A Family of Tangent Continuous Cubic Algebraic Splines

MARCO PALUSZNY
Universidad Central de Venezuela
and
RICHARD R. PATTERSON
Indiana University and Purdue University at Indianapolis

Abstract

We present an algorithm for creating tangent continuous splines from segments of algebraic cubic curves. The curves used are cubic ovals, and thus are guaranteed convex. Each segment is given by an equation which has five coefficients, thus four degrees of freedom available for shape control. We describe shape handles that work via the coefficients to control the curve. Each segment can be chosen to interpolate one more point and slope and has two additional fullness parameters to control the shape. This family of curves naturally contains conic splines as a subfamily.

Categories and Subject Descriptors: I.3.5 [Computer Graphics]: Computational Geometry and Object Modeling-curve, surface, solid and object representations; J.6 [Computer Applications]: Computer-Aided Engineering-computer-aided design

General Terms: Algorithms, Design Additional Key Words and Phrases: Cubic ovals, cubic splines, implicit curves, interpolation, piecewise algebraic curves

1. INTRODUCTION

In this paper we study splines created from segments of algebraic curves. These are not the usual parametric splines in which each component function x, y depends on a parameter $t:\langle x, y\rangle=\langle f(t), g(t)\rangle$. In an algebraic spline each segment is given implicitly as a segment of the graph of an implicit equation $f(x, y)=0$. The subject was initiated by T. W. Sederberg in [21] and [22].

The main advantage of parametric curves is that they are easy to graph and to control using the methods of B-Splines and Bézier curves [7]. The

[^0](c) 1993 ACM $07300301 / 93 / 0700-0209 \$ 01.50$
main advantage of implicit curves is the ease of checking whether a given point lies on, to the right of, or to the left of the curve. Implicit curves of a given degree greater than two also have more degrees of freedom for shape control.
There are two areas in which much more work is needed in order to make implicit curves as useful as parametric curves are: graphing methods and shape control. Graphing methods so far are relatively slow, but are becoming more sophisticated to provide greater accuracy. Methods studied so far include walking along the curve pixel by pixel [4], stepping along the tangent vector and making corrections, taking into account singular points [2], parametrizing the curve by elliptic functions (elliptic curves only) [16], finding the intersections of the curve with a triangulation of space [6], and finding local rational approximations [3]. The curves used in this paper are so predictable they can be graphed by the most naive method.

Some contributions to the study of shape control of implicit curves are made by Sederberg [22] in the original paper on this subject. Li, Hoschek, and Hartmann study a case in [12] which has one degree of freedom. Sederberg [20] studies the problem of finding intersections of implicit curves, and Garrity and Warren $[8,25]$ compare several definitions of geometric continuity for them. More attention has been given to implicit surfaces [1, 5, 9-14, 19, 21, 23, 24].

This paper is a contribution to the study of shape control of implicit cubics. The general cubic has ten coefficients, but after endpoint positions and tangents are imposed has six coefficients and five degrees of freedom left. A complete geometric analysis of these five degrees of freedom is the ultimate goal, but in this paper we restrict to a subfamily with four degrees of freedom. The curves in this subfamily are arcs of cubic ovals. The shape handles discussed in this paper are (primarily) interpolation conditions. In a subsequent paper we will discuss curvature conditions.

The individual segments of our splines inherit from cubic ovals the properties of convexity and nonsingularity. Thus any inflection points or double points in a spline must be explicitly put in by the user. In addition these curves and the splines created from them have the properties
-local control,
-variation diminishing,
-convex hull,
-affine invariance, and
-quadratic precision.
These curves are a direct generalization of conic splines, which form a natural subfamily. Unlike many spline constructions, there are no knot considerations and no global systems of equations to solve.

We begin in Section 2 by reviewing the notation we use for barycentric coordinates. In Section 3 we review the classification of algebraic cubic curves. Sederberg's construction is reviewed in Section 4. In Section 5 we define the family of curves we use and prove that they are segments of cubic
ovals. The shape handles used for individual segments are described in Sections 6 and 7. In Section 8 we describe the spline construction.

2. BARYCENTRIC COORDINATES

Barycentric coordinates in the affine plane are defined with respect to a triangle. If the vertices P_{0}, P_{1}, and P_{2} have Euclidean coordinates $P_{0}\left(x_{0}, y_{0}\right)$, $P_{1}\left(x_{1}, y_{1}\right)$, and $P_{2}\left(x_{2}, y_{2}\right)$, the Euclidean coordinates (x, y) of any point P can be expressed

$$
(x, y)=s\left(x_{0}, y_{0}\right)+t\left(x_{1}, y_{1}\right)+u\left(x_{2}, y_{2}\right)
$$

with $s+t+u=1$. Thus P has barycentric coordinates $P(s, t, u)$. The barycentric coordinates of the vertices themselves are $P_{0}(1,0,0), P_{1}(0,1,0)$, and $P_{2}(0,0,1)$.
Passing between barycentric and Euclidean coordinates is done using a matrix

$$
(x, y, 1)=(s, t, u)\left(\begin{array}{lll}
x_{0} & y_{0} & 1 \\
x_{1} & y_{1} & 1 \\
x_{2} & y_{2} & 1
\end{array}\right)
$$

and its inverse. Using these substitutions we can write an equation in either Euclidean or barycentric coordinates.
Passing from barycentric coordinates to general homogeneous coordinates based on the triangle and with its barycenter $P(1 / 3,1 / 3,1 / 3)$ as unit point is done by sending (s, t, u) to its equivalence class $[s, t, u]$, where (s, t, u) is equivalent to ($k s, k t, k u$) for $k \neq 0$. Passing from homogeneous to barycentric coordinates is possible for those points not on the line at infinity $s+t+u=0$ by choosing the representative of the class $[s, t, u$] which satisfies $s+t+u$ $=1$. See [17] for more about general homogeneous coordinates.

3. CLASSIFICATION OF CUBICS

In this section we review the classification of real algebraic cubic curves. When its equation can be factored, a cubic is reducible and is either a line and a conic or three lines. Otherwise the curve is irreducible, in which case it is either singular or nonsingular. A singular cubic has exactly one double point which is either a crunode, an acnode, or a cusp [15]. A nonsingular cubic has either one circuit or two as a curve in the real projective plane. For the curves with two circuits, one is the oval, which separates the projective plane into a component which is topologically a disk and one which is a Mobius band, and the other is the odd circuit, which does not separate the projective plane; see Figure 1. A cubic with one circuit has only the odd circuit.
In order to determine from the coefficients of the cubic which type is present, we can use a discriminant Δ defined in [18, pp. 191-192].

Theorem 3.1. A homogeneous cubic F is irreducible and nonsingular if and only if $\Delta(F) \neq 0$. Moreover F has one or two circuits as $\Delta(F)>0$ or $\Delta(F)<0$, respectively.

Fig. 1. A two-circuit cubic.

The polynomial Δ has degree 12 in the 10 coefficients of the general cubic and has over 10,000 terms. However in the case of the cubic we shall be using,

$$
F(s, t, u)=a s^{2} u+b s u^{2}-c s t^{2}-d t^{2} u+e s t u-f t^{3}
$$

four of the coefficients are zero and the formula for Δ reduces to

$$
\begin{aligned}
\Delta= & a^{2} b^{2}\left(27 a^{2} b^{2} f^{4}-a b e^{3} f^{3}-36 a^{2} b d e f^{3}-36 a b^{2} c e f^{3}+a d e^{4} f^{2}\right. \\
& +b c e^{4} f^{2}+8 a^{2} d^{2} e^{2} f^{2}+46 a b c d e^{2} f^{2}+8 b^{2} c^{2} e^{2} f^{2}+16 a^{3} d^{3} f^{2} \\
& -24 a^{2} b c d^{2} f^{2}-24 a b^{2} c^{2} d f^{2}+16 b^{3} c^{3} f^{2}-c d e^{5} f-8 a c d^{2} e^{3} f \\
& -8 b c^{2} d e^{3} f-16 a^{2} c d^{3} e f+64 a b c^{2} d^{2} e f-16 b^{2} c^{3} d e f-c^{2} d^{2} e^{4} \\
& \left.-8 a c^{2} d^{3} e^{2}-8 b c^{3} d^{2} e^{2}-16 a^{2} c^{2} d^{4}+32 a b c^{3} d^{3}-16 b^{2} c^{4} d^{2}\right),
\end{aligned}
$$

up to a positive scalar.

4. REVIEW OF SEDERBERG'S CONSTRUCTION

Sederberg [21, 22] has proposed the following idea which we review here for the case of cubics. It begins with the Bézier construction of triangular surface patches. Given a reference triangle $P_{0} P_{1} P_{2}$, some specific points $X_{i j k}$ in the triangle are defined by

$$
X_{i j k}=\frac{i}{3} P_{0}+\frac{j}{3} P_{1}+\frac{k}{3} P_{2}
$$

for $i, j, k \geq 0$ and $i+j+k=3$ as in Figure 2. If a z-coordinate $P_{i j k}$ is assigned to each point $X_{i j k}$, the corresponding points ($X_{i j k}, P_{i j k}$) are the control points of a triangular Bézier patch; the graph of

$$
z=F(s, t, u)=\sum\binom{3}{i, j, k} P_{i j k} s^{i} t^{j} u^{k}
$$

ACM Transactions on Graphics, Vol. 12, No. 3, July 1993.

Fig. 2. The points $X_{i j k}$ in the triangle.

The intersection of this surface with the plane $z=0$ is a plane curve $F(s, t, u)=0$, defined implicitly in terms of the barycentric coordinates of the triangle. Now there are exactly as many points $X_{i j k}$ as there are coefficients in a polynomial of degree 3 . So the $P_{i j k}$ can be reinterpreted both as the coefficients of an implicit equation and as weights at the points $X_{i j k}$. In this way every implicit cubic equation, when rewritten in barycentric coordinates with respect to some triangle, can be thought of as defining the curve of intersection of a Bézier surface with the plane.

Using this interpretation of an implicit equation, Sederberg described several geometric properties of the curve in terms of the coefficients. He showed that if the weight at a vertex of the triangle is zero then the curve passes through the vertex. Furthermore if an adjoining weight on one edge is also zero the curve is tangent at the vertex to that side of the triangle. ${ }^{1}$ In Figure 3 the points $X_{i j k}$ are labeled with the corresponding coefficients $P_{i j k}$. Only that portion of the curve which lies inside the triangle is graphed.

5. CUBIC OVALS

Suppose we are given two points P_{0} and P_{2} and lines through them which intersect at a point P_{1}. We are interested in finding convex cubic arcs which lie within the triangle $P_{0} P_{1} P_{2}$, join P_{0} to P_{2} and are tangent at P_{0} and P_{2} to the two given lines. If we use this triangle to define barycentric coordinates as in Section 2, we know from the results of Sederberg that for a cubic satisfying the interpolation conditions the coefficients of $s^{3}, s^{2} t, t u^{2}$, and u^{3} are zero. The equation of such a curve therefore has the form

$$
F(s, t, u)=a s^{2} u+b s u^{2}-c s t^{2}-d t^{2} u+e s t u-f t^{3}=0 .
$$

The notation has been simplified to avoid the triple subscripts since a good deal of algebra must be done with these coefficients. Figure 4 illustrates how these coefficients and the barycentric coordinates correspond to points in the triangle.

[^1]

Fig. 3. Graph of $s^{2} u+s u^{2}-s t^{2}-t^{2} u=0$.

Fig. 4. Notation for the triangle.

We now begin to impose additional conditions on the coefficients so that the curves in the family include a convex arc within the triangle from P_{0} to P_{2}, tangent to the sides. The first condition is that a and b must have the same sign. This is because the line $t=0$ intersects the curve in P_{0}, P_{2} and the point $P(s, 0, u)$ whose coordinates satisfy $a s+b u=0$. If a and b have opposite signs, P lies between P_{0} and P_{2}. To avoid this we now impose the condition $a, b>0$.

Next we impose the condition $f=0$. This causes the curve to pass through P_{1}; more is said about this at the end of this section.

We can see by example that we have not yet imposed enough conditions to keep the curve inside the triangle. Figure 5 shows the curve when $a=b=1$, ACM Transactions on Graphics, Vol. 12, No. 3, July 1993.

Fig. 5. A curve that lies outside the triangle.
$c=-1, d=-1 / 2$, and $e=0$. This and similar examples suggest that we might need $c, d>0$. The next two results combine to show that in this case we have a useful subfamily of curves.

Theorem 5.1. If $a, b, c, d \geq 0$, the cubic

$$
F(s, t, u)=a s^{2} u+b s u^{2}-c s t^{2}-d t^{2} u+e s t u
$$

is an irreducible and nonsingular two-circuit cubic except in the following cases:
-If $a=0$ (respectively $b=0$), the curve is singular with a double point at P_{0} (respectively P_{2});
-If $c=0$ (respectively $d=0$), the curve is reducible with a factor u (respectively s);
-If $a d=b c$ and $e=0$, the curve is reducible

$$
F(s, t, u)=(a s+b u)\left(s u-\frac{c}{a} t^{2}\right)
$$

Proof. If $a=0$, all three first partial derivatives of F have the root $s=1, t=u=0$, so that P_{0} is a double point. Similarly if $b=0, P_{2}$ is a double point. The conditions involving c and d are easy to see. Because $f=0$, the discriminant Δ reduces to

$$
\Delta=-a^{2} b^{2} c^{2} d^{2}\left(e^{4}+8(a d+b c) e^{2}+16(a d-b c)^{2}\right)
$$

If $a, b, c, d>0, \Delta$ is negative and the curve therefore has two circuits unless the factor involving e is zero; in other words

$$
e^{2}=-4(a d+b c) \pm 8 \sqrt{a b c d}
$$

The minus sign is impossible and

$$
-4(a d+b c)+8 \sqrt{a b c d} \geq 0
$$

if and only if

$$
(a d-b c)^{2} \leq 0
$$

Thus the factor involving e is zero if and only if $a d-b c=0$ and $e=0$, in which case F is reducible as indicated.

Now that we know the curve normally has two circuits we can ask which one passes through the points P_{0} and P_{2}.

Theorem 5.2. If $a, b, c, d>0$, the graph of $a s^{2} u+b s u^{2}-c s t^{2}-d t^{2} u+$ estu $=0$ includes an arc of a cubic oval which lies inside the triangle, joins P_{0} to P_{2}, and is tangent to the sides of the triangle. If $a d-b c=0$ and $e=0$, the curve reduces to a conic arc.

Proof. The proof entails looking for silhouette points. According to Salmon [18], Articles 167 and 200, from a point on a one-circuit curve, two lines can be drawn which are tangent to the curve at other points. These points of tangency are silhouette points as seen from the given point. From a point on the odd circuit of a two-circuit curve, four such lines can be drawn-two to points on the odd circuit and two to points on the oval. From a point on the oval, none can be drawn.

We use this idea to test whether P_{0} lies on the oval, first in the case $e=0$. Treat $P_{0}(1,0,0)$ as the origin and search for lines through P_{0} which are tangent to the curve. Into $a s^{2} u+b s u^{2}-c s t^{2}-d t^{2} u=0, a, b>0$, substitute $u=m t$ and $s=1 .{ }^{2}$ We get

$$
t\left[-d m t^{2}+\left(b m^{2}-c\right) t+a m\right]
$$

The factor t corresponds to the intersection at P_{0}. The quadratic factor has a double root if its discriminant $G(m)$ equals 0 :

$$
G(m)=b^{2} m^{4}+(4 a d-2 b c) m^{2}+c^{2}=0 .
$$

Thus the question is reduced to whether G has 0 or 4 real roots, since we have already determined that the curve has two circuits. In other words, P_{0} lies on the oval if and only if the minimum of G is positive. From

$$
G^{\prime}(m)=4 b^{2} m^{3}+4(2 a d-b c) m
$$

we see the critical points occur when $m=0$ and

$$
m^{2}=\frac{b c-2 a d}{b^{2}}
$$

The value of G at 0 is positive if $c \neq 0$. When $b c-2 a d<0,0$ is the only point that needs to be considered. So the dotted area in Figure 6 above the line $b c-2 a d=0$ in c, d-parameter space contains coefficient values for which P_{0} lies on the oval. In addition, when $b c-2 a d \geq 0$ we have those

[^2]

Fig. 6. The region for which P_{0} lies on the oval.
points for which the value of G at $\pm m$ is positive. Substituting for m^{2} we find

$$
b^{2} G=4 a d(b c-a d)
$$

Thus since $d>0, G$ is positive if and only if $b c-a d>0$, which adds the region that is vertically striped.

Repeating the argument with P_{2} we find the region in c, d-parameter space that corresponds to having the point P_{2} on the oval. The intersection of the two regions is the first quadrant.

Because P_{0} and P_{2} lie on the oval when $e=0$, this remains true by continuity for all e.

Finally, we can explain the reason for choosing $f=0$; this causes the odd circuit of the curve to pass through P_{1}. With the oval tangent at P_{0} and P_{2}, each of the lines $s=0$ and $u=0$ has three known intersections with the cubic. Because of Bezout's theorem the odd circuit has no other intersections with these lines and is thus under control safely out of the way.

6. THE CURVE CONSTRUCTION

In this section we describe the parameters used as shape handles to control the curve via the coefficients. The shape handles we examine here are additional interpolation conditions; curvature conditions will be described in a sequel.

We first select a point $B_{0}\left(s_{0}, t_{0}, u_{0}\right)$ that lies inside the triangle and is to be interpolated. Second we specify the tangent line at B_{0}. One way to describe it is in terms of the point $Q\left(s_{1}, 0, u_{1}\right)$ where the tangent line at B_{0} meets the line $P_{0} P_{2}$ (it is possible for Q to lie at infinity). A more convenient parameter for theoretical purposes is the cross ratio R of either the four points Q, B_{0},

Fig. 7. Defining the cross ratio R.
Q_{0}, and Q_{2} shown in Figure 7, or equivalently the four points Q, S, P_{0}, and P_{2}, where $S\left(s_{0} /\left(s_{0}+u_{0}\right), 0, u_{0} /\left(s_{0}+u_{0}\right)\right)$ is the projection of B_{0}. We obtain

$$
\left.R=R\left(Q, S, P_{0}, P_{2}\right)=\frac{\left|\begin{array}{cc}
s_{1} & u_{1} \\
1 & 0
\end{array}\right|\left|\begin{array}{cc}
\frac{s_{0}}{s_{0}+u_{0}} & \frac{u_{0}}{s_{0}+u_{0}} \\
0 & 1
\end{array}\right|}{\left|\begin{array}{cc}
s_{1} & u_{1} \\
0 & 1
\end{array}\right| \left\lvert\, \begin{array}{cc}
\frac{s_{0}}{s_{0}+u_{0}} & \frac{u_{0}}{s_{0}+u_{0}} \\
1
\end{array}\right.} \begin{gathered}
0
\end{gathered} \right\rvert\,, ~=\frac{s_{0} u_{1}}{u_{0} s_{1}} .
$$

For Q between P_{0} and P_{2}, R is positive, and for Q outside this interval R is negative. (Another parameter m, more intuitive for a designer, is presented in Section 8.) The remaining two degrees of freedom are controlled by a pair (β_{1}, β_{2}), each of which can vary from 0 to 1 .

Theorem 6.1. Given a point $B_{0}\left(s_{0}, t_{0}, u_{0}\right)$ inside the triangle $P_{0} P_{1} P_{2}$ and a point $Q\left(s_{1}, 0, u_{1}\right)$ on the line $t=0$, there exists a cubic in the family $a s^{2} u+b s u^{2}-c s t^{2}-d t^{2} u+e s t u=0, a, b, c, d>0$ which passes through B_{0} tangent to the line $B_{0} Q$ if and only if Q is outside the interval $\left[P_{0}, P_{2}\right] ; s_{1}<0$ or $s_{1}>1$. A solution corresponds to a choice of (β_{1}, β_{2}) in the unit square, with coefficients determined as follows:

$$
a:=-R \beta_{2} t_{0}^{2} u_{0}, b:=\beta_{1} s_{0} t_{0}^{2},
$$

$c:=\left(1-\beta_{1}\right) s_{0} u_{0}^{2}, d:=-R\left(1-\beta_{2}\right) s_{0}^{2} u_{0}, e:=\left(1-R-2 \beta_{1}+2 R \beta_{2}\right) s_{0} t_{0} u_{0}$.
The proof of Theorem 6.1 is postponed to the Appendix. For the rest of this section we study properties of this curve construction. In the next section we examine the effect of the β 's on the shape of the curve.

If B_{0} is given, because R must be negative the parameter space is the infinitely long bar in Figure 8. In general each point in this bar determines a different oval arc that satisfies the contact conditions at P_{0}, P_{2} and passes

Fig. 8. The parameter domain.
through B_{0}. However certain points determine the reducible curves which occur when $a d=b c$ and $e=0$. When the curve is reducible, the quadratic factor describes a conic which satisfies the contact conditions and passes through B_{0}. Here is an equivalent way to express the reducibility condition in terms of the parameters β_{1}, β_{2}, and R.

Proposition 6.2. The curve is reducible if and only if $R=-1$ and $\beta_{1}+\beta_{2}$ $=1$; see Figure 8 . The arc of the reducible curve is independent of β_{1} and β_{2} so long as $\beta_{1}+\beta_{2}=1$.

Proof. From $a d-b c=0$ and $e=0$, we deduce

$$
R^{2} \beta_{2}\left(1-\beta_{2}\right)=\beta_{1}\left(1-\beta_{1}\right)
$$

and

$$
\begin{equation*}
\left(1-2 \beta_{1}\right)=R\left(1-2 \beta_{2}\right) . \tag{1}
\end{equation*}
$$

Eliminating R we obtain

$$
\begin{equation*}
\left(\beta_{1}-\beta_{2}\right)\left(\beta_{1}+\beta_{2}-1\right)=0 \tag{2}
\end{equation*}
$$

Since R is negative we obtain from (1) that $\beta_{1} \geq 1 / 2, \beta_{2} \leq 1 / 2$ or the reverse. In either case from (2), $\beta_{1}+\beta_{2}=1$. Then from (1), $R=-1$. Conversely if $R=-1$ and $\beta_{1}+\beta_{2}=1$ we can evaluate and find $a d-b c=0$ and $e=0$.

When $R=-1$ and $\beta_{1}+\beta_{2}=1$

$$
a=\frac{t_{0}^{2}}{s_{0} u_{0}} c \quad \text { and } \quad b=\frac{t_{0}^{2}}{s_{0} u_{0}} d .
$$

Letting

$$
\gamma=\frac{t_{0}^{2}}{s_{0} u_{0}}
$$

we have the specific reduction

$$
a s^{2} u+b s u^{2}-c s t^{2}-d t^{2} u=(c s+d u)\left(\gamma s u-t^{2}\right) .
$$

As γ is independent of c and d, any change to c or d or to β_{1} or β_{2} goes into a change of the linear factor, not the quadratic.

In consequence our curves contain the subfamily of conics. Assuming that we graph our curves by tracing from P_{0} or P_{2}, in the reducible case the conic arc is what is drawn.

In fact this construction has quadratic precision. Suppose we have a conic arc from P_{0} to P_{2} within the triangle, with P_{1} the intersection of the tangent lines and with $B_{0}\left(s_{0}, t_{0}, u_{0}\right)$ any interior point of the arc. If we then use the value of R determined by the tangent line at B_{0} and any β_{1}, β_{2} such that $\beta_{1}+\beta_{2}=1$, the construction recovers the original conic arc. Because of the endpoint and tangency conditions on the conic, the coefficients of $s^{2}, s t, t u$, and u^{2} are zero. We can then normalize the equation to the form $\gamma s u-t^{2}=0$. Because B_{0} lies on the curve, $\gamma=t_{0}^{2} / s_{0} u_{0}$. The tangent line to the conic at B_{0} has equation $\gamma u_{0} s-2 t_{0} t+\gamma s_{0} u=0$. This line meets the line $P_{0} P_{2}$ at the point $Q\left(s_{1}, 0, u_{1}\right)$, where

$$
s_{1}=\frac{s_{0}}{s_{0}-u_{0}} \quad \text { and } \quad u_{1}=\frac{-u_{0}}{s_{0}-u_{0}} .
$$

We find $R=-1$. For any β_{1}, β_{2} such that $\beta_{1}+\beta_{2}=1$ the curve is reducible and we recover the original conic.
7. THE EFFECTS OF THE β 's

In this section we investigate the behavior of the curves $F=0$ when B_{0} and the slope at B_{0} are fixed and the parameters β_{1} and β_{2} are varied.

The general formula for F is

$$
\begin{aligned}
F(s, t, u)= & -R \beta_{2} t_{0}^{2} u_{0} s^{2} u+\beta_{1} s_{0} t_{0}^{2} s u^{2}-\left(1-\beta_{1}\right) s_{0} u_{0}^{2} s t^{2} \\
& +R\left(1-\beta_{2}\right) s_{0}^{2} u_{0} t^{2} u \\
& +\left(1-R-2 \beta_{1}+2 R \beta_{2}\right) s_{0} t_{0} u_{0} s t u .
\end{aligned}
$$

This can be factored

$$
\begin{equation*}
\left(1-\beta_{1}\right)\left(1-\beta_{2}\right) F_{00}+\left(1-\beta_{1}\right) \beta_{2} F_{01}+\beta_{1}\left(1-\beta_{2}\right) F_{10}+\beta_{1} \beta_{2} F_{11} . \tag{3}
\end{equation*}
$$

The formulas for the individual $F_{i j}$ are

$$
\begin{aligned}
& F_{00}=s_{0} u_{0} t\left[-u_{0} s t+R s_{0} t u+(1-R) t_{0} s u\right], \\
& F_{01}=u_{0} s\left[-R t_{0}^{2} s u-s_{0} u_{0} t^{2}+(1+R) s_{0} t_{0} t u\right], \\
& F_{10}=s_{0} u\left[t_{0}^{2} s u+R s_{0} u_{0} t^{2}-(1+R) t_{0} u_{0} s t\right], \\
& F_{11}=t_{0} s u\left[-R t_{0} u_{0} s+(R-1) s_{0} u_{0} t+s_{0} t_{0} u\right] .
\end{aligned}
$$

These four extremal curves are all reducible. The three lines composing F_{11} are the sides of the triangle and the line $B_{0} Q$. Figure 9 displays the graphs of these curves and eight other extreme curves which correspond to values of β_{1} and β_{2} on the edges of the unit square. The curves all interpolate the barycenter $B_{0}(1 / 3,1 / 3,1 / 3)$ with $R=-1 / 3$.
Because the coefficient of $\beta_{1} \beta_{2}$ in (3) is zero, we have the identity

$$
F_{00}-F_{01}-F_{10}+F_{11}=0 .
$$

By evaluating at ($1 / 2,0,1 / 2$) we see that F is positive below the graph of $F=0$ and negative above. (The meaning of "below," of course, is relative to the current orientation of the triangle.) Similarly the quadratic factors of F_{00}, F_{01}, and F_{10} and all three linear factors of F_{11} are positive at $(1 / 2,0,1 / 2)$. We can use this to show that every oval that corresponds to a point (α_{1}, α_{2}) in the shaded region in Figure 10 lies above the oval that corresponds to the corner point (β_{1}, β_{2}).
Proposition 7.1. The graph of $F_{\alpha_{1}, \alpha_{2}}=0$ is above the graph of $F_{\beta_{1}, \beta_{2}}=0$ (except at B_{0}) if $\alpha_{1} \geq \beta_{1}, \alpha_{2}>\beta_{2}$ or if $\alpha_{1}>\beta_{1}, \alpha_{2} \geq \beta_{2}$.
Proof. Consider $F_{\beta_{1}, \beta_{2}}=0$ and $F_{\beta_{1}+\epsilon, \beta_{2}}=0$ for positive ϵ. We can write $F_{\beta_{1}+\epsilon_{1}, \beta_{2}}$ as
$F_{\beta_{1}, \beta_{2}}+\epsilon \beta_{1}\left(F_{00}-F_{01}-F_{10}+F_{11}\right)+\epsilon\left(F_{10}-F_{00}\right)=F_{\beta_{1}, \beta_{2}}+\epsilon\left(F_{10}-F_{00}\right)$.
Now

$$
F_{10}-F_{00}=s_{0} s\left(t_{0} u-u_{0} t\right)^{2}
$$

is positive at any point P other than B_{0} on the graph of $F_{\beta_{1}, \beta_{2}}=0$ inside the triangle. So $F_{B_{1}+\epsilon, \beta_{2}}(P)$ is positive except at B_{0}, where it is zero. It follows that the graph of $F_{\beta_{1}+\epsilon, \beta_{2}}=0$ lies above the graph of $F_{\beta_{1}, \beta_{2}}=0$.

A similar argument works for vertical segments. The rest of the proof follows by transitivity.

The behavior of the curves on the diagonal $\beta_{1}=\beta_{2}$ is simple; as the β 's are increased the curve swells into the corners. See Figure 11.
The behavior transverse to this diagonal is much more subtle. To explain this we consider the problem of interpolating another point U. The region in which we can choose U is bounded by the graphs of $F_{00}=0$ and $F_{11}=0$ and is divided by the graphs of $F_{01}=0$ and $F_{10}=0$; see Figure 12. If U is chosen above both of the graphs of $F_{01}=0$ and $F_{10}=0$ there are reducible curves $F_{\beta_{1}^{r}, 1}$ and $F_{1, \beta_{2}^{r}}$ that pass through U. Every curve which corresponds to a

ACM Transactions on Graphics, Vol. 12, No. 3, July 1993.

Fig. 10. Parameters of the curves that lie above $F_{\beta_{1}, \beta_{2}}$.

Fig. 11. Curves through $B_{0}(1 / 3,1 / 3$, $1 / 3), m=0.3$ with $\beta_{1}=\beta_{2}=.1, .3, .5$, .7, .9, . 99 .
point on the segment between ($\beta_{1}^{r}, 1$) and ($1, \beta_{2}^{r}$) determines an oval that passes through U. Figure 13 illustrates this for a particular point U. More generally the motion along a line of positive slope in the (β_{1}, β_{2}) control square, say towards ($\beta_{1}^{r}, 1$), corresponds to the swelling of the oval towards the conic arc given by ($\beta_{1}^{r}, 1$). Figures 9 h and 9 i display such arcs.

The point U could alternatively be chosen in the region corresponding to a segment between ($\beta_{1}^{r}, 1$) and ($\beta_{1}^{s}, 0$) (a reducible curve and a singular curve), ($0, \beta_{2}^{s}$) and ($1, \beta_{2}^{r}$) (a singular curve and a reducible curve), or ($0, \beta_{2}^{s}$) and ($\beta_{1}^{*}, 0$) (two singular curves); see Figure 14. Each of these segments must have negative slope; otherwise the existence of the intersection point U would contradict Proposition 7.1.

8. TANGENT CONTINUOUS SPLINES

To create a tangent continuous spline the user chooses a locally convex control polygon that we label as in Figure 15. The control polygon has endpoints P_{0} and $P_{2 n}$ (which may be the same point), corner points with odd subscripts and junction points with even subscripts. For tangent continuity the junction points must be constrained to lie on the segments between

Fig. 12. The region in which another point U can be chosen; $B_{0}(1 / 4,1 / 2,1 / 4), m=0.3$.

Fig. 13. A selection of curves through $U ; B_{0}(1 / 4,1 / 2,1 / 4), m=0.3$.
corner points. The control polygon defines a sequence of triangles. Let Δ_{i} be the triangle with vertices $P_{2 i}, P_{2 i+1}$, and $P_{2 i+2}$. The user selects an interpolation point B_{i} in each Δ_{i}, a tangent line at each B_{i}, and settings for ($\beta_{1}[i], \beta_{2}[i]$) in each $\Delta_{i}, 0 \leq \beta_{1}[i], \beta_{2}[i] \leq 1$.

Instead of using the parameter R to describe the tangent line at B_{i}, an alternative that is more intuitive is an affine version of slope. In Δ_{0} the parameter $m_{0} \in(-1,1)$ is defined by

$$
m_{0}=\frac{1}{s_{1}-u_{1}}, \text { thus }\left(s_{1}, u_{1}\right)=\left(\frac{m_{0}+1}{2 m_{0}}, \frac{m_{0}-1}{2 m_{0}}\right) .
$$

This transformation sets up a one-to-one correspondence between points Q that lie on the line $P_{0} P_{2}$ but are outside the interval [P_{0}, P_{2}] and the ACM Transactions on Graphics, Vol. 12, No. 3, July 1993.

Fig. 14. Segments that correspond to pencils of ovals through various points U.

Fig. 15. Control polygon.
interval ($-1,1$), with $m_{0}=0$ corresponding to the point at infinity. The value $m_{0}=-1$ corresponds to the line through B_{0} and $P_{2}, m_{0}=0$ corresponds to the line parallel to the line $P_{0} P_{2}$, and $m_{0}=1$ corresponds to the line through P_{0}.

The relationship between R and m_{0} is given by

$$
R=\frac{s_{0}\left(m_{0}-1\right)}{u_{0}\left(m_{0}+1\right)} \text { and } m_{0}=\frac{s_{0}+u_{0} R}{s_{0}-u_{0} R}
$$

When m_{0} corresponds to $R,-m_{0}$ corresponds to $1 / R$.

Conic splines are created if all the $\beta_{1}[i]=\beta_{2}[i]=0.5$ and each m_{i} defaults to $\left(s_{0}-u_{0}\right) /\left(s_{0}+u_{0}\right)$, where s_{0}, t_{0}, and u_{0} are the coordinates relative to Δ_{i} of B_{i}. These conic splines are modified by moving the interpolation points B_{i} rather than by the usual way of changing weights at the corners, but this is equivalent. Further modification can then be made in any given segment by varying $m_{i}, \beta_{1}[i]$ or $\beta_{2}[i]$, thus moving to cubic segments.

The remaining properties of these splines listed in the Introduction are all fairly obvious except perhaps for affine invariance. This holds because all the constructions are affine.

Figure $16 a$ and $16 b$ are conic splines. In $16 a$, the curves pass through the barycenters but in $16 \mathrm{~b}, B_{1}$ has coordinates $(1 / 6,2 / 3,1 / 6)$. In 16 c and 16 d barycenters are used again. In 16 c all the $m_{i}=0$ and all the β 's $=0.9$. In $16 \mathrm{~d} m_{1}=0.5$ and all the β ' $s=0.5$.

APPENDIX - PROOF OF THEOREM 6.1

The condition that the curve should pass through B_{0} gives the first requirement

$$
a s_{0}^{2} u_{0}+b s_{0} u_{0}^{2}+e s_{0} t_{0} u_{0}=c s_{0} t_{0}^{2}+d t_{0}^{2} u_{0}
$$

The condition that the tangent line should pass through $Q\left(s_{1}, 0, u_{1}\right)$ gives the second requirement

$$
a s_{0}\left(2 u_{0} s_{1}+s_{0} u_{1}\right)+b u_{0}\left(u_{0} s_{1}+2 s_{0} u_{1}\right)+e t_{0}\left(u_{0} s_{1}+s_{0} u_{1}\right)=c t_{0}^{2} s_{1}+d t_{0}^{2} u_{1}
$$

The two requirements can be written together in matrix form

$$
\left(a s_{0}, b u_{0}, e t_{0}\right)\left(\begin{array}{cc}
2 u_{0} s_{1}+s_{0} u_{1} & s_{0} u_{0} \\
u_{0} s_{1}+2 s_{0} u_{1} & s_{0} u_{0} \\
u_{0} s_{1}+s_{0} u_{1} & s_{0} u_{0}
\end{array}\right)=\left(c t_{0}^{2}, d t_{0}^{2}\right)\left(\begin{array}{ll}
s_{1} & s_{0} \\
u_{1} & u_{0}
\end{array}\right)
$$

or

$$
\left(a s_{0}, b u_{0}, e t_{0}\right) \frac{1}{t_{0}^{2}\left(u_{0} s_{1}-s_{0} u_{1}\right)}\left(\begin{array}{cr}
2 u_{0}^{2} s_{1} & -s_{0}^{2} u^{1}-s_{0} u_{0} u_{1} \\
u_{0}^{2} s_{1}+s_{0} u_{0} u_{1} & -2 s_{0}^{2} u_{1} \\
u_{0}^{2} s_{1} & -s_{0}^{2} u_{1}
\end{array}\right)=(c, d)
$$

Introducing the notation $R=s_{0} u_{1} / u_{0} s_{1}$, we shorten the above formula to

$$
\left(a s_{0}, b u_{0}, e t_{0}\right) \frac{1}{t_{0}^{2}(1-R)}\left(\begin{array}{cl}
2 u_{0} & -s_{0}(1+R) \\
u_{0}(1+R) & -2 s_{0} R \\
u_{0} & -s_{0} R
\end{array}\right)=(c, d)
$$

We are seeking solutions with both (a, b) and (c, d) in the first quadrant.
One condition may be imposed on the five coefficients. We select temporarily the condition

$$
a s_{0}+b u_{0}=1
$$

in addition to the requirement $a, b>0$. With this normalization condition the point ($a s_{0}, b u_{0}, e t_{0}$) can be written $a s_{0}\left(1,0, e t_{0}\right)+b u_{0}\left(0,1, e t_{0}\right)$. Let $w_{1}(e)$ ACM Transactions on Graphics, Vol. 12, No. 3, July 1993.

ACM Transactions on Graphics, Vol. 12, No. 3, July 1993.
and $w_{2}(e)$ be the transforms using the matrix above of $\left(1,0, e t_{0}\right)$ and $\left(0,1, e t_{0}\right)$, respectively. Then the point ($a s_{0}, b u_{0}, e t_{0}$) transforms to (c, d) $=a s_{0} w_{1}(e)+$ $b u_{0} w_{2}(e)$. We can express $w_{1}(e)$ and $w_{2}(e)$ in the following way:

$$
w_{1}(e)=\frac{1}{t_{0}^{2}(1-R)}\left[\left(u_{0},-s_{0}\right)+\left(1+e t_{0}\right)\left(u_{0},-s_{0} R\right)\right]
$$

and

$$
w_{2}(e)=\frac{1}{t_{0}^{2}(1-R)}\left[R\left(u_{0},-s_{0}\right)+\left(1+e t_{0}\right)\left(u_{0},-s_{0} R\right)\right] .
$$

Because s_{0} and u_{0} are positive, if R is negative, the point

$$
V_{1}=\frac{1}{t_{0}^{2}(1-R)}\left(u_{0},-s_{0}\right)
$$

is in the fourth quadrant,

$$
V_{2}=\frac{R}{t_{0}^{2}(1-R)}\left(u_{0},-s_{0}\right)
$$

is in the second quadrant, and

$$
W=\frac{1}{t_{0}^{2}(1-R)}\left(u_{0},-R s_{0}\right)
$$

is in the first quadrant of the c, d plane; see Figure 17. As e is allowed to vary, the points $w_{1}(e)=V_{1}+\left(1+e t_{0}\right) W$ and $w_{2}(e)=V_{2}+\left(1+e t_{0}\right) W$ slide along parallel lines l_{b} and l_{a}. The point $a s_{0} w_{1}(e)+b u_{0} w_{2}(e)$ lies on a segment which runs between the parallel lines. Because of the requirement $c, d>0$, the domain of variability of (c, d) is the shaded region in Figure 17 where the band meets the first quadrant.

If R if positive, the corresponding constructions for the cases $0<R<1$ and $R>1$ lead to bands that do not intersect the first quadrant; see Figure 18. Hence there is no solution to the interpolation problem if Q lies in [P_{0}, P_{2}].

We can now obtain expressions in the case R is negative for e, a, and b in terms of c and d chosen in the domain of variability. The equation of the line through $w_{1}(e)$ and $w_{2}(e)$ is independent of R :

$$
s_{0} t_{0}^{2} c+t_{0}^{2} u_{0} d=\left(1+e t_{0}\right) s_{0} u_{0}
$$

Hence

$$
\begin{equation*}
e=\frac{1}{s_{0} t_{0} u_{0}}\left[s_{0} t_{0}^{2} c+t_{0}^{2} u_{0} d-s_{0} u_{0}\right] . \tag{4}
\end{equation*}
$$

Using $b u_{0}=1-a s_{0}$, we can solve

$$
a s_{0} w_{1}(e)+b u_{0} w_{2}(e)=(c, d)
$$

ACM Transactions on Graphics, Vol. 12, No. 3, July 1993.

Fig. 17. The domain of variability.
for a. Equating either the first or second component we obtain

$$
\begin{equation*}
a=\frac{1}{s_{0}^{2} u_{0}(R-1)}\left[s_{0} t_{0}^{2} R c+t_{0}^{2} u_{0} d+s_{0} u_{0} R\right] \tag{5}
\end{equation*}
$$

Similarly

$$
\begin{equation*}
b=\frac{1}{s_{0} u_{0}^{2}(1-R)}\left[s_{0} t_{0}^{2} R c+t_{0}^{2} u_{0} d+s_{0} u_{0}\right] \tag{6}
\end{equation*}
$$

The line l_{a} that passes through the points $w_{2}(e)$ and V_{2} has the equation

$$
s_{0} t_{0}^{2} R c+t_{0}^{2} u_{0} d+s_{0} u_{0} R=0
$$

The requirement $a>0$ is equivalent to the condition that (c, d) lie below the line l_{a}. Similarly the line l_{b} has equation

$$
s_{0} t_{0}^{2} R c+t_{0}^{2} u_{0} d+s_{0} u_{0} R=0
$$

and the requirement $b>0$ is equivalent to the condition that (c, d) lie above the line l_{b}. To summarize, a point (c, d) chosen from the domain of variability determines the other coefficients a, b, and e of a curve which satisfies the interpolation conditions. The four sides of the domain of variability correspond to parameter values of the reducible or singular curves which occur when one or more of a, b, c, or d is equal to 0 .

Because the domain of variability is a quadrilateral in the projective plane, we can apply a projective transformation to transform it to a square. This not

Fig. 18. The bands in case (a) $0<R<1$ (b) $R>1$.
only makes it easier to describe the parameter domain, it turns out to simplify the formulas.

Using the equations for l_{a} and l_{b}, we can find the homogeneous coordinates of the vertices of the domain of variability (see Figure 17): $O[0,0,1]$, $A\left[-u_{0}, 0, t_{0}^{2} R\right], B\left[u_{0},-s_{0} R, 0\right]$, and $C\left[0,-s_{0} R, t_{0}^{2}\right]$. The homogeneous coordinates of the unit square are $O[0,0,1], U_{1}[1,0,1], U[1,1,1]$, and $U_{2}[0,1,1]$. ACM Transactions on Graphics, Vol. 12, No. 3, July 1993.

Using the methods of [17], we find the matrix M of the projective transformation which sends U_{1} to C, U to O, U_{2} to A, and O to B :

$$
M=\left(\begin{array}{ccc}
-u_{0} & 0 & t_{0}^{2} \\
0 & s_{0} R & -t_{0}^{2} R \\
u_{0} & -s_{0} R & 0
\end{array}\right)
$$

The inverse of M is (projectively equivalent to)

$$
\left(\begin{array}{ccc}
s_{0} t_{0}^{2} R^{2} & s_{0} t_{0}^{2} R & s_{0} t_{0}^{2} R \\
t_{0}^{2} u_{0} R & t_{0}^{2} u_{0} & t_{0}^{2} u_{0} R \\
s_{0} u_{0} R & s_{0} u_{0} R & s_{0} u_{0} R
\end{array}\right)
$$

A point $\left[\beta_{1}, \beta_{2}, 1\right]$ in the square transforms to $\left[u_{0}\left(1-\beta_{1}\right), s_{0} R\left(\beta_{2}-\right.\right.$ 1), $\left.t_{0}^{2}\left(\beta_{1}-R \beta_{2}\right)\right]$. From this we obtain formulas for c and d in terms of β_{1} and β_{2} :

$$
c=\frac{u_{0}\left(1-\beta_{1}\right)}{t_{0}^{2}\left(\beta_{1}-R \beta_{2}\right)} \text { and } d=\frac{s_{0} R\left(\beta_{2}-1\right)}{t_{0}^{2}\left(\beta_{1}-R \beta_{2}\right)}
$$

From equations (4), (5), and (6) we then obtain

$$
e=\frac{1-R-2 \beta_{1}+2 R \beta_{2}}{t_{0}\left(\beta_{1}-R \beta_{2}\right)}, a=\frac{-R \beta_{2}}{s_{0}\left(\beta_{1}-R \beta_{2}\right)}, \text { and } b=\frac{\beta_{1}}{u_{0}\left(\beta_{1}-R \beta_{2}\right)}
$$

Because these all have the common denominator $\beta_{1}-R \beta_{2}$, we can cancel it. (Note we no longer have the normalization condition $a s_{0}+b u_{0}=1$ after this cancellation.) Then if we multiply by $s_{0} t_{0}^{2} u_{0}$ we obtain the formulas stated in the theorem.

ACKNOWLEDGMENTS

The authors wish to thank Thomas Berry for, among other things, informing them about the cubic invariants in [18].

REFERENCES

1. Bajas, C. L. Surface fitting using implicit algebraic surface patches. In Topics in Surface Modeling, H. Hagen, Ed., SIAM, 1992.
2. Bajaj, C. L., Hoffmann, C. M., Hopcroft, J. E., and Lynch, R. E. Tracing surface intersections. Comput. Aided Geom. Des. 5 (1988), 285-307.
3. BAJAJ, C. L., AND XU, G. Piecewise rational approximation of real algebraic curves. Comput. Sci. Tech. Rep. CAPO 91-19, Purdue Univ., 1991.
4. Chaniler, R. E. A tracking algorithm for implicitly defined curves. IEEE Comput. Graph. Appl. 8 (1988), 83-89.
5. Dahmen, W. Smooth piecewise quadratic surfaces. In Mathematical Methods in Computer Aided Geometric Design, G. Farin, Ed., Academic Press, Boston, 1989.
6. Dobkin, D. P., Levy, S. V. F., Thurston, W. P., and Wilks, A. R. Contour tracing by piecewise linear approximations. ACM Trans. Graph. 9, (1990), 389-423.
7. Farin, G. Curves and Surfaces for Computer Aided Geometric Design: A Practical Guide. Academic Press, Boston, 1988.
8. Garrity, T., and Warren, J. Geometric continuity. Comput. Aided Geom. Des. 8 (1991), 51-65.
9. Hoffmann, C. M., and Hopcroft, J. E. Automatic surface generation in computer aided design. Visual Comput. 1 (1985), 95-100.
10. Hoffmann, C. M., and Hopcroft, J. E. The potential method for blending surfaces and curves. Geometric Modeling: Algorithms and New Trends, G. Farin, Ed., SIAM, Philadelphia, 1987.
11. Hoschek, J., and Hartmann, E. Functional splines for interpolation, approximation, blending of curves, surfaces and solids. In Topics in Surface Modeling, H. Hagen, Ed., SLAM, 1992.
12. Li, J., Hoschek, J., and Hartmann, E. G^{n-1}-functional splines for interpolation and approximation of curves, surfaces and solids. Comput. Aided Geom. Des. 7 (1990), 209-220.
13. Lodha, S., and Warren, J. Bézier representation for cubic surface patches. Comput. Aided Des. To appear.
14. Lodha, S., and Warren, J. Bézier representation for quadric surface patches. Comput. Aided Des. 22 (1990), 574-579.
15. Patterson, R. R. Parametric cubics as algebraic curves. Comput. Aided Geom. Des. 5 (1988), 139-159.
16. Patterson, R. R. Parametrizing and graphing nonsingular cubic curves. Comput. Aided Des. 20 (1988), 615-623.
17. Penna, M. A., and Patterson, R. R. Projective Geometry and its Applications to Computer Graphics. Prentice-Hall, Englewood Cliffs, NJ, 1985.
18. Salmon, G. Higher Plane Curves. Hodges, Foster and Figgis, Dublin, 1879.
19. Sederberg, T. W. Algebraic geometry for surfaces and solid modeling. Geometric Modeling: Algorithms and New Trends, G. Farin, Ed., SIAM, Philadelphia, 1987.
20. Sederberg, T. W. Algorithm for algebraic curve intersection. Comput. Aided Des. 21 (1989), 547-554.
21. Sederberg, T. W. Piecewise algebraic surface patches. Comput. Aided Geom. Des. 2 (1985), 53-59.
22. Sederberg, T. W. Planar piecewise algebraic curves. Comput. Aided Geom. Des. 1 (1984), 241-255.
23. Warren, J. Blending algebraic surfaces. ACM Trans. Graph. 8 (1989), 263-278.
24. Warren, J. Free form blending: A technique for creating piecewise implicit surfaces. In Topics in Surface Modeling, H. Hagen, Ed., SIAM, 1992.
25. Warren, J. Several notions of geometric continuity for implicit plane curves. Monografias de la Academia de Ciencias de Zaragoza, Comunicaciones presentadas en el Instituto de Estudios Avanzados de la OTAN sobre "Computación de Curvas y Superficies", Puerto de la Cruz (Tenerife, España, 1989) 2 (1990).

Received January 1991; revised May 1992; accepted September 1992
Editor: Anthony DeRose

[^0]: Authors' addresses: M. Paluszny, Escuela de Física y Matemáticas, Facultad de Ciencias, Universidad Central de Venezuela, Apartado 47809, Los Chaguaramos, Caracas 1041-A, Venezuela; R. R. Patterson, Department of Mathematical Sciences, Indiana University-Purdue University at Indianapolis, 402 N. Blackford St., Indianapolis, IN 46202-3216.
 Permission to copy without fee all or part of this material is granted provided that the copies are not made or distributed for direct commercial advantage, the ACM copyright notice and the title of the publication and its date appear, and notice is given that copying is by permission of the Association for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific permission.

[^1]: ${ }^{1}$ This tangency property may be lost if the vertex happens to be a multiple point; see Figure $\mathbf{9 b}$.

[^2]: ${ }^{2}$ No points are missed by ignoring the line $t=0$ through P_{0} and P_{2}. It already crosses the curve twice. It can not be tangent at another point without violating Bezout's theorem, according to which a line meets a cubic in at most three points.

 Letting $s=1$ means we are thinking about homogeneous coordinates rather than affine coordinates for a silhouette point which does not lie on the line $s=0$. No such point could lie on the line $s=0$ since $s=0$ already meets the curve once at P_{1} and twice at P_{2}.

