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1. INTRODUCTION

In this paper we study splines created from segments of algebraic curves.
These are not the usual parametric splines in which each component function

X, Y depends on a parameter t: ( X, Y) = (~(t), g(t)). In an algebraic spline
each segment is given implicitly as a segment of the graph of an implicit
equation f( x, y) = O. The subject was initiated by T. W. Sederberg in [21]
and [22].

The main advantage of parametric curves is that they are easy to graph
and to control using the methods of B-Splines and B&zier curves [7]. The
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main advantage of implicit curves is the ease of checking whether a given

point lies on, to the right of, or to the left of the curve. Implicit curves of a
given degree greater than two also have more degrees of freedom for shape
control.

There are two areas in which much more work is needed in order to make
implicit curves as useful as parametric curves are: graphing methods and
shape control. Graphing methods so far are relatively slow, but are becoming
more sophisticated to provide greater accuracy. Methods studied so far
include walking along the curve pixel by pixel [4], stepping along the tangent
vector and making corrections, taking into account singular points [2],
parametrizing the curve by elliptic functions (elliptic curves only) [16], find-
ing the intersections of the curve with a triangulation of space [6], and
finding local rational approximations [3]. The curves used in this paper are so
predictable they can be graphed by the most naive method.

Some contributions to the study of shape control of implicit curves are
made by Sederberg [22] in the original paper on this subject. Li, Hoschek, and
Hartmann study a case in [12] which has one degree of freedom. Sederberg
[20] studies the problem of finding intersections of implicit curves, and
Garrity and Warren [8, 25] compare several definitions of geometric continu-
ity for them. More attention has been given to implicit surfaces [1, 5, 9– 14,
19, 21, 23, 24].

This paper is a contribution to the study of shape control of implicit cubics.

The general cubic has ten coefficients, but after endpoint positions and
tangents are imposed has six coefficients and five degrees of freedom left. A
complete geometric analysis of these five degrees of freedom is the ultimate
goal, but in this paper we restrict to a subfamily with four degrees of
freedom. The curves in this subfamily are arcs of cubic ovals. The shape
handles discussed in this paper are (primarily) interpolation conditions. In a

subsequent paper we will discuss curvature conditions.
The individual segments of our splines inherit from cubic ovals the proper-

ties of convexity and nonsingularity. Thus any inflection points or double

points in a spline must be explicitly put in by the user. In addition these
curves and the splines created from them have the properties

—local control,

—variation diminishing,

—convex hull,

—afflne invariance, and

—quadratic precision.

These curves are a direct generalization of conic splines, which form a
natural subfamily. Unlike many spline constructions, there are no knot
considerations and no global systems of equations to solve.

We begin in Section 2 by reviewing the notation we use for barycentric
coordinates. In Section 3 we review the classification of algebraic cubic

curves. Sederberg’s construction is reviewed in Section 4. In Section 5 we
define the family of curves we use and prove that they are segments of cubic
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ovals. The shape handles used for individual segments are described in
Sections 6 and 7. In Section 8 we describe the spline construction.

2. BARYCENTRIC COORDINATES

Barycentric coordinates in the afflne plane are defined with respect to a
triangle. If the vertices PO, ~1, and P2 have Euclidean coordinates PO(X., Y.),
PI( x,, Y1 ), and P2( X2, Y2), the Euclidean coordinates (x, y) of any point P
can be expressed

(X, Y)= S(XI), YO) +t(x,, Yl) +U(X2, Y2)

with s + t + u = 1. Thus P has barycentric coordinates P(s, t, u). The
barycentric coordinates of the vertices themselves are PO(l, O,O), PI(O, 1, O),
and P2(0, O, 1).

Passing between barycentric and Euclidean coordinates is done using a
matrix

[)

~o Yo 1

(X, y,l)=(s, t,u) xl Y1 1

X2 Y2 1

and its inverse. Using these substitutions we can write an equation in either
Euclidean or barycentric coordinates.

Passing from barycentric coordinates to general homogeneous coordinates
based on the triangle and with its barycenter P( 1/3, 1/3, 1/3) as unit point
is done by sending (s, t, u) to its equivalence class [s, t,u], where (s, t, u) is
equivalent to (ks, kt, ku) for k # O. Passing from homogeneous to barycentric
coordinates is possible for those points not on the line at infinitys + t + u = O
by choosing the representative of the class [s, t,u] which satisfies s + t + u

= 1. See [ 17] for more about general homogeneous coordinates.

3. CLASSIFICATION OF CUBICS

In this section we review the classification of real algebraic cubic curves.
When its equation can be factored, a cubic is reducible and is either a line
and a conic or three lines. Otherwise the curve is irreducible, in which case it
is either singular or nonsingular. A singular cubic has exactly one double
point which is either a crunode, an acnode, or a cusp [15]. A nonsingular
cubic has either one circuit or two as a curve in the real projective plane. For
the curves with two circuits, one is the oval, which separates the projective
plane into a component which is topologically a disk and one which is a
Mobius band, and the other is the odd circuit, which does not separate the
projective plane; see Figure 1. A cubic with one circuit has only the odd
circuit.

In order to determine from the coefficients of the cubic which type is
present, we can use a discriminant A defined in [18, pp. 191-192].

THEOREM 3.1. A homogeneous cubic F is irreducible and nonsingular if
and only if A(F) # O. Moreover F has one or two circuits as A(F) > 0 or

A(F) <0, respectively.
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Fig. 1. A two-circuit cubic.

The polynomial A has degree 12 in the 10 coefficients of the general cubic
and has over 10,000 terms. However in the case of the cubic we shall be
using,

F(s, t, 24) = as2u + bsu2 – cst2 – dt2u + estu – ft3,

four of the coefficients are zero and the formula for A reduces to

A = a2b2(27a2b2f4 – abe3f3 – 36a2bdef3 – 36ab2cef3 + @e4f2

+bce4f2 + 8a2d2e2f2 + 46abc&2f2 + 8b2c2e2f2 + 16a3d3f2

–24a2bcd2f2 – 24ab2c2df2 + 16b3c3f2 – cde=f – 8acd2e3f

– 8bc2a%3f – 16a2cd3ef + 64abc2d2ef – 16 b2c3&?f – c2d2e4

–8ac2d3e2 – 8bc3d2e2 – 16a2c2d4 + 32abc3d3 – 16b2c4d2),

up to a positive scalar.

4. REVIEW OF SEDERBERG’S CONSTRUCTION

Sederberg [21, 22] has proposed the following idea which we review here for
the case of cubics. It begins with the B6zier construction of triangular surface
patches. Given a reference triangle POPIP2, some specific points Xij~ in the
triangle are defined by

Xijk= ;Po + ;Pl + ;P2,

for i,~, k >0 and z + ~ + k = 3 as in Figure 2. If a z-coordinate Pijk is
assigned tO each point Xij~, the corresponding points (Xi jh, Pijk ) are the
control pointa of a triangular B6zier patch; the graph of

()z=qs, t,u)=~ & Pij~SitJUk.
Y
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PO. Xm Xml X102 P2 = X003

Fig. 2. The points X,,~ in the triangle.

The intersection of this surface with the plane z = O is a plane curve
F’(s, t, u) = O, defined implicitly in terms of the barycentric coordinates of the
triangle. Now there are exactly as many points X,j~ as there are coefficients
in a polynomial of degree 3. So the Pijk can be reinterpreted both as the
coefficients of an implicit equation and as weights at the points X,,k. In this
way every implicit cubic equation, when rewritten in barycentric coordinates
with respect to some triangle, can be thought of as defining the curve of
intersection of a B6zier surface with the plane.

Using this interpretation of an implicit equation, Sederberg described
several geometric properties of the curve in terms of the coefficients. He
showed that if the weight at a vertex of the triangle is zero then the curve
passes through the vertex. Furthermore if an adjoining weight on one edge is
also zero the curve is tangent at the vertex to that side of the triangle. 1 In
Figure 3 the points X,,k are labeled with the corresponding coefficients P,Jk.
Only that portion of the curve which lies inside the triangle is graphed.

5. CUBIC OVALS

Suppose we are given two points PO and P2 and lines through them which
intersect at a point PI. We are interested in finding convex cubic arcs which
lie within the triangle POPI P2, join PO to P2 and are tangent at PO and P2
to the two given lines. If we use this triangle b define barycentric coordinates
as in Section 2, we know from the results of Sederberg that for a cubic

satisfying the interpolation conditions the coefficients of s 3,s 2t, tu 2, and u 3
are zero. The equation of such a curve therefore has the form

F(s, t,u) = CIS2U+ bsu2 – cst2 –dt2ZJ + estu –ft3 = O.

The notation has been simplified to avoid the triple subscripts since a good
deal of algebra must be done with these coefficients. Figure 4 illustrates how
these coefficients and the barycentric coordinates correspond to points in the
triangle.

1This tangency property may be lost if the vertex happens to be a multiple point; see Figure 9b.
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o
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0

0 1 1 0

Fig.3. Graph of szu + SU2– Stz – t2u = O.

Fig. 4. Notation for the triangle.

P.

.fj=l U=l

We now begin to impose additional conditions on the coefficients so that the
curves in the family include a convex arc within the triangle from P. to P2,
tangent to the sides. The first condition is that a and b must have the same
sign. This is because the line t! = O intersects the curve in PO, Pz and the
point P(s, O, u) whose coordinates satisfi as + bu = O. If a and b have
opposite signs, P lies between P. and Pz. To avoid this we now impose the
condition a, b > 0.

Next we impose the condition ~ = O. This causes the curve to pass through
PI; more is said about this at the end of this section.

We can see by example that we have not yet imposed enough conditions to
keep the curve inside the triangle. Figure 5 shows the curve when a = b = 1,
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Fig. 5. A curve that lies outside the
triangle.

c = – 1, d = – 1/2, and e = O. This and similar examples suggest that we
might need c, d > 0. The next two results combine to show that in this case
we have a useful subfamily of curves.

THEOREM 5.1. lf a, b,c, d >0, the cubic

F(s, t,u) =aszu + bsuz –cstz

is an irreducible and nonsingular two-circuit
cases z

—dt 2u + estu

cubic except in the following

—lf a = O (respectively b = 0), the curve is singular with a double point at PO
(respectively Pz~

—lf c = O (respectively d = O), the curve is reducible with a factor u ( respec-
tively s);

—If ad = bc and e = O, the curve is reducible

‘(stu) ‘(as +bu)(su - ;t’)

PROOF. If a = O, all three first partial derivatives of F have the root
s = 1, t = u = O, so that PO is a double point. Similarly if h = O, P2 is a
double point. The conditions involving c and d are easy to see. Because f = O,
the discriminant A reduces to

A = -a2b2c2d2(e4 + 8(ad + bc)e2 + 16(ad – bc)z).

If a, b, c, d >0, A is negative and the curve therefore has two circuits unless
the factor involving e is zero; in other words

e2 = –4(ad+bc) ~8Z.

The minus sign is impossible and

–4(ad + bc) +8- >0

if and only if

(ad - be)’ <0.

ACM Transactions on Graphics, Vol. 12, No. 3, July 1993
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Thus the factor involving e is zero if and only if ad – bc = O and e = O, in
which case F is reducible as indicated. o

Now that we know the curve normally has two circuits we can ask which
one passes through the points PO and Pz.

THEOREM 5.2. If a, b,c, d >0, the graph of aszu + bsu2 – cstz – dt2u +
estu = O includes an arc of a cubic oval which lies inside the triangle, joins PO
to Pg, and is tangent to the sides of the triangle. If ad – bc = O and e = O, the
curve reduces to a conic arc.

ROOF. The proof entails looking for silhouette points. According to Salmon
[18], Articles 167 and 200, from a point on a one-circuit curve, two lines can
be drawn which are tangent to the curve at other points. These points of
tangency are silhouette pointa as seen from the given point. From a point on
the odd circuit of a two-circuit curve, four such lines can be drawn—two to
points on the odd circuit and two to points on the oval. From a point on the
oval, none can be drawn.

We use this idea to test whether PO lies on the oval, first in the case e = O.
Treat PO(l, O, O) as the origin and search for lines through PO which are
tangent to the curve. Into aszu + bsu2 – cstz – dtzu = O, a, b >0, substi-
tute u = mt and s = 1.2 We get

t[–drntz + (bm2 – c)t + am].

The factor t corresponds to the intersection at PO. The quadratic factor has a
double root if its discriminant G(m) equals O:

G(m) = b2m4 + (4ad – 2bc)m2 + C2 = O.

Thus the question is reduced to whether G has O or 4 real roots, since we
have already determined that the curve has two circuits. In other words, PO
lies on the oval if and only if the minimum of G is positive. From

G’(m) = 4b2m3 + 4(2ad – bc)m

we see the critical points occur when m = O and

bc – 2ad
~z =

b2 “

The value of G at O is positive if c # O. When bc – 2ad <0, 0 is the only
point that needs to be considered. So the dotted area in Figure 6 above the
line bc – 2 ad = O in c, d-parameter space contains coefllcient values for
which PO lies on the oval. In addition, when bc – 2 ad > 0 we have those

2No points are missed by ignoring the line t = Othrough PO and P2. It already crosses the curve
twice. It can not be tangent at another point without violating Bezout’s theorem, according to
which a line meets a cubic in at most three points.

Letting s = 1 means we are thinking about homogeneous coordinates rather than affine
coordinates for a silhouette point which does not lie on the line s = O.No such point could lie on
the line s = Osince s = O already meets the curve once at PI and twice at Pz.
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d bc-ad=O bc-2ad=0

c

Fig. 6. The region for which P. lies on the oval

points for which the value of G at ~ m is positive. Substituting for m2 we
find

b2G = 4ad(bc – ad).

Thus since d >0, G is positive if and only if bc – ad >0, which adds the
region that is vertically striped.

Repeating the argument with P2 we find the region in c, d-parameter
space that corresponds to having the point P2 on the oval. The intersection of
the two regions is the first quadrant.

Because PO and P2 lie on the oval when e = O, this remains tme by
continuity for all e. •l

Finally, we can explain the reason for choosing f = O; this causes the odd
circuit of the curve to pass through PI. With the oval tangent at PO and Pz,
each of the lines s = O and u = O has three known intersections with the
cubic. Because of Bezout’s theorem the odd circuit has no other intersections
with these lines and is thus under control safely out of the way.

6. THE CURVE CONSTRUCTION

In this section we describe the parameters used as shape handles to control
the curve via the coefficients. The shape handles we examine here are
additional interpolation conditions; curvature conditions will be described in
a sequel.

We first select a point BO(SO,to, UO) that lies inside the triangle and is to be
interpolated. Second we specify the tangent line at BO. One way to describe it
is in terms of the point Q( SI, O, u ~) where the tangent line at B. meets the
line P. P2 (it is possible for Q to lie at infinity). A more convenient parameter
for theoretical purposes is the cross ratio R of either the four points Q, BO,
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Q.

Q P. s P
2

Fig. 7. Defining the cross ratio R.

QO, and Qz shown in Figure 7, or equivalently the four points Q, S, PO, and
Pz, where S(s./(sO + UO),O, uO/(sO + UO)) is the projection of BO. We obtain

R =R(Q, S, PO, P,) =

so u~
S1 u~

so + U. so + u~
10

0 1
so u~

.sl U1

01
so + u~ so + u~

1 0

soul—_—
Uosl

For Q between PO and Pz, R is positive, and for Q outside this interval R is
negative. (Another parameter m, more intuitive for a designer, is presented
in Section 8.) The remaining two degrees of freedom are controlled by a pair
( PI, Pz ), each of which can vary from O to 1.

THEOREM 6.1. Given a point BO(SO,to, UO) inside the triangle POPIPZ and
a point Q(sl, O, u ~) on the line t = O, there exists a cubic in the family
as2u + bsu2 – cst2 – dt 2U + estu = O, a, b, c, d >0 which passes through BO
tangent to the line BOQ if and only if Q is outside the interval [PO, Pz ]; S1 <0
or S1 > 1. A solution corresponds to a choice of ( /31,& ) in the unit square,
with coefficients determined as follows:

C := (1 – f$)sOu:, d := –R(l – ~z)s~uO, e := (1 –R – 2& + 2R~2)sOtOu0.

The proof of Theorem 6.1 is postponed to the Appendix. For the rest of this
section we study properties of this curve construction. In the next section we
examine the effect of the /3’s on the shape of the curve.

If BO is given, because R must be negative the parameter space is the
infinitely long bar in Figure 8. In general each point in this bar determines a
different oval arc that satisfies the contact conditions at PO, Pz and passes
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132

R=o $1

Fig,8. The parameter domain.

through 11o. However certain points determine the reducible curves which
occur when ad = bc and e = O. When the curve is reducible, the quadratic
factor describes a conic which satisfies the contact conditions and passes
through BO. Here is an equivalent way to express the reducibility condition in
terms of the parameters Pl, &, and R.

PROPOSITION 6.2. The curve is reducible if and only if R = – 1 and /31+ /33
—— 1; see Figure 8. The arc of the reducible curve is independent of /31and 13z
so long as ~, + f3z = 1.

PROOF. From ad – bc = O and e = O, we deduce

R2P2(I –~2) =&(l ‘~1)

and

(1 - 2P, ) =R(l - 262). (1)

Eliminating R we obtain

(P, -132) (B1 +132-1)=0. (2)

Since R is negative we obtain from (1) that 131> 1/2, ~z < 1/2 or the
reverse. In either case from (2), @l + p2 = 1. Then from (1), R = – 1. Con-
versely if R = – 1 and ~1 + ~t = 1 we can evaluate and find ad – bc = O
and e = O.
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When R=-landfll+&=l

t; t:
a= —c and b = —d.

SOuo Souo

Letting

~;
.y. —

Souo

we have the specific reduction

as2u + bsu2 – cst2 – dt2u = (CS + du)(ysu – t2).

As y is independent of c and d, any change tn c or d or to & or ~2 goes
into a change of the linear factor, not the quadratic. D

In consequence our curves contain the subfamily of conies. Assuming that
we graph our curves by tracing from PO or P2, in the reducible case the conic
arc is what is drawn.

In fact this construction has quadratic precision. Suppose we have a conic
arc from PO to P2 within the triangle, with PI the intersection of the tangent
lines and with llo(so, to, UO) any interior point of the arc. If we then use the
value of R determined by the tangent line at l?. and any ~1, f12 such that
/31 + /3z = 1, the construction recovers the original conic arc. Because of the

endpoint and tangency conditions on the conic, the coefficients of s 2, st, tu,
and u2 are zero. We can then normalize the equation to the form ysu – t 2 = O.
Because BO lies on the curve, y = t~/sO UO.The tangent line to the conic at BO
has equation y UOs – 2tOt + yso u = O. This line meets the line POP2 at the
point Q(sl, O, Ul), where

so –U.
51 = and U1 =

so – u~ so — Uo

We find R = – 1. For any @l, ~2 such that /31 + /32 = 1 the curve is reducible
and we recover the original conic.

7. THE EFFECTS OF THE P’S

In this section we investigate the behavior of the curves F = O when B. and
the slope at BO are fixed and the parameters &

The general formula for F is

F(s, t,u) = –R~2t:Uo S2U + &Sot:SU2

+ R(l – ~2)s; uOt2u

v
and f12 are varied.

– (1 – pl)sou:stz

+(1 –R – 2& + 2R@2)sOtOuOstu.

This can be factored

(1 - /31)(1 - f12)F00 + (1 - &)~2F01 + ~1(1 - &)FIO + &&F1l. (3)
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The formulas for the individual F,j are

Fw = SoUot[– UoSt + ~SotU + (1 – ~)tosu],

FO1 = UoS[–~tjSU – SoUot2 + (1 + R) SOtOtZZ],

FIO = SoU[t;SU + ~So Uot2 – (1 + R)tOuost],

Fll = tOSU[– RtOUOS + (R – l)sOuOt + sOtOu].

These four extremal curves are all reducible. The three lines composing F1,
are the sides of the triangle and the line ~. Q. Figure 9 displays the graphs of
these curves and eight other extreme curves which correspond to values of fll
and /32 on the edges of the unit square. The curves all interpolate the
barycenter Bo(l\3, 1/3, 1/3) with R = – 1/3.

Because the coefficient of /31(?2 in (3) is zero, we have the identity

FOO– F(J1– FIO + Fll = O.

By evaluating at ( 1/2, O, 1/2) we see that F is positive below the graph of
F = O and negative above. (The meaning of “below,” of course, is relative to
the current orientation of the triangle.) Similarly the quadratic factors of Fw,
FO1, and FIO and all three linear factors of F1, are positive at (1/2, O, 1/2).
We can use this to show that every oval that corresponds to a point (a,, a2 )
in the shaded region in Figure 10 lies above the oval that corresponds to the
corner point ( @l, /3z).

PROPOSITION 7.1. The graph of ~r,, ,,, = O is above the graph of Ffl,,~, = O
(except at B,)) if al > pl, a2 > & or if al > P,, CYz> P2.

PROOF. Consider Ffi, ~, = O and FP, , , ~, = O for positive ● . We can write
FP,+e.ti, as

F6,. P, + @l(Foo – Fol –Flo +Fll) + ●(F1o – Foo) = F6,,lj, + ~(Flo – Foo)

Now

FIO – Foo = sos(tou – uOt)2

is positive at any point P other than B. on the graph of FP,,~, = O inside the
triangle. So Ffi, .,, PJP ) is positive except at BO, where it is zero, It follows
that the graph of F@,~,, ~, = O lies above the graph of FP,,~, = O.

A similar argument works for vertical segments. The rest of the proof
follows by transitivity. ❑

The behavior of the curves on the diagonal ~1 = f12 is simple; as the ~‘s
are increased the curve swells into the corners. See Figure 11.

The behavior transverse to this diagonal is much more subtle. To explain
this we consider the problem of interpolating another point U. The region in
which we can choose U is bounded by the graphs of Fw = O and F1, = O and
is divided by the graphs of Fol = O and FIO = O; see Figure 12. If U is chosen
above both of the graphs of FO1 = O and Flo = O there are reducible curves
F~;,, and F1 ~i that pass through U. Every curve which corresponds to a
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(P1!r32)~

Fig. 10, Parameters of the curves that lie above
F{91,/j2.

Fig. 11. Curves through BO(l/3, 1/3,
1/3), m = 0.3 with 131= I?2= .1, .3, .5,
.7, .9, .99.

point on the segment between ( ~~, 1) and (1, fl~ ) determines an oval that
passes through U. Figure 13 illustrates this for a particular point U. More
generally the motion along a line of positive slope in the ( f?l, Pz ) control
square, say towards ( ~{, 1), corresponds to the swelling of the oval towards
the conic arc given by ( ~{, 1). Figures 9h and 9i display such arcs.

The point U could alternatively be chosen in the region corresponding to a
segment between ( ~ [, 1) and ( ~j, O) (a reducible curve and a singular curve),
(O, ~~ ) and (1, ~~) (a singular curve and a reducible curve), or (O, @$) and
( ~:, 0) (two singular curves); see Figure 14. Each of these segments must
have negative slope; otherwise the existence of the intersection point U
would contradict Proposition 7.1.

8. TANGENT CONTINUOUS SPLINES

To create a tangent continuous spline the user chooses a locally convex
control polygon that we label as in Figure 15. The control polygon has
endpoints Pf) and Pz,, (which may be the same point), corner points with odd
subscripts and junction points with even subscripts. For tangent continuity
the junction points must be constrained to lie on the segments between
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Fig. 12. The region in which another point U can be chosen; Bo(l/4, 1/2, 1/4), m = 0.3.

Fig. 13. A selection of curves through U, Bo(l/4, 1/2, 1/4), m = 0.3.

corner points. The control polygon defines a sequence of triangles. Let A i be
the triangle with vertices Pzi, Pzi, ~, and Pzi, ~. The user selects an interpo-
lation point Bi in each Ai, a tangent line at each Bi, and settings for
(A[il, P2[Zl) in each Ai, O < PIIz I, P&il s L

Instead of using the parameter R to describe the tangent line at Bi, an
alternative that is more intuitive is an afhe version of slope. In A~ the
parameter nzo = ( – 1, 1) is defined by

1

(

nzo+l nz~-1
~. = ?

)
thus (sl, ul) = ~m , ~m .

S1 — U1 o 0

This transformation sets up a one-to-one correspondence between points Q
that lie on the line P. Pz but are outside the interval [P., Pz J and the
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(O, q

(1+)

(I,p;)

Fig. 14.

(P:,O)

Segments that correspond to pencils of ovals through various points U.

P
1

P4
‘3 ‘5

P2

Fig. 15 Control polygon

interval ( – 1, 1), with rno = O corresponding to the point at infinity. The
value mO = – 1 corresponds to the line through BO and Pz, mO = O corre-
sponds to the line parallel to the line POPz, and rno = 1 corresponds to the
line through PO.

The relationship between R and mO is given by

sO(mO – 1)
R=

SO+ UOR
and mO =

uO(mO + 1) so – UOR “

When mO corresponds to R, – mO corresponds to I/R.
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Conic splines are created if all the fll[ i ] = Pz[ i ] = 0.5 and each m, defaults
to (so – uO)/(sO + UO), where so, to, and UOare the coordinates relative to Ai
of B[. These conic splines are modified by moving the interpolation points B,
rather than by the usual way of changing weights at the corners, but this is
equivalent. Further modification can then be made in any given segment by

varying ~i, /31[i 1 or P2[ i 1, thus moving to cubic segments.
The remaining properties of these splines listed in the Introduction are all

fairly obvious except perhaps for afflne invariance. This holds because all the
constructions are afine.

Figure 16a and 16b are conic splines. In 16a, the curves pass through the
barycenters but in 16b, B1 has coordinates (1/6, 2/3, 1/6). In 16c and 16d
barycenters are used again. In 16c all the m, = O and all the B‘s = 0.9. In
16d ml = 0.5 and all the P’s = 0.5.

APPENDIX — PROOF OF THEOREM 6.1

The condition that the curve should pass through 130 gives the first require-
ment

as~uO + bsOu~ + esOtOuO = csOt~ + dt~u O.

The condition that the tangent line should pass through Q( Sl, O, u ~) gives the
second requirement

asO(2u Osl + soul) + ?MO(UOSI + 2SOUI) + eto(uosl + soul) = ct~sl + dt~ul.

The two requirements can be written together in matrix form

(aso, Iwo, eto)

or

1

2UOS1 + soul Souo

Uosl +2 SOU1 Souo
Uosl + soul SOuo

I 2U:S1 –S; U1 — sou~ul \

I– 2S; U1 = (C, d).

— S:ulI(Uso, ~uo,e~o)t:(uos, _ soul) U;SI+ SOUO%

U;sl

Introducing the notation R = so ul\uo S1, we shorten the above formula to

[

2U0 –s.(l + R)

(aso, buO, eto)t;(l!R) Uo(l + R) –2sOR

)

= (c, d).

U. –SOR

We are seeking solutions with both (a, b) and (c, d) in the first quadrant.
One condition may be imposed on the five coefficients. We select temporar-

ily the condition
as. + 13uo= 1

in addition to the requirement a, b > 0. With this normalization condition
the point (aso, buo, eto) can be written aso(l, O, eto) + buo(O, 1, eto). Let wl(e)
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and wz(e) be the transforms using the matrix above of (1, O, eto) and (O, 1, eto),
respectively. Then the point (asO, buo, eto) transforms to (c, d) = asOw ~(e) +
buOwz(e). We can express zul(e) and w.Je) in the following way:

~o(l[R)[(uo,-s.) + (1 +eto)(uo, -sol?)]wl(e) = ~

and

1
wz(e) = ~ [R(uO, -SO) + (1 +et,)(uo, -.sOR)].

to(l– l?)

Because so and U. are positive, if R is negative, the point

v, =
t:(l:R)(uO>-sO)

is in the fourth quadrant,

V2 = ,8(I:R)-”)
is in the second quadrant, and

w= ~,(1:R, (uo, -Rso)
o

is in the first quadrant of the c, d plane; see Figure 17. As e is allowed to
vary, the points wl(e) = VI + (1 + eto)W and wz(e) = Vz + (1 + eto)W slide
along parallel lines lb and 1.. The point asowl(e) + buowz(e) lies on a
segment which runs between the parallel lines. Because of the requirement
c,d > 0, the domain of variability of (c, d) is the shaded region in Figure 17
where the band meets the first quadrant.

If R if positive, the corresponding constructions for the cases O < R <1
and R > 1 lead to bands that do not intersect the first quadrant; see Figure
18. Hence there is no solution to the interpolation problem if Q lies in
[P,, p,l.

We can now obtain expressions in the case R is negative for e, a, and b in
terms of c and d chosen in the domain of variability. The equation of the line
through zul(e) and wz(e) is independent of R:

Sotjc + t~uod = (1 + eto)souo.

Hence

e= ‘[ SO,:C +t:u,d - Souo].
Sotou”

(4)

Using two = 1 – as., we can solve

asowl(e) + buowz(e) = (c, d)

ACM Transactions on Graphics, Vol. 12, No. 3, July 1993,



A Family of Tangent Continuous Cubic Algebraic Splines

B

. 229

‘2

v, (e)

7° y’
Fig, 17. The domain of variability.

for a. Equating either the first or second component we obtain

a= ~,uo(;_,, [Sot;z?c + t:uod + SOUOR

Similarly

b=
SOJ -~) [’o’:~’ + ~:%d + s u,]o

(5)

(6)

The line 10 that passes through the points Wz(e) and Vz has the equation

sot; Rc + t;uod + s~u~l? = o.

The requirement a >0 is equivalent to the condition that (c, d) lie below the
line 1“. Similarly the line lb has equation

sOt;Rc + tjuOd + SOUOR= O

and the requirement b > 0 is equivalent to the condition that (c, d) lie above
the line 1*. To summarize, a point (c, d) chosen from the domain of variability
determines the other coeffkients a, b, and e of a curve which satisfies the
interpolation conditions. The four sides of the domain of variability corre-
spond to parameter values of the reducible or singular curves which occur
when one or more of a, b, c, or d is equal to O.

Because the domain of variability is a quadrilateral in the projective plane,
we can apply a projective transformation to transform it to a square. This not
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(a)

(b)

Fig. 18. The bands in case (a) O < R <1 (b) R >1.

only makes it easier to describe the parameter domain, it turns out to
simplify the formulas.

Using the equations for 1. and lb, we can find the homogeneous coordi-
nates of the vertices of the domain of variability (see Figure 17): 0[0, O, 1],
A[ –UO, O, t~l?l, B[uo, –soR, 01, and CIO, –sOR, t~]. The homogeneous coor-
dinates of the unit square are 0[0, 0,11, Ul[l, 0,11, U[l, 1,11, and UJO, 1,11.
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Using the methods of [ 17], we find the matrix M of the projective transforma-
tion which sends Ul to C, U to 0, Uz to A, and O to B:

[

–U. o t;

M= () so R

)

–t;R .

u~ —SOR o

The inverse of M is (projectively equivalent to)

[

sOt~R2 sOt; R sOt; R

t:u OR t:uo

)

t:uOR .

SOUOR SOUOR SOUOR

A point [ ~1, /?z, 1] in the square transforms to [uO(l – /+), SOR( & –
1),t~(/3,– Rflz )]. From this we obtain formulas for c and d in terms of PI
and ~2:

uo(l–p~) SOR( /32 – 1)
~=

t:( P] – RP2)
and d =

t:( B1 – R132) “

From equations (4), (5), and (6) we then obtain

l–R–2pl+2R& –R~z PIp=
tO(& – R&) ‘ a = SO(~l – R&)

,andb=
UO(~1 – R@z) “

Because these all have the common denominator PI – R /3z, we can cancel it.
(Note we no longer have the normalization condition asO + buO = 1 after this
cancellation.) Then if we multiply by sot: UOwe obtain the formulas stated in
the theorem. u
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