
GREO : A Commercial Database Processor

Based on A Pipelined Hardware Sorter

Shinya Fushimi

Information Systems Laboratory

Mitsubishi Electric Co.

5-1-1 Ofuna, Kamakura, Japan

1. Introduction

GREO is an attached database processor developed for

midrange business computers. Since 1989, thousands of

GREO’S have been shipped in the Japanese midrange

market.

GREO is the first commercial product of a high.

speed sorting hardware, or a hardwan sorter. GREO

implements the O(n) time pipelined merge sort algo-

rithm with several enhancements [1]. To fully utilize this

sorting capability, the language processor for GREO

compiles a given query into a sorting-oriented dataflow

graph, which is in turn executed by the hardware sorter

in conjunction with multi-microprocessors.

Another unique aspect of GREO is that it is a com-

mercial product developed in collaboration between a

university and an industry (which are actually authors’

current affiliations). In spite of not a few “academic

flavors” in its architecture, it succeeded in faithfully

meeting practical customers requirements, i.e., improv-

ing performance of a variety of existing (relational and

even non-relational) business applications.

The paper describes both of its technical and prac-

tical aspects. First, the query processing model under-

lying GREO architecture is presented. Its architectural

features are then described. Our experiences on making

research results an actual commercial product are also

reported.

2. Query Processing Overview

The query processing strategy is based on data stream

on”ented processing [2], which is also called pipelined par-

allelism in [3]. That is, a given query is first decomposed

into a set of primitive operations, which are then orga-

nized to form a query processing pipeline. Data read

from disks are di;ected ‘to this p-ip~~ne, where each of

primitives are applied to the data stream in parallel.

Permission to copy without fee all or part of thie material is

grantad provided that tha copiaa are not made or diatributad for

direct commercial advantaga, tha ACM copyright notice and the

title of the publication and ita date appear, and notice is givsn

that copying is by permission of the Association for Computing

Machinery. To copy otharwise, or to republish, requires a fae

and/or specific permission.

SIGMOD 15193 AVt@ington, DC, USA
O 1993 ACM 0.8979 J.~92.~]93/0005 /0449 ...$~ .~o

Masaru Kitsuregawa

Institute of Industrial Science

The University of Tokyo

7-22-1 Roppongi, Tokyo, Japan

Such primitives are regarded as st ages of the pipe, hence

called jilters. For example, the following SQL query:

ing

SELECT Cl, C2 FROM T WHERE Cl <100

ORDER BY C2

is compiled to a three stage pipe:

stage 1 filter: project fields onto Cl, C2

stage 2 filter: select records where Cl< 100

stage 3 filter: sort records by the key:C2.

We can further consider complex queries referenc-

multiple files (e.g., joins), or comprising arithmetic

operations (e.g., aggregations), Thus a query is gener-

ally organized as a tree, or more generally, a graph, of

filters. Multiple number of data streams are activated

and poured along this structure. A datajiow contrvl is

employed to govern the overall execution of a query.

The ideal implementation of this model pursues

O(n) time, or on-the-jly, execution of all kinds of fil-

ters, Because every filter can run on-the-fly if the data

are sorted, O(n) time hardware sorter turns out to be

the key component there.

3. Hardware Architecture

3.1, Structure of GREO Hardware

GREO hardware consists of a hardware sorter and a

data stream processor(Fig.1). The hardware sorter is

devoted to sorting (a sorting jilter), while the data

stream processor is responsible for executing any other

primitives, such as selections, projections, joins, and

arithmetic computations (non-sorting jilters).

Typically, all of records are first directed to the data

stream processor, where filters for selections or projec-

tions are applied on-thefiy. The resultant records are

sent to the sorter. The sorted recoreds are again di-

rected to the data stream processor, and other types

of on-th~fly filters (e.g., aggregations, joins) are per-

formed. The final results are sent back from the data
stream processor. By combining appropriate filters,

GREO provides various types of database functions.

Since it executes all of filters in parallel, it can be con-
sidered a dynamically reconfigurable, multi-stage sub-

segment of the query processing pipeline. A complex

449

http://crossmark.crossref.org/dialog/?doi=10.1145%2F170035.170130&domain=pdf&date_stamp=1993-06-01

I HostMachine I

rlrlDisk Disk

\

\

\
GREO

(one 30x30cmzboard)

DataStreamProcassor

\
HardwareSorter

Ml
: I-th Iooril memory

SE, : I-thSOfiek.ment

Figure 1: Hardware Organization

dataflow graph is executed by cascading these subseg-

ments with multiple GREO ‘s.

3.2. Hardware Sorter

The hardware sorter implements the two-way pipelined

rnerye sort algon’thrn[l][4] [5]. To sort 2n records, n sort-

ing elements {S171 ,..., S17n} are prepared, and con-

nected in a pipeline fashion, S.Ei associates itself with

a local memory of 2i-1 records in size, A set of records

are directed to SE1 one by one, and sorted records are

continuously output from SEn.

The brief sketch of the algorithm is given here.

Each of elements repeats to input two sorted strings,

merge them into one sorted string, and output it to

the next. By overlapping these three stages as much as

possible, we have an algorithmic description of the O(n)
time pipelined merge sort (Fig.2). Far example, the first

sort element SE1 repeatedly inputs a pair of records,

merges them, and outputs a sorted string of 2 records

in length. To do that, it inputs the first record (key:$)

onto its own local memory. Next, it inputs the second

one (key:2) and merges them. Since 8 > 2, the record

with key:8 is then output to the next element SE2. At

the same time, the first record in the next pair (record

with key:l) is input and stored. In the next cycle, the

remaining record (key:2) is output while the next pair

is formed and merged (key:l and key:3). SE1 continues

this process till records are consumed. Other elements

S% L8121113151716141 .. .

s% 18 ,213 ,117 ,516 ,41--”

s% \S ,3,2,117,6,5,41””

S% 18,7, 6,5, 4r 3,2,11””

records input . @lay sorted records output4 +
N log 2 N-1 N

Figure 2: Pipelined Merge Sorting

SEi (i = 2, , ,., n) execute the same procedure except

that the length of strings are doubled aa i increases,

The current GREO implementation incorporates

19 sorting elements in 10 LSI chips with 8MB local

memory capacity in total. When data to be sorted is

larger than its total memory capacity, we first direct en-

tire data to the sorter. The sorter generates a sequence

of 8MB sorted strings. We then merge these strings

by the data stream processor. To offer a buffer area

enough for merge operations, the local memory banks

of the sorter are designed to have dual-port access capa-

bility. Also, the sort;ng element is des;gned to dynamic-

ally tune themselves for variable length and number of

records[5].

3.3. Data Stream Processor

The data stream processor realizes all of non-sorting

operations. It allows parallel executions of multiple non-

sporting filters.

The data strean, processor is just a pool of mi-

croprocessors in reality. To achieve high performance

enough to keep up with the flow of data (i.e., data trans-

fer rate of disks) at reasonable cost, and to make it flex-

ible enough to implement a variety of database requests

(exception handling in Japanese text processing, deeply-

nested predicates, etc.), multiple general-purpose mi-

croprocessors are highly preferable. All of non-sorting

filters are implemented by means of parallel/concurrent

processes on these processors. Even the sorter is encap-

sulated inside some of these processes. upon request,

these processors are dynamically divided and allocated

to each of filters (see the later section).
Although the logical design allows any number of

any type of processors, current GREO incorporates

three MC68020’s as the data stream processor.

4. Software Architecture

4.1. Structure of GREO Software

The layered hierarchy of the software architecture is

shown in Fig.3.

On the host machine to which GREO is attached,

we have four layers. The top layer consists of appli-

cations. Just below the applications layer comes the

450

..,..:

Applications I

Emizlm

GREOScheduler

GREOServer

OpeflransferlClose
...

1~ !~ Resident Processes Filter Processes

Software
on Host

software

I 1
. ..

I GREO Hardware I

Figure 3: Software Organization

so-called middle-ware layer (e.g., SQL processor, the 4

th generation languages, access methods, sorting util-

ity, etc.) that compiles queries to hook database access

requests worthy of directing to GREO. When the OS

running on the host machine detects that GREO is at-

tached, such database requests are sent to the GREO
scheduler. The GREO scheduler is the resource man-

ager for (possibly multiple) GREO(‘s) attached to the

machine; it assigns the required number of GREO’S to

the request and activates the specialized server process,

or the GREO server. The GREO server is responsible

for executing the database request by running GREO’S.

On GREO, we have two layers of software. The

multiprocessor/mult iprocess kernel operating system

called SY underlies any database processing. SY runs on

each of microprocessors, and provides both of message-

based, and lock-baaed interprocessor/interprocess com-

munication primitives as well as process and memory

management. Several parallel processes are activated

on it; some of these processes are made resident to im-

plement 1/0 interface to the host machine. Other pro-

cesses are dynamically created, and execute the specific

database processing in their contexts. The latter set of

processes actually implements the concept of filter, and

is thus called jilter processes.

4.2. Filter Implemental ion

Filter processes are software abstractions of GREO
hardware. Basically, one filter process corresponds to

one database primitive. For example, the selection filter

is in charge of sieving out undesired records from a data

stream, The sorting filter process is devoted to sorting
by utilizing the hardware sorter. To reduce overhead in

interprocess communication bet ween these filters, how-

ever, major filters are integrated into a complex one

(e.g., a selection filter with projection).

When the GREO server starts to execute a request,
it first identifies a set of necessary filters, and issues open

instruction to GREO to activate them. GREO server

then starts data transfer from disks to these processes

by repeating transfer instructions, while the filter pro-

cesses run against this data stream in pipeline fashion.

The execution is finished by the close instruction. This

abstract level interface (open/transfer/close) does not

depend on filters semantics, thus makes GREO highly

flexible and extensible.

Filter processes are also units of SY’S processor al-

location. They are coded so that any number of paral-

lel instances can run consistently. When open is issued,

for each of designated filters, SY allocates the appro-

priate number of processors, and starts identical filter

processes on them.

5. Making It a Commercial Product

In [3], it is suggested that, in cent raat with the ar-

chitecture baaed on a specialized hardware, shared-

nothing multiprocessor architecture by using general-

purpose microprocessors are preferable. Since the hard-

ware sorter, a typical example of a specialized hardware,

is one of major components of GREO, our experiences

and customers evaluation on it may be informative to

database researchers.

5.1. Historical Background

The hardware sorter was originally a part of the former

database machine project at the University of Tokyo[6],

[2]. Our initial motivation to GREO project waa to

make this sorter an actual product in some computer

market. We placed a target on midrange business com-
puters, since the most drastic performance improvement

waa expected there.

When we started the GREO project in 1987, we

first conducted market analysis in Japan. The result

was rather different from those which we had imagined

at the university.

The first observation in the analysis was that the

compatibility of existing business applications was of
great importance; even in the midrange market, hun-

dreds of applications had been used on a machine. Users

had already invested not a little money to develop them,

and could afford to spend no more extra money to the

system. Even if we have had offered very high speed

database machine, no users welcomed it if the machine

required serious rewriting of their applications.

Also observed was that users requirements were f~

cused on user interface, performance, hardware volume,

and cost; no serious requirements on underlying tech-
nology (e.g., no adherence to UNIX). Even they did not

care whether DBMS was relational or not.

Another point we observed in the Japanese

midrange computer market was that batch-oriented pro

451

cessing was not obsolete; users in this market did not

always need an upto-date image of data managed by

on-line, real-time processing, but only wanted to com-

plete transaction processing under rather relaxed time

limitations (e.g., in one day), OLTP usually requires

additional investments, hence they often preferred to

batch processing at night. Since sorting is still a major

bottleneck there, it turned out that the hardware sorter

was much more effective than we had expected.

5.2. Product Design

According to these observations, we began hardware

and software design. What we did first was to give
up several implement at ion alternatives which had been

considered practical reality in an academic world.

For example, because users require midrange com-

puters to occupy less area, GREO should not be a back-

end machine in a separate box, but be an attached pro-

cessor consisting of only a couple of hardware boards.

Also, electric power consumption is serverly limited.

Under these physical limitations, we could not incorp~

rate tens of processors, nor sorting elements with large

storage. After several compromises, we reached a single

30 x 30crn2 board implementation which integrated 3

MC68020’S and 19 sorting elements with 8MB memory,

Also, we could not define new API’s which allow

programs to fully utilize GREO. This is due to severe

applications compatibility; what to be accelerated was

existing applications, not new programs writ ten here

after. Thus, GREO should be transparently accessed

below the applications layer. This result ed in rewriting

not a few middle-ware programs. Although some per-

formance improvement was compromised, this perfect

compatibility was most welcomed by users. Just after

its debut, however, some customers began to request for

programming interface to use GREO exhaustively, In-

stead of defining new API’s for that, we developed the

new optimizing SQL compiler specialized for GREO ex-

ecution.

5.3. Evaluation

Although the ideal implementation (more number of
state-of-the-art microprocessors, more number of sort-
ing chips, more storage capacity, etc.) cannot be re-

alized due to several practical limitations and require-

ments, we might say that GREO hsa been successful.

Customers reported us up to 100 times performance
improvement of actual existing applications. This

means that one-night batch processing can be completed

in a few minutes. This scale of performance improve

ment was highly impressive to users, since this led them

to direct cost savings, such as annihilating extra labor

hours at night, or getting a chance to run new heavy ap-

plications such as strategic business data analysis. This

performance figures also clarified that many users ac-

tually had batch-oriented applications where most of

CPU time waa consumed by sorting and its associated

processing (selections, projections, joins, etc.).

6. Conclusion

In this paper, the query processing strategy and archi-

tectural features of GREO are described. Several aa-

pects from practical viewpoints are also reported.

Summing up our experiences on GREO, GREO
succeeded in providing impressive performance improve-

ment with full compatibility at reasonable cost. Since

batch-type applications are often preferred to in the

Japanese midrange computer market, sorting is of great
importance there. Customers evaluations are GREO is

an actually cost-effective database processor.

To make it a commercial product, many compr~

mises have been done. Much higher performance could

be achieved if we ignore physical limitations by incorpo-

rating more powerful hardware. In commercial aspects,

however, customers major concern should be respected,

We generally agree on the future directions in [3]

that multiprocessor architecture comprising state-of-

the-art general purpose microprocessors is most promis-

ing. Actually, the data stream processor of GREO fol-

lows this direction. We believe, however, some of the

specialized hardware components will be still effective

there. From our five year experiences, the hardware

sorter will be undoubtedly one of such components, An-

other possible candidate may be found around the disk

system [7].

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

Kitsuregawa, M., Yang, W., and Fushimi, S.. Impl~
mentation of LSI Sort Chip for Bimodal Sort Memory.
In Proc. of VLSI-89, pages 285-294, August 1989.

Fushimi, S., Kitsuregawa, M., and Tanaka, H.. An
Overview of the System Software of a Parallel Rela-
tional Database Machine GRACE. In Proc. of l%th
Very Large Databases, pages 209-219, August 1986

DeWitt, D., and Gray, J.. Parallel Database Systems:
The Future of High Performance Database Systems.
C’omm. ACM, 35(6):85-98, 1992

Kitsuregawa, M., Yang, W., and Fushimi, S.. Evalua-
tion of 18.9tage Pipeline Hurdwe.re Sorter. In Prac. af
IWDM-89, pages 20-33, June 1989.

Kitsuregawa, M., Yang, W., Suzuki, T., and Takagi,

M.. Design and Implement ation of High-Speed Pipeline

Merge Sorter with Run Length Tuning Mechanism. In

Proc. of IWDM-87, pages 144-157, June 1987.

Kitsuregawa, M., Tanaka, H., and Moto-oka, M.. Ap

plication of Hash to Database Machine and Its Archi-

tecture, New Generation Computing, 1(1):63-74, 1983.

Kitsuregawa, M., Nakano, M., and Takagi, M.. Perfor-

mance Evaluation of Functional Disk System. Proc. of
7-th Int’/ Conf. on Data Engineering, pages 416-425,

April 1991

452

