. M., MISRA, J., AND HAAs, L. Distributed deadlock detection. ACM Trans.

Comput. Syst., 1, 2, (May 1983), 144-156.

8. DIJKSTRA, E. W., AND SCHOLTEN, C. S. Termination detection for diffusing computations.

Znf. Process. Lett., 11, 1,North-Holland, New York (Aug. 1980), 1-4.

9. DOLEV, D., AND SHAWT, N. Bounded concurrent time-stamp systems are constructible.

Proceedings of 21st ACM Symposium on Theory of Computing (May 1989), 454-466.

10. DONAHUE, J. E. Complementary definitions of programming language semantics. LNCS 42,
Springer-Verlag, New York, 1976.

11. ELRAD, T., AND FRANCEZ, N. Decomposition of distributed programs into communication

closed layers. Sci. Comput. Program. 2, 2 (1982), 155–173.

12. FORMAN, I. On the design of large distributed systems. MCC Tech. Rep. STP-098–86 (rev.

1.0), Jan. 1987. Preliminary version in Proceedings of International Conference on Computer

Languages, (Miami Beach, Fla., Oct. 1986).

13. FRANCEZ, N. Distributed termination. ACM Trans. Program. Lang. Syst., 2, 1 (Jan. 1980),

42-55.

14. FRANCEZ, N., HALPERN, B., AND TAUBENFELD, G. Script: A communication abstraction mech-

anism and its verification. Sci. Comput. Program., 6 (1986), 35–88.

15. GERTH, R., AND SHRD?A, L. On proving communication closeness of distributed layers. In

Proceedings of the 6th Conference on Foundations of Software Technology and Theoretical

Computer Science (New Delhi, 1986), LNCS 241, K. V. Nori, Ed., 330-343.

16. HAREL, D., AND PNUELI, A. On the development of reactive systems. In Proceedings of

Advanced Institute on Logics and Models for Verification and Specifzcatcon of Concurrent

Systems (La Cone Sur Loupej Oct. 1984).

17. ISRAELI, A., AND LI, M. Bounded time stamps. In Proceedings of 18th IEEE FOCS Sympo-

sium, 1987, 371–382.

18. KATZ, S., AND PELED, D. Interleaving set temporal logic. Theor. Comput. Set., 75 (1990),

263-287.

19. KATZ, S., AND SHMUELI, O. Cooperative distributed algorithms for dynamic cycle prevention.

IEEE Trans. Softw. Eng. SE-13, 5 (May 1987), 540-552.

20. LAMPORT, L. Solved problems, unsolved problems, and non-problems in concurrency. In

Proceedings of 3rd ACM PODC Symposium (Vancouver, 1984), 1-11.

21. LEHMANN, D., PNUELI, A., AND STAVI, J. Impartiality, justice, fairness: The ethics of concur-

rent termination. In The Proceedings of 8th ICMLP (Acco, Israel, July 1981). LNCS 115, 0.

Kariv and S. Even, Eds., Springer-Verlag, 1981, 264-277.

ACM Transactions on Programming Languages and Systems, Vol. 15, No 2, April 1993.

356 . Shmuel Katz

22. LIECHTENSTEIN, O., PNUELI, A., AND ZUCK, L. The glory of the past. In Logics of Programs

Symposium, LNCS 193, Springer-Verlag, (New York, 1985), 196-218.

23. LISKOV, B., AND SCHEIFLER, R. Guardians and actions: Linguistic support for robust, dis-

tributed programs, ACM Trans. Program. Lang. Syst., 5, 3 (July 1983).

24. TOPOR, R. Termination detection for distributed computations. Inf. Process. Lett., 18 (Jan,

1984), 33-36.

Received November 1987; revised November 1989, Aprd 1992; accepted July 1992

ACM TransactIons on Programmmg Languages and Systems, Vol. 15, No. 2, April 1993

