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Abstract

We consider the relationship between the deductive and the
functional/algebraic query language paradigms. Previous
works considered this subject for a non-recursive algebra,
or an algebra with a fixed point operation, and the
corresponding class of deductive queries is that defined by
stratified programs. We consider here algebraic languages
extended by general recursive definitions. We also consider
languages that allow non-restricted use of negation. It turns
out that recursion and negation in the algebraic paradigm
need to be studied together. The semantics used for the
comparison is the valid semantics, although other well-
known declarative semantics can also be used to derive
similar results. We show that the class of queries expressed
by general deduction with negation can be captured using
algebra with recursive definitions.

1 Introduction

Declarative languages for object oriented databases are
a central subject in database research [1, 3, 5, 13, 14,
15, 16]). The three language paradigms being considered
are algebra, calculus and deduction-based. There has
been a lot of work investigating the relationship between
those paradigms [1, 5, 18, 22]. Many of these works (in-
cluding ours) considered the relationship between alge-
bra and deduction, presenting equivalence results about
the expressive power of the two paradigms. However, all
these works (again, including ours) investigated this re-
lationship only for a rather restricted class of deductive
programs: the stratified programs, and algebras with
recursion in the form of an explicit fixed point opera-
tion. It is of interest to extend the algebraic paradigm
with a general facility for recursive definitions, and in-
vestigate the relationship of the resulting language to
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deductive languages. This is the main subject of the
paper.

Recently, much attention is paid to defining a declar-
ative semantics for negation in non stratified deductive
programs [8, 2, 23, 24, 11]. There have been several sug-
gestions for defining semantics for such programs. For
example, the well-founded semantics[24] and the stable-
model semantics [11] provide an intuitive semantics for
logic programs with negation. A recent proposal, the
valid semantics, extends the well founded semantics in
anatural manner [6]. Surprisingly, the question whether
the class of queries defined using such semantics can also
be captured in the algebraic paradigm, has not yet been
considered. This question is also a main subject of this
work.

As in previous works [4, 5], we use the algebraic
specification paradigm as a formal framework for the
algebraic paradigm. This framework allows one to
define a variety of models with rich data structuring
facilities [9, 10, 12, 25]. However, as currently used, it is
limited since it allows only to use positive facts (when
negation is used, the semantics of a specification is no
longer well-defined[17, 19]). We explain why negation
need to be considered for algebraic query languages
even without recursion, certainly with recursion. In
order to support negation as well, we extend the
paradigm, using the valid model approach. We base
the investigation on this paradigm because of its
simplicity and generality, The results can be easily
adjusted to capture other declarative semantics as well.
Using this extended framework, we define two algebraic
query languages, that are essentially extensions of the
fixed point algebra presented in [5] with recursive
definitions. = We investigate these algebras and in
particular concentrate on the relationship between them
and deduction. The same approach to semantics,
namely the valid semantics, is used for both paradigms.

We have shown in [5] that the fixed point algebra
has the same expressive power as stratified deduction.
The two extended algebras presented here are proved
to be more expressive than the fixed point algebra. In
particular, we show that they both expresses exactly the
class of queries captured by general deductive programs,
under the valid model semantics.

The main contribution of this paper is in providing
for a better understanding of the relationship between
the deductive and the functional/algebraic paradigms.
The results are potentially of interest to the area of
algebraic specifications, by showing that data types can
be specified in a language that uses negation. However,
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we do not pursue this direction here.

In Section 2, we present the main concepts of
algebraic specifications, and the extensions needed to
handle negation. In section 3 we present the general
functional language, a restricted fixed point algebra,
and two versions of algebras with recursive definitions,
the algebra® and the IFP —algebra=. The deductive
language is introduced in section 4, and its relationship
to the above algebras is investigated in the next two
sections. Conclusions are presented in section 7.

2 Algebraic Specifications

This section presents some of the main concepts of
algebraic specifications [9], and the extensions needed
to support negation.

2.1 Basic Concepts

We start by considering specifications without negation.
A specification defines a collection of related data
types. It contains a list of sort names and operations
(i.e. functions) that define a language of many-sorted
first order predicate logic, with equality as the only
predicate. Properties of the operations are stated as
formulas, typically (conditional) equations.

Definition 2.1 An abstract data type specifica-
tion is a triple SPEC = (S5,0P, E) where S is a set of
sort names , OP is a set of function symbols with ar:-
ties in S* — S, and E 1s a set of (condilional) equations
over S and OP.

A specification defines many models, which are many-
sorted algebras. Since it is expected to specify a
unique meaning, (the equivalence class of) one algebra
is selected as its meaning. This is most often the initial
algebra, and we assume so in this paper. This is an
algebra Asppc = (As, Aop), of signature (S, OP) such
that there exists a unique homomorphism from it to
each of the other algebras of SPEC. The desirable
properties of the initial algebra are well documented [9];
in particular, for specifications given by (conditional)
equations it exists, and whenever it exists it is unique
(up to isomorphism). It structure is also known:
The Herbrand universe, the collection of ground terms
over OP, can be made an (S,OP)-algebra, and its
quotient modulo the invariance relation defined by E,
the quotient term algebra, is an initial algebra. This
approach is closely related to that of minimal model
used in logic programming. Indeed, we have here the
case of a single predicate, namely equality, defined
by Horn-clauses (equations and conditional equations).
The invariance relation defined by them is the minimal
model of the equality predicate.

Essentially all known data types, including atomic
types like the characters, the integers, the booleans, and
structured types like sets, lists, stacks, and so on, can be
so defined. The following example specifies finite sets of
natural numbers (assuming that natural numbers and
booleans have already been defined):

SET(nat) = nat + bool +

sorts : set(nat)
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opns : EMPTY : — set(nat) (empty set)
INS : nat, set(nat) — set(nat) (insert)
MEM : nat, set(nat) — bool (member)
eqns : d,d' € nat , s € set(nat)

INS(d, INS(a, 5)) = INS(d, 5)

INS(d, INS(d, 5)) = INS(d’, INS(d, 5))

MEM(d, EMPTY) = FALSE

MEM(d, INS(d, 5)) = IF EQ(d, d")
THEN TRUE
ELSE MEM(d, 5)

The notation nat+bool+. . . means that these previously
defined specifications are imported. The initial algebra
has sorts and operations for natural numbers, booleans,
and sets of natural numbers, with a constant denoting
the empty set, and operations for insertion, and mem-
bership testing. Note that no special property of the
natural numbers is used in the specification (except for
the fact that equality is defined on them)!. By replacing
nat with a type variable data, we obtain a parameterized
specification, which can be instantiated by substituting
a concrete type for data. For brevity, we use in the
rest of this paper the notation {z1,...,2,} to represent
the expression INS(z4,...,INS(z,, EMPTY)), and {t¢}
to represent the type of sets with members of type ¢.

Many other operations on sets can be defined using
equations, including the familiar relational algebraic
operations, and generalizations thereof [5, 7].

The above specification of sets illustrates a weakness
of algebraic specifications, compared to logic programs.
For the latter, the standard notion of model from logic
describes sets in the form of relations (predicates),
and membership, as built-in notions. The content of
a relation can be defined by a Horn-clause program.
The tuples in the relations are those derived from
the program. Membership testing for each such tuple
relative to the corresponding predicate returns ¢rue by
definition. For a tuple that is not in the relation in
the minimal model, the answer is false. Note that the
programmer must only describe the tuples that are in
the relations. The fact that other tuples are not in,
follows immediately from the minimal model semantics.
This is the only point where a default assumption,
namely that of using the minimal model, is used. Now,
a similar default assumption, namely that of using
the initial model, is used in algebraic specifications.
However, it applies only to the extension of the equality
predicate. No general notion of predicate is built-in,
so we have to represent other predicates as sets, and
membership as a boolean-valued function. The booleans
are regular values, included in the specification and its
model. Hence, to define properly a boolean valued
function like membership, it is not sufficient to provide
the positive (i.e., true) facts. The negative (i.e., false)
facts must also be provided (since now true, false are
just regular values, and the default mechanisms does
not apply.) For this reason, one can define finite sets,

1In general, a specification for sets with element type type can
contain the MEM ‘predicate’ iff equality is definable on type [21].



as above, since both positive and negative membership
facts can be specified, but not infinite sets. Note that
this restriction has an associated benefit — algebraic
specifications are computable, whereas negative facts in
logic programs usually are not.

2.2 Negation

As we have explained, the expressive power of the above
framework is limited since one can only use positive
facts (i..e., equalities), and predicates and membership
are not built-in. To define and investigate database
languages, we need to have sets, since predicates can
be represented as sets. The following example demon-
strates how negation can be used in specifications, and
in particular its role in defining sets.

Example 1:

The specification above defines only finite sets. We have
shown in [5] that some infinite sets can also be defined
in this framework. For example, the infinite set S¢ of
all even natural numbers can be described as an infinite
union S5® = SfUSSUSS ..., where Sf is the set contain-
ing all natural numbers smaller than 2i. We represent
this infinite set using a new constant name S¢, defined
using an auxiliarity function F : nat — {nat} that for
every i returns the set S; :

opns: F : nat — {nat}
S¢' : nat — {nat}
S¢ . — {nat}

eqns: F(0) = EMPTY

F(SUCC(3)) = F(i) U {2i} 2
S¢'(3) = F(i) U 8¢ (SUCC(i))
Se = 8¢ (1)

Actually, an alternative, simpler, definition that does
not use the auxiliary functions is available:

eqns:  S¢ =S¢ U {24}

The difference between the two alternatives is that in
the second we have a declarative description of the set,
and we trust the default mechanism to produce the right
set. In the first, we specify more explicitly what we want
to be in the set, although in the end we use the default
mechanism here also. For this specific example, both
definitions give the same result, but we will see later
examples where this is not the case, and an important
use of the first style.

It is easy to see (using term rewriting) that in the first
definition for every ¢ > 1 hold,

S¢ = F(1)UF(2)U...U F(i)US¢ (SUCC(:))
={0}u{0,2}u...U{0,2,...,2i - 2)JU
5¢'(SUCC(3))
={0,2,...,2 — 2} U S (SUCC(:))3
It follows that every even number n is inserted into S¢.

A similar observation applies to the other definition.
But, does the constant S¢ really represent the infinite

2For clarity, we use union to denote INS(2z, F(3)).
3This denotes INS(0,INS(2, ..., 2i — 2,S¢ (SUCC(:))).
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set 5S¢ = {0,2,4,...} ? For example, suppose we want
to check whether the number z belongs to the set S°.
Will MEM(z, S¢) return the correct answer? For a finite
set S, MEM(z,S) defines a boolean-valued function
that returns T if z is in S, and F otherwise, but for
the infinite set Sf, MEM returns T if z is in S¢, but
there is no derivation that produces false for an odd
number (because EMPTY is never encountered when
the content of S¢ is scanned).

To correct the specification, we can add an equation
that identifies the result of membership testing with F,
whenever it can not proved to be equal T.

MEM(z,y) # T — MEM(z,y) = F

a

We will later consider other operations on sets, i.e.,
those of algebraic languages. We certainly want these
operations to interact with membership in the right way,
so we take the above conditional equation as a fixed part
of the specification of sets and set operations. But, this
conditional equation is really a disequation — it uses
negation. The standard initial model semantics can
not in general be used for specifications that contain
negation, since the existence of an initial model is not
guaranteed for such specifications [17, 19]. Thus, an
alternative default mechanism for choosing the desired
algebra must be provided. The close relationship
between the initial model semantics for data types
specification, and the minimal model approach for
deductive programs indicates that possibly similar
default mechanisms should be suitable for handling
negation in both paradigms. As already stated, there
have been several suggestions for defining declarative
semantics for deductive programs with negation [8, 2,
23, 24, 11, 6]. We use the valid model approach for
developing the semantics of algebraic specifications with
negation. (Similar development can be done using the
other declarative approaches, as well.)

We present below a brief summary of the main
ideas of the valid model semantics, and how it is used
for defining semantics for algebraic specifications with
negation. (For a formal definition and full investigation,
see [6, 20]). The valid model of a deductive program
P is a 3-valued model with a set 7 of true facts,
and set F of false facts, and a set of undefined facts.
We consider in the following only ground facts. The
model is computed as follows: Initially, all the facts are
undefined. At each step of the computation, we look at
all the possible derivations starting from the current set
T of true facts, where only facts not in 7 are allowed
to be used negatively. The facts that are not derivable
in any such computation, are assumed to be certainly
false, and are therefore added to F. The false facts
in F and the true facts in 7 are then used to derive
new true facts, that are added to 7". In this derivation,
we use negatively only facts from F. The process is
repeated (possibly transfinitely) until no more true facts
can be derived. The sets T and F of true and false facts
obtained at the end of the process define a 3-valued
model. This model is called valid model, and assumed
to be the semantics of the program P (and since it is
unique [6], the semantics is well defined.)



A specification SPEC can be viewed as a deductive
program with ‘=" being the only predicate. The rules
in the ‘deductive version’ of SPEC are the conditional
equations of SPEC, and the standard equality axioms
(transitivity, symmetry, reflexivity, and substitution).
Taking a valid model approach, the deductive version
of SPEC has a 3-valued valid model. Let 7 and F
be the sets of true and false ground facts in the valid
model of the ‘deductive version’ of SPEC. The facts in
7 represent terms that are (certainly) equal, the facts
in F are (certainly) unequal terms, and the rest are
equalities whose status is undefined. This is called the
valid interpretation of SPEC. To illustrate the idea,
consider the definition of S¢. One can easily see that for
each even number z, the fact MEM(z,S¢) = T can be
derived immediately as being in T, without using any
negative facts. After that, no additional facts of this
form (for other values of z) can ever be derived. Hence
all the facts MEM(z, S¢) = T where z is odd are put
into F (meaning that MEM(z, S¢) # T'). Now, we can
use the rule with negation to derive that for each odd
number z, the fact MEM(z,S5¢) = F isin 7. As no
more derivations of true facts are possible, we can put
MEM(z, S¢) = T in F for each odd z, and similarly for
MEM(z,S¢) = F, where z is even. Thus, for each z,
precisely one of MEM(z, S¢) = T \MEM(z,S;) = F is
in 7. Thus, in this example, negation is used essentially
to implement the standard default mechanism of logic
programming for MEM. More general cases will be
considered later.

As mentioned above, the interpretation of SPEC
may be 3-valued. However, for an algebraic approach,
we need to consider total algebras, (i.e 2-valued models).
We consider the (total) algebras that agree with the
valid interpretation on the true facts 7 to be the ‘more
natural’ models of SPEC. (The same approach is used
in classical specifications: the models are the algebras
that agree with the derivable set of true facts.) We
call such algebras valid, and define them formally as
follows:

Definition 2.2 A (total) algebra Aspec is a valid
algebra of SPEC iff it is a model of SPEC, and
exp exps € T implies that expy = exps holds in
Aspec.

Since, intuitively, a specification is supposed to specify
a unique data type, a default mechanism must be
provided to choose one valid algebra from the multitude.
Following the traditional initial model approach, we
choose the valid algebra such that there exists a unique
homomorphism from it to each of the other valid
algebras of SPEC. We call this algebra the initial
valid model of SPEC.

Note the difference between the traditional initial
model and the initial valid model. An initial model must
have a unique homomorphism to any of the algebras of
SPEC, while an initial valid model must have unique
homomorphisms only to the valid algebras. (Note that
when negation is not used, every algebra is a valid
algebra, thus the concepts are equivalent.) This allows
a valid initial model to exist in more cases.

However, there exist specifications that do not have
an initial valid model.
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Example 2:
Consider SPEC defining a sort s with three constants
a,b, and ¢, using the (generalized conditional) equations:
atb—a=c
atc—a=b
All the models of SPEC are valid, since no equalities
can be derived in a valid manner. SPEC has three
such models: a model where a = b = ¢, a model where
a = b # ¢, and a model where a = ¢ # b. However, none
of these are initial. The symmetry in the two given con-
ditional equations leads a non deterministic choice be-
tween two different, non compatible, algebras. O

Moreover, it turns out that

Proposition 2.3 .

(1) It is undecidable whether a specification with nega-
tion has an initial valid model.

(2) If only 0-ary functions are used in the specification
(i.e. only constanis), then the problem becomes decid-
able.

The (un)decidability result follows from the close re-
lationship between logical implication (which is unde-
cidable in general, but decidable for finite domains),
and the initial valid model semantics. The undecidabil-
ity proof is rather simple and employs a reduction to
the problem of proving a ground equation from SPEC,
known to be undecidable [9].

The above result shows that the difficulty of writing
specifications increases when negation is used. However,
as we illustrated above (and will further explain in the
next section), negation is needed for defining correctly
sets, and set operators. Fortunately, it turns out
that there exists a large and quite expressive family of
specifications that are syntactically restricted in a way
that assures the existence of initial valid model. We
consider these specifications in the followingsection. We
call specifications that have an initial valid model well-

defined.

3 Algebras

We next present the algebraic query languages. We
start by explaining how databases are defined in this
framework. Then, we describe the languages.

To define a database, one has to specify the data types
used in it, and then describe its content. We assume in
the following that all the data types used in the database
are well-defined, i.e. their specification has an initial
valid model.

A database is a collection of named sets (every
set is a database ‘relation’). Each set is represented
by a named constant, and its content is specified by
(generalized conditional) equations. For example, a
database relation R; that contains elements a,...,a,
of type t; can be represented by a constant R :— {t;}
that is defined using the equation Rf = {ai,...,as}.
In general, equations of the form Rf = exp can be used
for defining the contents of the relations. Again, we
assume that the specification of the database is well-
defined. A query is represented by a constant Q that
is defined using an equation of the form Q = exp. The
query specification additionally includes definitions for



all the types and functions used in ezp. Thus, the query
language is a functional language.

Sometimes it is desirable to restrict the queries and
use in ezp only a specific set of predefined operators
OP. For example, in the relational algebra, queries
are defined only using the operators select, project,
join, etc. We call such set of operators an algebra, and
the queries defined using these operators are algebraic
queries.

Recursion can be expressed in an algebra either by an
explicit fixed point operation, or by allowing recursive
algebraic definitions. Both are considered here.

3.1 The Fixed Point Algebra

In [5] we presented an algebra that generalizes the rela-
tional and complex object algebras. (See also [7].) All
the operators in this algebra are generic, in the sense
that they can be applied to sets containing elements of
any arbitrary type (assuming that equality is definable
for the type). The operators of the algebra are: U (set
union), — (difference), x (cartesian product), oyes (se-
lection using a boolean valued selection function test),
MAP; (an operator that restructures each element of
a set using restructuring function f), and an inflation-
ary fixed point operator IFP.;,. The operation IFP .,
computes the inflationary fixed point of the algebraic
expression exp as follows: Starting with the empty set,
at each step, exp is applied on the result obtained in
the previous step, and the result is accumulated.

All the operations are defined in [5] using parameter-
ized specifications. Note that, though it seems that the
operators o, MAP, and IFP are generic in the functions
test, f, and exp, this is misleading. OQur framework is
strictly first order, and function variables are not avail-
able, thus a special specification must be provided for
every specific function. In practice, this limitation can
be overcome by syntactically allowing fully (second or-
der) genericity, but interpreting functions instantiation
as a macro, i.e. a code duplication will take place.

The mechanism for defining the fixed point operator
IFP is very similar to the first one used in the previous
section for defining the infinite set of even numbers, i.e.,
the computation of the inflationary fixpoint is explicitly
spelled out. We use an auxiliarity function Flezp(%)
that for every ¢ computes the result of i successive
applications of exzp. Then we define IF P, to be the
infinite union of all the Fez,(z)’s.

It is important to note that, while many works assume
a finite database and no functions, we allow functions
on the domains, such as addition on numbers, hence the
fixed point operator may generate infinite sets. Thus,
as already explained, negation needs to be used in the
specification of IFP to define correctly the membership
function.

We use the valid model approach to define the se-
mantic of the specifications. Since IFP is an inflationary
fixed point operation, it is tempting to try to use use the
inflationary fixed point semantics for handling the nega-
tion in the algebraic specification of the algebraic oper-
ations, particularly the IFP. However, this semantics is
not suitable for handling specifications with negation,
since it does not capture the idea that inequality should
be used only when no more equalities can be derived.
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Thus, if we consider the disequation used in the defini-
tion of membership under inflationary semantics, it will
be applied in the first step, when all sets are empty, and
will put all facts of the form MEM(z, S) = F into T!

A natural question is whether the above operations,
and in particular the fixed point operator are well-
defined, i.e. whether the specification of the operations
has an initial valid model.

Theorem 3.1 Let SPEC be some well defined spec-
ification, defining the types t1...,t, (with equalily).
There ezxists a a well-defined specification SPEC’ that
extends SPEC, that for every type t; defines a set type
{t;}, with the operations EMPTY, INS, MEM, U, x, —,
o, MAP, IFP.

Intuitively, the above theorem claims that for every
set S constructed using the above operations, the
membership function is totally defined, (i.e. in the
initial valid model, for every element a, MEM(a,S)
either equals T" or F'). The specification SPEC’ is
the one presented in {5]. The theorem is proved by
induction on the size of the expressions, based on a
“local stratification” argument. We show that the
membership function of sets constructed by complex
expressions is totally defined in terms of membership
in less complex expressions.

The algebra containing all the above operators is
called the IFP—algebra. A restricted version, where the
IFP operator is not used, is simply called the algebra.
Since we assumed that the data types used in the
database are well defined, from the above theorem it
follows immediately that every IFP —algebra query on
the database is well-defined.

3.2 Operations and Equations

The above algebraic paradigm can be enriched by allow-
ing the programmer to add new operation names to the
language, and use equations to define their properties.
However, if no restrictions are posed, then the resulting
language is essentially the general functional language.
We restrict the language by allowing only operations
with input and output parameters of set type to be de-
fined, where for each new operation name f; we have
only one equation fi(zy,...,2,) = ezp(z1,...,%n), and
where exp is an algebraic expression that contains no
variables other then zy,...,z,. We do allow recursion:
the defining expressions may contain the names of the
new, defined, operations. For a given algebra (i.e., set
of operations), this is an extension of the algebra with
recursion.? The restricted framework allows one to de-
fine new operations only in terms of a specific set of
predefined operators.

Example 3:

The operator N : {t},{t} — {t} (intersection) can
be defined using the operator —, and the equation
zNy =2z — (z —y). Similarly, an ezclusive-or opera-
tor @ : {t},{t} — {t} can be defined with the equation
z®y = (z—y)U(y—z). We have seen in the previous
section some examples of recursive definitions, namely
the definitions of S¢. Note that the first definition is

4 Actually, this is slightly more general than just recursion,
since the equations are not restricted in any way.



not in our restricted language (since it uses auxiliary
functions on the integers). The second is closer to what
we allow, but it still uses an integer variable i which
is not of set type. Another possible definition for this
constant is

Se = {0} UMAP,(5;),

stating that the set S¢ is such that increasing all the
members by 2, and adding the number 0 to the set,
results in the original set S¢. Since {0} is a constant
of the algebra, this definition satisfies the restrictions.
Since the definition of MAP is well-defined, we obtain
again the same model, as in the previous definitions,
again using the rule with negation for MEM.

As another example for recursive definition, we
consider a game that was one of the examples leading
to the formalism of the well-founded and stable models
semantics [24]. Consider a game where one wins if the
opponent has no moves (as in checkers). Assume the
relation MOVE represents the possible moves. The set
WIN of all winning positions is defined by the recursive
equation

WIN = 7,(MOVE — ((m;MOVE) x WIN))

(where m;, ¢ = 1,2 is a shorthand for MAP; ;). The
equation defines WIN to be the set containing all po-
sitions in the first column of MOVE where the next
position is not a winning one. Note that the equation
contains subtraction (hence inversion of T and F for
membership). We shall show in the following that equa-
tions of this form may not have a well-defined model.
(If the MOVE relation is acyclic then the valid inter-
pretation is 2-valued, and an initial valid model exists.
This is not the case, however, for cyclic MOVE.) O

We denote the algebra and the IFP —algebra, aug-
mented with the capability of defining new operations
by recursion, algebra=, and IFP—algebra™ resp.

Clearly, if the definitions are restricted to be not
recursive, the expressive power of the languages is not
increased (every new operation can be expressed by
an algebra expression containing no new operations).
The extension is then just a convenience for modular
programming, as it allows one to name frequently used
sub expressions, then use these names instead of the full
sub expressions. If recursive definitions are used, then
the above extension is no longer just syntactic sugar,
it is a significant extension, and as we show below it
increases the expressive power of the languages.

We first consider well-definedness (i.e. the existence
of an initial valid model). It turns out that well
definedness is no longer guaranteed for the extended
languages. For example consider the constant S, defined
by the recursive equation

S={a} -5
The valid computation cannot infer that MEM(q, S) =
T isin T. The definition of the — operator (as presented
in [5]) performs inversion of membership.  Thus,
assuming MEM(a, S) = F, and using the definition of
—, will allow us to derive MEM(a,S) = T'. So, there is
a potential derivation of 7" but not a sure one. Thus,
MEM(a, S) = F can not be inferred too. It follows that
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the membership status of a is S is undefined, and there
is no initial valid model. (Intuitively, we would not like
it to be defined: Identifying MEM(a, S) with T (or F)
will cause the identifications of T and F', which is clearly
not something we want to do.)
A similar observation holds in some cases for the WIN
set defined in the previous example. If the MOVE
relation contains, for example, the tuple [a, a], then the
membership status of a in WIN will be undefined.

In general, a syntactic analysis is not sufficient for
determining if such a program has an initial valid model.

Proposition 3.2 Itis undecidable whether an algebra™
(IFP —algebra™ ) program has an initial valid model.

Proof: Given an algebra™ program P, a set S defined
by the program, and an element a, we construct an
algebra™ program P’ such that P’ has an initial valid
model iff @ ¢ S, as follows: We take P, add to the
language a new set constant S’, and define it using the
equation

SI = O'EQ(a:,a)(S) —_ S’.

Now, if a € S, then using the same argument as in
the previous example, P’ does not have an initial valid
model, but if @ ¢ S then ¢ ¢ S’, and an initial valid
model for P’ in, which S’ is empty, exists. If follows
that P’ has an initial valid model iff a ¢ S in the model
of P. But, in section 6 (proposition 6.3) we show that
the problem whether a € S for some set S defined by
an algebra™ program is undecidable. O

This result is not surprising. We prove in section 6
that algebra™ has the same expressive power as general
deductive programming under the valid semantics.
Thus clearly it suffers from similar problems.

Theorem 3.1 states that IFP — algebra programs
always have initial valid models. The above proposition
states that this is not the case for algebra® programs.
Thus clearly the expressive power of the two languages
is different. An interesting question is whether they are
comparable.

Note that the program (equations) defining the
IFP operator is not an algebra™ program (since the
auxiliarity function Fi.,(i) used in the definition has
an input variable that is not of set type). However,
as showed in examples 2 and 3, equations can be used
to describe recursive computations. One can describe
fixed point computations without explicitly using a fixed
point operator. In particular, let exp(z) : {s} — {s}
be an algebra expression, and let S :— {s} be a new
operation name, defined by the equation S = exp(S5).
Intuitively, the equation defines S to be a fixed point of
exp. The definition of S¢ in example 3 is of this kind.
How is this fixed point related to IFP.zp 7

While S is a ‘real’ fixed point of ezp, IFP.p com-
putes its inflationary fixed point. Using monotonicity
argument, one can easily verify that the two fixed points
coincide for expressions that define monotone mappings
on sets.

Definition 3.3 An ezxpression exp is monotone iff for
every two sets Sy, S, if for every a MEM(a,S1) = T
wnplies MEM(a, S2) = T, then for every element o
MEM(d’, ezp(S1)) = T implies MEM(a', exp(S2)) = T'.



Proposition 3.4 If exp is monotone, then in the valid
winterpretation, for every element a hold:

MEM(a,S) =T iff MEM(a,IFP.;p) =T,

MEM(a, S) = F iff MEM(q,IFP.;,) = F.

However, if exp is not monotone, then IFP.,, and
S may not have the same behavior., For example, if
ezp = {a} — z, then
IFP {4}z =

({a}-EMPTY)U ({a}~({a}-EMPTY))U... = {a}
while for the set S defined by the equation S = {a} -5,
the membership status of @ in S in the valid model in
undefined. The difference between the results reflects
difference in the interpretation of subtraction. The IFP
operator computes the fixed point in an inflationary
manner. At each step of the computation, the set being
subtracted contains only the elements computed so far.
This behavior is dictated explicitly in the definition
of the operator. But S, as defined by the equation
S = ezp(S) in the initial valid model, is the ‘real’ fixed
point of ezp, in the sense that the set being subtracted
1s assumed to be the set being defined. As the equation
1s part of the definition of the set, there i1s cyclicity in
the definition, hence undefinedness.

Recall that the explicit definition of IFP is not
legal in the algebra™ language. It turns out that,
using a more complex translation technique, IFP.zp can
be represented in algebra™ for every exp. We first
translate IFP.z, into a deductive program (proved to
be possible in proposition 5.3). Then we translate the
deductive program into an algebra= program (proved
to be possible in proposition 6.1). It follows that

Theorem 3.5 IFP—algebra C algebra=
Corollary 3.6 IFP—algebra™ = algebra™

Thus, when the ability to use recursion is added, even
in the restricted manner above, a specific fixed point
operator like IFP becomes redundant.

4 Deduction

We next consider the relationship between IFP—algebra,
algebra= and deduction. We start by presenting
deductive database and query specifications.

In a deductive database, the database relations are
represented by predicates. To define a database, one
specifies the data types used in the database, and then
describes the database content. The data types used in
the database are defined using a specification SPEC.
Here again we assume that all the data types are well
defined. The database content is defined using Horn
clauses of the form Qy,...,Q, — R;i(z) where Q; is
an atomic formula (R;(z;), exp: = exps) or a negated
atomic formula. One can use in the definition all the
types and operations from SPEC. Since our formalism
allows us to define domains of arbitrary ADT’s, the
nested relations/complex object models, and models
that allow attribute values to be arbitrary ADT’s are
special cases.

A deductive query consists of a set of rules, and
a query of the form “R(z) ? ”. Its answer is obtained
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by importing data base specification and computing the
valid model of program, starting from the initial valid
model of the data types. The semantics, the model, has
the initial valid algebra of the types specifications as the
domain, and additionally has relations that satisfy the
formulas of the database and query specifications. Even
if no negation is used, using the default mechanism of
the minimal model guarantees that the result, including
predicates and membership, is well-defined (although
membership may not be recursively computable). If
the program is stratified, then the answer can obtained
by successively computing the minimal model of each
stratum.

Note that the result of a deductive query depends on
the domain of the data types. For example, the answer
to a query of the form Q(z)?, where @ is defined by
the rule —=R(z) — Q(z), changes if the domain of z is
changed. The (in)sensitivity of queries to the domain
in which they are computed is often called domain
(in)dependence (abbrv. d.i.) [1, 5, 18, 22]. Intuitively,
domain independent queries use in the computation
only a part, a “window”, of the initial model, and are
insensitive to the properties of elements outside this
window. Domain independence is a desirable property,
since the initial model may be very large, often infinite.
Thus, the ability to ignore parts of it increases the
efficiency of the computation. For lack of space we shall
not consider the subject further here. For a formal
definition of domain independence in our framework,
and full discussion of the subject, see {5, 20]. For our
needs here, it suffices to observe that if a query is d.i.
then in particular one can consider only its result in the
initial valid model, since any other (reasonable) model
for the domains provides the same answer.

Domain independence (d.i.) is a semantic concept.
However, it is possible to syntactically restrict queries
by a condition that guarantees domain independence.
We present such restrictions below.

The accepted approach to making a formula safe
is to restrict the range of the variables in it [22, 1].
We restrict the range of the variables in the formula
such that all the elements used in the computation,
either appear in the database, are components of
database members, or obtained from them by function
applications. We define below range formulas, and
restricted variables, and later use them for defining safe
deduction.

Definition 4.1 A range formula restricling the vari-

ables x1,...,z, is a formula with precisely z1,...,2n
free, having the structure defined below:
basis:

a. R(z1) is a range formula restricting z;.

b. z, = exp, where exp is a ground erpression, is a
range formula restricting @;.

construction: if ¢1,¢9 are range formulas restricting
Ti,...,Zn, and Yy,...,Ym TESP., then:

1. ¢1 Ay is a range formula restricting both z,,...,2,
and ¥y, ..., Ym-



2. ¢1 A (ezp1 = expa), where all the variables in
expy,exps are restricted by ¢q, is a range formula
restricting 1,...,%n

3. ¢1 A2, where all the free variables in ¢y are re-
stricted by ¢1 is a range formula restrictingxy, ..., z,

4. &1 ANy = exp, where all the variables of exp
are resiricted by @1, s a range formula restricting

YZ1,...4n

We say that a horn clause is safe if it is of the
form ¢ — R;(Z) where ¢ is a range formula restricting
£.5 A deductive program P is safe, iff all its clauses
are safe. Note that the restrictions do not deal with
quantifiers (as, e.g, in [5]), since the only quantifiers
in logic programs are those that are implicit in the
quantification of rules.

Since algebraic queries are domain independent [5],
we compare in the following the expressive power of
the algebra to the domain independent part of the
deductive language. First we note that the safety
syntactic restrictions are general enough to capture all
d.i. deductive queries.

Proposition 4.2 Every d.i. deductive query has an
equivalent safe query, under the valid semantics. More-
over, if the first query is stratified, then so is the equiv-
alent query.

Proof: (Sketch) The proof follows from the observa-
tion that restricting the variables of a d.i. query to
range only over elements from the initial model, does
not change the query result. To convert a d.i. deduc-
tive query into a safe one, we restrict all the variables
in the body of the rules. We first define for every type
s; a unary predicate S; that contains all the elements
in the initial valid model elements of the domain of s;.
Since the elements are constructed from constants, by
applying functions, we can write safe rules defining S;.
Next we replace every rule ¢ — R(z;) of @ with vari-
ables z1,...,2, by S1{z1) A ... A Sa(2,) A ¢ — R(z;).
The new program is safe, and since the original one 1s
d.i., the two programs are equal. O

Thus in the following we only consider safe deductive
programs.

In [5] we considered a restricted part of IFP-algebra,
where fixed point operator is applied only to expressions
where the variable does not appear negatively, e.i. does
not appear in a sub-expression being subtracted. (Such
expressions are certainly monotone.) We called this
algebra the positive IFP-algebra and showed that

Theorem 4.3 [5] The stratified d.i. deductive lan-
guage, the stratified safe deductive language, and the
positive IFP —algebra are equivalent.

In the following sections we extend this result, by
considering the relationship between general (i.e., not
necessarily positive) IFP —algebra, algebra™, and non
stratified deduction.

5Note that a ground formula of the form R(exp) can be
represented by the safe rule (zx = exp) — R(x), thus there is
no loss of generality.
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5 From Algebra to Deduction

We start by considering general IFP —algebra queries.

The naive (and quite well-know) algorithm used in
the proof of theorem 4.3, for transforming positive
IFP — algebra queries into deductive queries, works as
follows: For every sub expression in the query a new
predicate name is introduced, and a derived relation
is defined. Then, every sub query is constructed from
it sub-query components. For example, F; U Ey is
represented by two rules of the form Ry(z) — R(z),
Ry(xz) — R(z), where R;, Ry are derived predicates
corresponding to Ey, Es resp., F1 — Ey is represented
by a rule Ri(z),~Ra(z) — R(z), and a fixed point
expression IFP,.;, is translated by first translating exp
and then introducing recursion in the deduction. The
rest of the operations are translated similarly.

Note that subtraction is translated to a negation of
the corresponding predicate. When this translation
technique is applied to positive IFP queries, the result-
ing program is stratified [5]. This is not the case, how-
ever, when the translation technique is applied to non
positive queries.

Example 4:

When the above translation technique is applied to the
(non positive) fixed point expression @ = IFP(,}_., the
resulting deductive program

R(a)

R(z) A -Q(z) — Q(z)

is clearly not stratified. O

Recall that the fixed point operator has an inflation-

ary semantics, where subtraction of a variable is inter-
preted as “was not derived so far”. If the resulting de-
ductive program is not stratified, then its result is the
same as that of the original algebra query, only if it is
computed using inflationary semantics as well. If a dif-
ferent semantics is used, e.g. valid model semantics, the
algebra query and the deductive queries may have dif-
ferent results. This is because the valid model semantics
interprets negation as “can not be derived at all” (vs.
“was not derived so far” in inflationary semantics).
Example 4: (cont’d)
Since @ = IFP(,_, = ({a} - EMPTY)U... = {a},
the element a belongs to ). When the corresponding
deductive program is evaluated using inflationary fixed
point semantics, the computation proceeds as follows.
First iteration: the fact R(a) is derived. Second iter-
ation: since no facts have been derived so far for Q,
-Q(a) is assumed, and @Q(a) is derived. Third itera-
tion: no more facts are derived, and the computation
terminates. Thus the query result is the same as that
of the original algebra query.

When the deductive program is evaluated using valid
model semantics, Q(a) is neither true nor false. This
is because in the valid model approach, a fact can be
assumed to be false only if there is no possible deriva-
tion for it. Thus, @(a) can not be assumed to be false.
But @Q(a) can not be derived unless —~Q(a) is assumed.
Thus neither Q(a) nor ~Q(a) hold in the valid model.
It follows that the result is different then that of the
original algebra query. O



Thus, we have:

Proposition 5.1 FEvery IFP-algebra program has a
deductive program that is equivalent to it, when the
IF P-algebra program is evaluated using valid model
semantics, and the deductive program is evaluated under
the inflationary semantics.

Now, what can we say about translation to deductive
programs with valid semantics? It turns out that

Proposition 5.2 For every deductive program P there
exists a deductive program P' such that for every
predicate R in P and every element a, R(a) holds when
when P is evaluated using fized point semantic, iff R(a)
holds when P’ is evaluated using valid model semantics.

Proof: We present the proof for the case where the
initial model contains the natural numbers. The cases
where the initial model contains some other type with
infinite domain, or where all types have finite domain,
are handled similarly. The program P’ is constructed
by modifying P as follows:

(i) For every predicate name R we add a new predicate
name R’.

(ii) Every ground fact R(a) is replaced by R'(0, a).

(11) Every rule ...(—)Q(z)... — R(y), is replaced by
L (MQG2)... = R+ 1,y).

(iv) Finally, for every R’ we add two new rules:
R'(i,z) — R'(i + 1,z) and R'(i,z) — R(z).

The program P’ simulates the inflationary computation
of P. At each step of the derivation, new facts can only
be derived using facts with smaller indexes. Thus the
result obtained using valid semantics is the same as the
one obtained by the inflationary computation of Q’. O

It follows that a (non positive) IFP—algebra query @
can be translated into an equivalent deductive program
as follows: @ is first translated into a deductive program
P such that @) and P are equivalent when P is evaluated
using inflationary fixed point semantics. Next, P is
transformed into a program P’ that has the same result
under valid model interpretation. It follows that

Proposition 5.3 Every IFP — algebra query has an
equivalent domain independent deductive query.

Theorem 3.5 (whose proof actually uses results of
the next section) states that the IFP — algrbra is
properly included in the algebra™. Thus, an interesting
question is whether general algebra™ queries can also
be expressed by d.i. deduction. It turns out that the
answer is positive.

Proposition 5.4 Every algebra™ query has an equiv-
alent d.i. deductive query.

Proof: (Sketch) The translation technique is simi-
lar to that of the positive IFP — algebra queries pre-
sented above. In a way, it is simpler, since we have
no IFP operation to translate. The only interesting
part is the translation of equations. Every expres-
sion fi(e1,...,e,) were f; is defined by an equation
fi(z1,...,2a) = expi(zy,...,2,) is represented in the
deductive program by a corresponding predicate ;. To
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define this predicate, we generate for the algebra ex-
pression ezxp;(e1,...,e,) a deductive program with re-
sult predicate S;, and then add the rule S;(z) — R;(z).
Note that the algebra™ query @ and its corresponding
deductive program @' both interpret subtraction and
negation (resp.) using valid semantics. Thus have the
same result. O

6 From Deduction to Algebra

We have shown in the previous section that IFP —
algebra, and algebra™ queries have equivalent deductive
queries. But what about the other direction?

We show in the following that for every safe deductive
query there exists an equivalent algebra= query. Each
predicate R; in the deductive program is represented
by a corresponding set constant Rf. The translation
process is based on defining for each such predicate
a stmulation function simulating the derivation of the
predicate, and then defining the corresponding constant
to be the fixed point of the function.

Let Ry,..., R,, be the names of the database rela-
tions, and let P be some a safe deductive program that
uses the database relations for defining the derived pred-
icates Pi,...,P,. Let 1 — Pi(z),...,6m — Pi(z) be
the rules used in P for defining the derived predicate F;.
A single derivation of the rules of P; can be represented
by the calculus query Q¢ = {z|3y1, ... ye(d1V.. . Vém)},
(where y ...yr are the free variables,other then z, in
&1,-..,6m). Since every calculus query can be ex-
pressed by the algebra [5], Q¢ has an equivalent algebra
query Q° = exp;(Pf,..., P2, RS, ..., R%). We call exp;
the simulation function of P;.

Clearly, expy,...,exp, simulate one step in the (si-
multaneous) derivation of Py, ..., P, resp. To simulate
the complete valid computation, we define each set P?
to be the fixed point of its corresponding simulation
function exp;, i.e.

Pf = expi(PY,..., P, RS, ..., RE)
Note that exp; is defined by the algebra, thus the pro-
gram defining the sets Pf,..., P? is an algebra™ pro-
gram. For every instantiation for the database relations,
the sets P?® defined by the above equations contain ex-
actly the elements satisfying the corresponding predi-
cates P;. It follows that

Proposition 6.1 Every safe deductive program has an
equivalent algebra™ program.

From the above discussion, and from propositions
(5.4), (6.1), (4.2), and corollary (3.6) we have that

Theorem 6.2 The d.i. deductive language , the safe
deductwe language, the algebra™, and the IFP—algebra™
are equivalent.

The close relationship between the algebras and
deductive programming indicates that algebraic queries
are as hard as deductive ones. Given an element a, and
a program P defining a set P%, we call the problem
of checking whether MEM(a, P%) equals T or F the

membership testing problem.



Proposition 6.3 The membership testing prob-
lem is undecidable for the positive IFP—algebra, and for
the algebra=. Moreover, it remains undecidable even
if we consider only algebra™ programs that have valid
models.

Proof: The proof of the first claim follows immediately
from theorems 4.3 and 6.2 and from the fact that the
problem of checking whether P(a) holds for some predi-
cate P defined by a d.i. deductive program using tuples
and functions is undecidable. For the second claim, re-
call that every IFP — algebra program can be expressed
by an algebra™ program. Since IFP — algebra programs
have valid models, the un-decidability result holds even
if we consider only the portion of the algebra™ that has
valid model. O

7 Conclusions

This paper deals with the question whether the class of
queries expressed by deductive programs with negation
can be expressed in algebraic tools. We present a
language algebra™ that has the same expressive power
as general deduction under valid model semantics. Thus
answer the question positively. The results of this work
can be easily adjusted to capture other semantics for
negation, e.g. the well-founded or the stable-model
semantics, by modifying the definition of the initial valid
model accordingly.
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