
ROMAN-9X: A TECHNIQUE FOR
REPRESENTING OBJECT MODELS IN Ada 9X NOTATION

Gary J. Cernosek
Fastrak Training Inc.

2224 Bay Area Blvd., M/C 6-W
Houston, TX 77058

(713) 280-4768
cernosek@source .asset.com

Abstract

An object model describes the objects and classes in a
system and their relationships among one another. When
the desired implementation language is Ada 83, the software
designer cannot directly implement the inheritance
relationships of the model since the language dots not
provide sufficient features for doing so. Ada 9X will
provide, among other things, direct support for single
inheritamx, making the task of representing object models
much easier. The purpose of this paper is to present a
technique for Representing Object Models in A& 9X
Notation (I?O MAN-9X). An example object model with
single inheritance is used to illustrate the technique,
demonstrating how tagged types can be used in conjunction
with child library units. A set of standard naming
conventions is also presented as part of a canonical model
to use for representing classes and single inheritance
hierarchic in general.

1. Introduction

Many object-oriented development methods have been
defined and are now in wide-spread use [e.g., Rumbaugh, et
al, 1991; Coad and Yourdon, 1991~b; Shlaer and Mellor,
1*, Booth, 1991; Wirfs-Brock, et d, 1990]. AhhOUf#t

the terminology still varies somewhat across different
methods, each method includes the notion of an object
model as one of its artifacts. An object model describes the
objects and classes in a system and their relationships
among one another ~nmbaugh, et al, 1991]. While the
notation used to build object models does vary more
noticeably across different methods, the resulting
descriptions are largely independent of any particular

Pro_ng language or database implementation.

Several authots have developed techniques for representing
object models in the Ada language [e.g., Atkinson, 1991;
Beech, 1983,87, 91; Coad aud Yourdon, 19911x Meyer,
l=, Rumbaugh, et al, 1991; Seidewitz and Stark, 1992].

PemdAO. t. copy WM..{ f- all . . pat of O& nlaterIal b *-*A
provided that the ccpies are not made or distributed for direct commercial
advantage, the ACM qyrigbt notice ad the title of the publication and its
date appear, and notice is given that copying is by pemdssim of the
Association for Computing Machfnery. To copy otherwise or republish,
I-equfres a fee and/Or specific P.mnfmim.

~1993 ACM 0-89791-621-2 /93/0009--0385 1.50

Ada has indeed been a key technology in spurring the
evolution and growth of Object-Otieuted Design (OOD)
methods over the past ten years. The language directly
supports and enforces the principles of abstraction,
information hiding, and encapsulation, all of which arc key
to any “object-based” progr amrning language.

However, the current version of Ada, known as Ada 83,
lacks direct support for inheritance and dynamic
polymorphism, two additional features required for any
language to be considered a true “object-oriented”
programming language (OOPL) [Cardelli and Wegner,

198SJ. This de!iaency has forced Ada software designers to
develop special implementation techniques that contrive the
representation of these aspects of an object model. The
absence of inheritance alone has become most impacting to
the Ada community since the ability to generalize and
sp&ialiu classes is now an integral part of most 00
analysis and design methods. Consequently, the many
strengths of Ada as a whole have been forsaken by the
overriding interest in using a more true 00PL, the most
notable being C++.

The revision to Ada 83, currently referred to as Ada 9X,
includes features that directly support single inheritance and
dynamic polymoqhism. These features promote Ada to the
status of a true OWL. l%e revised language goes further
to improve on its already rich set of design structuring
mechanisms, making Ada even more suitable for larg~scale
00D efforts. The new features of A& 9X, combined with
those already well established in Ada 83, will enable
software designers to represent object models in new and
mo~ effective ways.

The purpose of this paper is to present a technique for
Representing Object Models in Ada 9X Notation
(ROMAN-9X). The paper builds on well-established 00D
methods that have evolved with A&83 over the past ten
years. An example object model with single inheritance is
used to illustrate the technique, demonstrating how tagged
types can be used in conjunction with child library units.
A set of standard naming conventions is also proposed as
part of a canonical model to use for representing classes and
single inheritance hierarchies in general.

385

http://crossmark.crossref.org/dialog/?doi=10.1145%2F170657.170764&domain=pdf&date_stamp=1993-10-01

2. Technical Foundation

A great deal of object-oriented literature exists from which
to base a paper such as this. Our introduction ated several
leading works in the field. However, our paper draws
primarily on three particular resources: Object-Oriented
Mo&ling and Design ~umbaugh, et al, 1991], Object-
Oriented Design With Applications @inch, 1991], and
Object-Oriented Reuse, Concurrency, and Distribution - An

Ada-Based Approach [Atkinson, 1991]. All three texts
addreiss 00 concepts and techniques for representing them in
Ada 83. While being very complementary in many
respects, each source provides discriminating strengths in
selective areas.

Rumbaugh et al are particularly attentive to requirements
analysis, an area still lacking in many 00 methods. Their
Object Modeling Technique (OMT) also provides for a
simple graphical notation with which to work, and has in
fact been adopted for this paper. Most notable from Booth
is his presentation on 00 concepts and the depth at which
he addresses object-oriented design (proper). Booth also
brings forth his legacy of previous works that address 00D
with Ada 83 ~ooch, 1983, 87]. The Atkinson book
provides an even stronger treatment of mapping 00
concepts into Ada 83. Atkinson’s involvement with the
DRAOOON language D Maio et aZ, 1989] and his recent
(though unpublished) work with Ada 9X are largely

responsible for the namingandstructuringtechniques used
in this paper.

At the time of writing (July 1993). the definition of Ada
9X itself remains in the process of ANSI and ISO
standardization. This paper is based on the latest
documentation available. The Ada 9X Mapping Documents
~ntermetics, 1991, 92] aud Introducing Ada 9X Ekrnes,
1993] served as our initial tutorials into the lauguage.
Drafts of the Adu 9X Reference Miznual l?ntermetrics, 1993]
were just becoming available but were not consulted in
detail. Note, however, that all Ada 9X source code
presented in this paper has been compiled by one of the
testing compilers in use with the Ada 9X Project.
Therefore, our code examples should be free of syntax
errors, notwithstanding further changes in the language
defhition.

Finally, since Ada 9X is very upward-compatible with Ada
83, many featnrea of the two languages are identical in both
syntax and semantics. For such features, we will often
reference “Ada” without qualiilcation. For featnrea that are
new or modifkd for Ada 9X, we will specify the particular
version of the language.

3. Reference Object Model

Figure 1 presents the object model that will be used as the
~is for frustrating ourtechuique throughout this paper.

B
Motor VeMcle

weight
wheels = 4
color
s ed=O
drive (speed)
stop

4I
I I

ElCar
trunk space

{wheels =4} 4
n

Convertible

movement mechanism = manual

1

Truck
has cab? = false
payfoad capacity
payload = O
add payload(weight)

Figure 1. Reference object model.

386

The reference model depicts a single inheritance hierarchy of
different kinds of motor vehicles. Note that we adopt
Rumbaugh’s Object Modeling Technique for our notation.
We now highlight the features of OMT that will be
addressed in this paper, italicizing key terminology.

Each box in the diagram models a class of objects identified
in our example problem domain. Within each box, the
centered and bolded identifier designates the class nume.
Partitioned in each box are sections for the class’sjeatzfres,
which are divided into a set of attributes and a set of
operations. Some attributes are defined to have initial or
&fault vaks. A constrm”nt is shown in braces next to the
Car class denoting that all Car instances must have four
wheels. Some of the operations are defined with urguments
to be exchanged during messagepassing.

The triangles attached to the lines connecting the classes
denote inheritance relationships. The classes Car and Truck
are called subclasses of the Motor Vehicle superclass.
Since Motor Vehicle has no superclass of its own, it is
refereed to as rhe root class of the inheriumce hierarchy.

Figure 2 depicts several actual objects denoted by the
rounded boxes. An object is an instance of a class; the
word instance can be used interchangeably with object in
this context @300ch, 1991]. When necessary, Rumbaugh
uses the term object instance to distinguish it from object
ck7ss.

Each instance identifies its corresponding class name in
bold type and in parentheses at the top of the box. A name
is given to the instance just below the class name. All
attributes defhed for each instance are given initial values
to be provided upon object creation. Note the effect of
inheritance Instances of subclasses implicitly take on all
of the attributes defined by the subclass itself, plus those
defined by ita superclass. While operations are also
inherited by subclasses in the same manner, they are not
shown on fitance diagrams.

.
~Motor Vehicle)

my vehicle

weight = 3600 Ibs.
wheels = 6
color = white
speed = Om.p.h. .

/
(Truck)
my truck

weight = 7200 Ibs.
wheels = 8
color = blue
speed = Om.p.h.
has cab? = false
payload capacity = 200
qaytoad = O

The remaining sections of this paper illustrate and explain
how our reference object model is represented in Ada 9X
notation using the ROMAN-9X technique.

4. The Technique

We present ROW-9X in three stages. We first
demonstmte how a root-level class can be implemented with
a specialized abstract data type. We then illustrate how
ordinary clients (users) of root classes create objects and
send messages as a result of the teclmique. Lastly we show
how subclasses and their clients are represented, introducing
some of the new OOP features of Ada 9X in the process.
Throughout our discussions, we will continue to italicize
key terminology upon first usage.

4.1 Representing Root Classes

Figure 3 begins our example by showing the complete
package spccifkation that represents our Motor Vehicle root
class. Upon examination, we see that code must be
generated to represent both explicit and impliat features of
an object class. The following subsections explain how
each of these features maps into our example Ada 9X code.

4.1.1 Mapping Object Class Namles

Fkst note that Ada 9X does not introduca a new “class”
construct, per se. In fact, we represent a root class from an
objm model in basically the same way as we would in Ada
83: by defining a private type in a package. Such a
package is, of course. the Ada implementation of an
Abstract Data Type (ADT) aud is the basis for many 00D
methods targeted to Ada S3.

Our technique maps the object class name “Motor Vehicle”
directly to a correapbnding library package name to enforce
a “class= module” semantics. An ~ package structured
in this way is thus referred to as a class package. While all
class packages are considered to be ~s, not all ADTs
will necessarily be class packages; a chtss package must be
traceable to a corresponding object class.

((cat’)
my car

weight = 3400 Ibs.
wheels = 4

color = blue
speed = Om.p.h.

@nk space= 90 cu. fl

(Convertible)
my convertible

weight = 2600 Ibs.
wheels = 4
color = red
speed = Om.p.h.
trunk space =50 cu. ft.
movement mechanism = DOWI

&opposition = up ‘

Figure 2. Example instances of classes from the reference object mo(del.

3S7

package Motor_Vehicle is

-- Standard class type declaration for a root class
type Object is tagged limited private;

-- User-defined attribute types
type Vehicle_Weight is range 0..20_OOO; -- lbs.
type Wheel_Count is range 2..18;
type Colors is (White, Red, Blue, Black);
type Velocity is range 0..100; -- m.p.h.

-- Constructor operation
procedure Create (Instance : in out Object;

Weight : in Vehicle_Weight;
Color : in Colors;
Wheels : in Wheel_Count := 4);

-- Modifier operations
procedure Drive (Instance: in out Object; Speed: in Velocity);
procedure Stop (Instance: in out Object);

-- Selector operations
function Speed (Instance: in Object) return Velocity;

private

type Object is tagged
record

Weight : Vehicle_Weight;

Wheels : Wheel_Count;
Color : Colors;
Speed : Velocity := O;

end record;

end Motor_Vehicle;

Figure 3. Representation ofan object model root class.

‘l%eprivatetypein aclasspackagerepresents the type
implicitly defined by the corresponding objectmlass.
Hence,weteferto theprivatetypeas thechsstype~eyer,
l~,Atkinson,1991]. Wenamethistype’Object’’inour
example, andin fact will doso foreve;vclm~ package.

Client references to different class types will never be
ambiguous since such references will always beofthe
form

class_package_name .Object

This convention eliminates theneed to contrive distinct
names for both a class package and its private type, a
practice that often results in two names artifieiall y
distinguishedbyeitherpluralization orabbreviation. Thus,
ourtechniqueenforcea a“elaas=type” semantiesaswell.

Sornefurtherdiseussionontenninologyisinorder. While
many object model terms map unambiguously into
corresponding Ada 9X terms, some do not. The most

notable in this paper is the term “class.” In an object
model, a class defines a set of objects that share a common
structumand behavior. In both A&83and9X, a~takes
on this meaning, defining a set of vahm and a set of
operations on those values. A private type hides the
representation of a type and thus enforces a cohesion
between the values and operations. Ada 9X then defines a
type ck?.rs to be a “set of types” whose members include a
root type ad all of the types derived directly and indirectly
from that root type.1 The Ada 9X notion of type class
corresponds more to an “inheritance hierarchy” in object
modeling terminology.

For the purposes of this paper, unqualified use of the term
“class” will refer to a class from aa object model. The term

1 Ada 9X introduces a new attribute T’CLASS to denote the
entire set of types meted at the type T.

388

“class package” will be used to denote our Ada 9X

representation of such a class. We will use Rumbaugh’s
notion of “object class” when the context is not clear.

4.1.2 Mapping Attribute Features

The full representation for the class type will always be
implemented ‘in the private part of the package as a record
type. The names used for attributes in the object model
map directly to the components of this record structure.
These record components define the state of objects decked
of the class type. Note that each attribute must be declared
with an associated type of its own. If a type name is
defkd for an attribute in the object model, then that name
is used as the attribute type name. Otherwise, an

-ate type name must be conceived.

While Ada’s predefine types are available to use, our
technique generally takes advantage of the language’s rich
data typing facilities and declarea appropriate userdeiined
types for attributes. Since such types are also needed to
specify the parameter and result profdes of operations, user-
defiied attribute types are necessarily declared in the visible
part of the class package. Note that as in [Atkinson, 1991],
we make the distinction between a “class type,” which
denotes the pfivate type associated with a class package, and
an ordinary “data type,” which is used to de!lne the structme
of attributes and Other &mtml forms of data.

Our technique provides two means by which initial or
default values on attributes maybe represented. When all
instances of a class are to be created with the same initial
value for a particular attribute, that attribute is given a
default value in its corresponding record component
declaration. In Figure 3, we see that all instances of Motor
Vehicles are to begin with their Speed attribute inititdized
to O. However, for an attribute whose initial value may
vary from instance to instance, the initialization must be
explicitly performed by a constructor operation. The
attributes Weight, Color, and wheels fall into this
category. Note that a default initialintion may still be
provided for such athibutes by simply specifying thedefatdt
value in the constructor’s parameter list. This is done with
the wheels attribute in our example. We discuss more on
constructor and other operations in our next subsection.

4.1.3 Mapping Operation Features

Operation names in an object model map directly to
subprograms declared in the visible part of the
corresponding class package. In Figure 3, we see that the
operations drive and stop are represented as Ada
procedures. By virtue of the private type, normal clients of
a class package must call on subprograms to access or
manipulate the components of the object record.

Note that we choose to implement class types as limited
private. The non-limited form would allow the Pre&ilned

assignment and equality opemtions to be performed between
two instances of the type. However, such operations may
not always be meaningful from an application perspective.
The limited form requires that even assigrmnent and equality
operations be explicitly defined in the class package
(assuming that such operations are indeed needed). This
approach ensures that the behavior of corresponding objects
is precisely that which is intended by the class package
designs.

An important characteristic of an object model is that a
class imdicitly defines the target object of each operation.

It is understood that a call to an operation will be preceded
by a specific object instance name. Thus, when a pammeter
and result profile is specified for an ope~ation, a target
object argument is never included. In Ada, however, a class
package is not a type itself but merely a container for one.
A class type declares only the attributes for the object class;
the operations must be declared in the same class package,
but are still syntactically separated from the class type.
This requires us to exdicitly include n target object

parameter for all operations on the class type2.

Therefore, each operation representtxi using ROMAN-9X
will contain at least one argument in its parameter profile,
that being the one indicating which particular object is to
be acted upon by the operation’s method (implementation).
By convention, we will always place this argument first in
the parameter lis~ and we will always name the formal

parameter‘Instance.” Note that the Instance argument is
analogous to the pseudovariable sel~uscd in Smalltalk
m&.hods and to the impliat argument this used in C++
methods.

By convention, we organim the operations of a class into
several of the categories suggested in ~ooch, 1991], using
comments as shown in Figure 3. A class may define
constructors to initialize objects, modifiers to change the
state of objects, and selectors to simply read the values of
an object’s attributes.s

Note that an object model may not identify all of the
operations that are needed for a complete class
representation. For example, our referenca object model
specifies ord y two (modifier) operations. The constructors

2

3

Any of severat other Ada features could be used to represent

classes that operate on an implicit target object, including
generic abstract state machines, task types, and, from Ada

9X, protected record types. However,, none of these

constructs readily support inheritance and other 00P
features. This issue is addressed in detail in [Atkinson and
Weller, 1993].

Note that [Booth, 1991] also identifies destructors and
iferators as categories of operations, but we do not address
the representation of such operations in this paper.

389

Object Model Element ROMAN-9X Mapping Rule to Ada 9X Code
1

Class name Class package name

(implied class type) type Object is tagged limited private;

Attribute names Object record component names

Attribute type names Object record component type names (public type declarations will generally
be needed foruserdefbd attribute types)

Initial and default attribute values 1) Initial valuca on object record components, audlor
2) Parameters (w/optional defaults) on constructor operations

operation names Class package subprogram names

(implied target object for operations) Instance : in [out] Object

Operation argument names Corresponding subprogram parameter names (use attribute names and
corresponding types when appropriate)

(implied constructor operations) procedure Create (Instance: in out Object; . . .);

Operation return type names Corresponding function return type names (use attribute type names when
appropriate)

(implied direct selector operations for reading function <attr-name> (Instance: in Object)

attributes) return <attr-type>;

Table 1. Summary of mapping technique for representing root classes in Ada 9X.

and selectors for an object class are often suppressed from
au object model. Details of parameter and result profiles
may also be omitted. Deferring such information is very
common and quite often appropriate, especially during the
early stages of a system’s lifecycle. However, the class

padmge must ultimately incmporate all of the various kinds
of operations needed to complete the representation.

As stated earlier, aa initial value for au attribute may be
defined along with its record component declaration.
However, since the record type is private, any initialization
to be performed by a client must take place via a
constructor operation. In these cases, a constructor ~ be

specified in the daas package regardless of whether its
object class calls for one or not. By convention. all
constructor operations will be named ‘create” and will be
implemented as pmcedures4

We also discussed earlier how attribute names from an
object class map directly to components in the
corresponding objeet record. llmw same names are used as
formaI parameter names whenever an attribute needs to be
included in an operation’s parameter profile. These attribute
names can also be used whenever simple selector operations

are needed, as shown for the Speed attribute in F@re 3.
Note that our technique does not call for automatically
generating selector fimctions for each attribute (although
doing so would be very straight-forward and systematic).
We introduce selectors in this paper only when our client
examples dcznonstrate the need.

The only aspect of our Motor Vehicle ADT that differs
from one which might be implemented in Ada 83 is the
designation of tagged for the private type dedaration. Ada
9X intrmluces tagged types as its means for extending
derived types with additional components, paving the way
for a single inheritance mechanism. Tagged types also
instruct the compiler to automatically y encode type,
information into objects dedared from them, thus providing
the means to implement dynamic binding of methods to
messages. We will discuss the effects of tagged types later
in more detail when we address the representation of
inheritance.

The naming conventions described in this section are
intended to help map object models more directly and
systematical y to their code representations. Adhering to
these conventions significantly reduces the number of
unique identifiers that must otherwise be conceived. Table
1 summarizes the mapping technique and naming
conventions used in ROMAN-9X.

4 We will discuss why procedures are used over functions in

Section 4.2.

390

package body Motor_Vehi.cle is

procedure Create (Instance : in out Object;
Weight : in Vehicle_Weight;
Color : in Colors;
Wheels : in Wheel_Count := 4) is

begin
Instance.Weight := Weight;
Instance.Color := Color;

Instance.Wheels := Wheels;
-- Speed attribute has already been initialized to the default value’
.- apecified in the object record declaration.

end Create;

procedure Drive (Instance: in out Object; Speed: in Velocity) is
begin

Instance.Speed := Speed;
end Drive;

procedure Stop (Instance: in out Object) is
begin

Instance.Speed := O;
end Stop;

function Speed (Instance: in Object) return Velocity is
begin

return Instance.Speed;
end Speed;

end Motor_Vehicle;

Figure 4. Implementation of a root class body.

Whileafull treatment ofobject-oriented progranmtingin
Ada9Xisoutofthe scopeofthispaper, itiseritical-tiat
the basic implementation of classes represented and
understood. Figure 4 presents the body of the Motor
Vehicleclasspackage whereweseethemethod foreachof
its operations implemented. Wewilldiscussmoreonclass
implementations later when welook at how subclasses
Specializeinherited operations.

4.2 Representing Root Class Clientship

Clientship refers to the fundamental relationship between
objects andclasses [Atkinson, 1991]. Ac/ientpmvides the
place where object instances are created and where
operations areinvokedonthose instances. Theclassfrom
whichanobject instanceisdeclared iscalledtheserver for
thatobject. ~iammybwmid=titie’tia’’ofsma
classesandrtrethus responsibleforthe “applicationcode” of
anobject-oriented system.

In Adiz an “object” refers to anything that has value
associated with it. In most cases, an Ada object is an
instauceof some type. Ourteehuique further constrains the

notion of an “objecl” to being an instance of a private type.

Objects are never declared within their own class package,
but rather in some other program unit that depends on that
class package (which could itself be another (class package).
Thus, a client maybe mpreaented in Ada by tmy library unit
that speci!les a class package in its context clause.

F@ue 5 presents a simple program that serves as a client
for the root class package previously shown. We see that
the ‘with’ statement establishes visibility to the class
package, affording the client access to the public
declarations of package. The object My_-Vehic le is
declared as an instance of the Motor Vehicle class type.
This object declaration performs three important functions:

1.

2.

3.

Allocates the memory needed for an instance of the
class type,

Initializes each attribute of the object record that has
an initial value specified, aud

Establishes a refenmce for the object (a variable name
in this case).

391

with Motor_Vehicle, Text_IO;
procedure Motor_Vehicle_Client is

My_Vehicle: Motor_Vehicle.Object; -- my attributes declared with
-- defaults now have those values.

Current_Speed : Motor_Vehicle.Velocity := O;

begin

Motor_Vehicle.Create (Instance => My_Vehicle,
Weight => 3800,
wheels => 6,
Color => Motor Vehicle.white);

-- The vehicle’s speed was initialized to a value of O m.p.h. upon
-- declaration of the object above.

-- Begin driving at 55 m.p.h.
Motor_Vehicle.Drive (My_Vehicle, Speed => 55);

-- Print out current speed
Current_Speed := Motor_Vehicle .Speed(My_Vehicle);
Text_IO.Put (“The current speed is”);
Text_IO.Put (Motor_Vehicle.Velocity’IMAGE(Current_Speed));
Text_IO.Put_Line (“ m.p.h.”);

-- Stop the vehicle
Motor_Vehicle.Stop (My_Vehicle);

end Motor_Vehicle_Client;

Figure 5. Client code utilizing a root class package.

Notethatanyobject recordeomponent deelaredwithouta
default will have an undefined value upon object

declarations Whilesyntaeticdlyailowed,any operations
attempted onobjeets with undefined attribute values are
teclmieallyerroneous and thus subjeettounpredictable
behavior. Asdscmd ~fi=for tiae~~, tiedms
designer~provi& aeonstruetorforclient initialimtion

ofsuchattributes. Ofeourse,wecxmldbaveourtechnique
simplymquimthat ~objectreeordeomponents begiveaa

defaukinitialvalue. However,choosingadefauhvaluecan
inmanycasesbe quite arbitrary, andinfaet,sometimea be
outright misleading, Soasageneralrtde(notenforeeable
by theeompiler), eaeh attribute&fmedin anobjectelass
must either begivenaninitial valueinits objectnxxxd
declaration, orbe ineluded inthe pammeter profile ofa
eonstructoroperation.

5 Ada’s only exception to this is that access objects are

automatically initialized to nul 1.

Unfortunately, A& 9X doea not provide for automatic
constructor invocations.G Thus, clients are themselve9
maponsible for ensuring that a constructor is called before
any other operation. It would be ideal to perform the
initialization immediately upon declaring the object.
Normally this could be done by specifying theconstrnctor

em ~ af~don subprogram and calling it as such to
initialize the object. However, since we declare class types
as limited private, assignment is not allowed, and thus,

immediate initialimticm at objeet declaration time (even via
a function call) is not possible. This is why we must
declare all comtmetor operations as procedure subprognuns,

Once an objw instance is created and initialized, we can
send messages to it. In Ad messages are sent to objects
simply by calling on the normal operations defined for the
objeet’s type in the corresponding class package. Since the
subprograms to be called are declared in a library unit,
references to them are preceded by their enclosing package

6 Ada 9X does address the notion of initialization and
!lnakadon, but only for task and protected objects.

392

name. Our naming conventions have thus resulted in a
message passing syntax that takes on the form

class_name. oparatior_name (target_instaace,
otll=~ameters) :

Note the effect of the explicit target objecc Each message
sent must expliatiy indicate which particular object is to be
acted upon. See Figure 5 for examples of message passing.

We need to make a few remarks regarding the identity
semantics of objects. In our Motor Vehicle Client, the
object declaration for My_Vehi c le allocates the actual
memory that is to be used for the instance. Objects such as
this are said to exhibit wpy semantics in that a copy of the
actual object record structure is created upon each object
declaration. We could alternatively include an across type
declaration in the class package that designates the class
type

type Reference is access Object;

Instances of this access type (which maybe referred to as
instance variables) would then be used to reference instances
of the actual class type. The resulting reference semantics
enables the use of dynamic memory allocation and other
00P features.

The meaning of assignment and equality is obviously quite
different when using reference semantics. An assignment
between two instance variables aeates an afias, resulting in
two references to the same object. The equality operation
tests to see if two instance variables are indeed referring to
the same object. Using both copy and reference semantics
within the same context can be quite confusing if not

P-Y manag~

Further exploration of reference semantics am become quite
complex very quickly. So for simplicity, all objects created
in this paper will exhibit copy semantics.

4.3 Representing Subclasses and
Inheritance

A subclass is a specialized version of its superclass (also
called its parent class). Inheritance is the mechanism that
allows us to create a subclass by specifying onIy the
differences between it and its superclass. One of the key
benefits of creating subclasses via inheritamx is that the
original superclass need not be modified in the process.
This allows software components to be very reusable and
extedable.

As was briefly mentioned earlier, tagged types provide the
means for representing single inheritance in Ada 9X.
However, in order to properly modularize each tagged type,
we will introduce another new feature of the language, child
library units. Figure 6 illustrates how a subclass package

can be constructed by declaring anew tagged type within a
child library unit.

Note how the package name is expanded fior child library
units, depicting the parent-child hierarchy. (Mild units offer
significant control over the visibility between packages, and
are in fact quite instrumental to our technique. However,
we will first address the inner workings of our subclass
package and explore the visibility characteristics of child
units later in detail.

4.3.1 Inheriting Superclass Fealtures

Ada 9X supports inheritanm through the facility of derived

types. A derived type has the effect of maldng a “copy” of
another type (called the parent type). We see in Figure 6
that the Tmck package derives its class type from that of
the Motor Vehicle. Thus, the same record structure defined
for Motor Vehicles is implicitly redeclared for Tmcks, but
as a distinct type of its own.

One of Ada’s fundamental notions is that a type defines

both a set of values @a set of operations. Thus, when a

type is “copied” via derivation, the operations already
defined for the parent type are copied as welll. That is, they
are implicitly redeclared and made type compatible with the
derived type. In our subclass example, all of the operations
on Motor Vehicles (Create, Drive, Stop, and Speed)
automatically become callable by Tmck clients, as if they
were all respecified at the place of the type dcxivation.

Of’’koune, simply seating a “copy” of a superchiss package
in this way is of little use. The main purpose of

inheritance is to specialize the features defined by a
superclass. The subclass that results is in every way as
capable as its parent, but generally even more so.
Specialization is be accomplished by extending or
modifying inherited features. The next few subsections
diSCUSShow ROMAN-9X rCp~S~tS VSliOUS kinds Of class
specializwion.

4.3.2 Adding New Attributes

One of the most common applications of inheritance is to
extend the set of attributes defined for an object class.
Simple type derivation has always been available in Ada S3
but has had little usefulness because of its inability to add
new components to the parent data structure. Ada 9X has
solved this problem with a natural extension to the standard
type derivation scheme.

If a type k dcxived from a taggtzi type,thenthe derived type
may readily “extend” the parent structure ‘with additional
components. Note that a tagged type must be a record type
(or a private type whose implementation is a record type).
Any type derived from a tagged type implidl y becomes a

tagged type as well.

393

package Motor_Vehicle.Truck is -- with Motor_Vehicle; is implicit

-- Derived type declaration to inherit Motor Vehicle features
type Object is new Motor_Vehicle.Object with private;

-- All operations defined in the Jlotor Vehicle superclass have been
-- inherited and are thus implicitly declared in this subclass package.
-- These inherited operations may be directly invoked by clients of the
-- Truck class on instances of this new class type.

-- New attribute types
subtype Payloads is Vehicle_Weight range 0..5_OOO; -- Ibs.

-- Specialized constructor for Trucks (becomes overloaded with inherited
-- Create procedure)
procedure Create (Instance : in out Object; -- type declaration:

Weight : in Vehicle_Weight; -- from parent
Color : in Colors; -- from parent
Payload_Capacity : in Payloads; -- from child
Has_Cab : in Boolean := False; -- predefine
Wheels : in Wheel_Count := 4) ; -- from parent

-- Note that two new attributes have been added as extra parameters. Also

-- note that visibility to inherited attribute types is direct.

-- New modifiers
procedure Add_Payload (Instance : in out Object; Weight : in Payloads);

-- New selectors
function Payload (Instance : in Object) return Payloads;

private

type Object is new Motor_Vehicle.Object with
record

Has_Cab : Boolean;
Payload_Capacity : Payloads;
Payload : Payloads := O;

end record;

-- Now instances of Motor_Vehicle.Truck.Object will have 7 attributes,
-- the 4 that are defined for any motor vehicle, plus these 3.

end Motor_Vehicle.Truck;

Figure 6. Representation ofan object model subclass.

Inordertoenforce thesameencapsulation asthatprovided
for the Motor Vehicle class package, we defer theactual
typeextension totheprivatepart ofthepackage. Therewe
see that we need only to specify the new attributes for
Trucks,knowing thatthoseinherited by thetypederivation
will beimplicitly created upon object declaration. Thus,
instances of the Truck class type will contain the original
four attributes defined for Motor Vehicles, plus the three
newonesadded hereforTrucks.

4.3.3 Adding New Operations

New operations defined in a subclass enrich the behavior
already inherited from its parent. For example, our
referenceobjectrnodel requiresaspecialopemtion foradding
apayloadtoatruck. We thus declare a corresponding
subprogram in our subclass package. While not specified
intheobjeclmodel ,thepackagealso declares anew selector
operation for reading the newly added payload attribute

394

value. These new operations combine with those inherited

to forma composite behavior that is (virtually) structured

in one place.

4.3.4 Specializing Inherited Operations

Sometimes a subclass doea not need to actually add a new
operation but to rather provide a more specialized version of
an inherited one. For example, the Create operation for
Motor Vehicles has been inherited by the Truck class
package and is therefore directly callable by Truck clients
without respecification. However, three new athibutes have
been added for Trucks, two of which need client
initialization. We could simply define another constructor,
one that initializes only the new attributes. But this
solution would require a client to make multiple constructor
caUs to complete an object initialization.

Therefore, we declare a specialized constructor, one that will
perform all of the required initialization in a single call.
Note how the constructor operation has been respecified
with the same subprogram name, but with two additional
parameters needed for initializing Truck instances. This
technique is an example of overloading an inherited
operation. Such overloading is very common in Ada and
can be used for ~ operation so long as the compiler can

unambiguously distinguish one call from another. This
distinction is made by declaring each overloaded operation
with a unique parameter and result profile. So long as two
profiles differ by type, number, or order, the profiles are
considered unique. Note that differencca in formal parameter
name, mode, subtype indication, or default value cannot be

used as the basis for overloading operations.

A subclass package will always end up overloading its
inherited constructors whenever it needs to provide for a
different client initialization protocol. In the case of the
Truck subclass, we need to initialize the newly added
attributes, and thus must add two new parameters to the
original constructor. We will latex see that there are other
situations where a specialize constructor is needed as well.

It is important to realize that overloading an inherited
operation does not modify or hide the original operation in
any way. In the example shown in Figure 6, ~ versions

of Create are visible to Truck clients —one resulting from
the type derivation, and one from the overloading. Client
calls made. to “Create” are (in this case) statically resolved
by the compiler, and are thus unambiguous.

However, a problem arises in our example if we specify a
default value for ~ of the newly added attributes. In this

case, a call to Create is ambiguous because the compiler
cannot determine whether the client wants to call the
specialized Create with its defaults, or the inherited
czmstructor that does not have the extra parameters in the
first place. Fortunate y, this error is detectable by the
compiler. However, it still presents an issue in our

technique. We could change the name of the operatiom but
that would be inconsistent with our naming convention.
Alternatively, we could simply live with the restriction that
disallows placement of defaults on 4 additional parametem

of an overloaded inherited operation.

But the red problem here is that we redly do not want
Truck clients to call the inherited constructor in the first
place. Doing so would result in an incomplete
initialization of the Truck attibutes and a generally
unpredictable subsequent behavior. So while we fully
intend for clients to call on the specialized version of the
const.mctor, simply overloading the inherited operation
cannot prohibit the client from invoking the inherited
version.

Had the compiler found the new Create operation declared
with the same txmnneter mofile, the new operation would

have overridden the inherited one, maskiq~ its visibility
from Truck clients. A subclass may choose to override an
inherited operation whenever it needs to redefine the method
with a diffemmt (but hopefully related) implementation. But
in this case, such overriding would rmt allow for
initializing the new attributea, and thus does not present a
solution.

What we really need in cases such as this is to employ
melhod restriction [Atkinson, 1991]. This would enable us
to completely remove the inherited Create aperation from
the subclass package protocol. In doing this, the
speeialimd constructor would no longer be overloaded with
the inherited one, and thus would be the only constructor
presented to Truck clients. Removing the inherited version
would also remove the limitation on new parameter defaults
described earlier. Method restriction is thus very desirable
in casea like this where it is erroneous to call on certain
inherited operations.

Unfortunately, Ada 9X does not provide for removing
inherited operations, so care must be taken on the part of
subclass clients to call on the correct constmctor.
Alternatively, there is a way that one could approximate the
effect of method restriction We would still overload the
inherited constructor as before, but would override it as
well, Instead of implementing the overridden version as a
real constructor, it would act more as an “error trap”
operation. Its body would simply raise an emcption, such
as “Constructor_Error,” indicating that the wrong
constructor was called.

4.3.5 Delegating to Parent Operations

Figure 7 presents the body of our subclass package and
illustrates an important technique for implementing
specialized operations. We show how the Create operation
&legu$a part of the construction job to the Motor Vehicle
parent class. A special type conversion for tagged types is
performed, called a view conversion, whereby the subclass

395

instan~ is made type compatible with the superclass type.
The pammeters initializing the inherited attributes are
simply passed down through the delegation. New attributes
are then locally initialized. It is very common for a
specialized constructor (either overloaded or overridden) to
call upon its parent class to initialize inherited attributes.
In fact, doing so avoids redundant code development and
preserves the semantics of constructors that maybe further
spcciabd down the inheritance hierarchy.

The reader might wonder why we chose not to simply
invoke the inherited version of the parent’s Create operation
for the delegation. After all, it is directly visible and would

certainly result in a simpler syntax. But a problem arises if
we later decide to override the inherited Create procedure.
Doing so would mask the parent constructor and divert the
delegation to the locally declared version, which might or
might not be appropriate. But the reaI danger lies in the
case where the inherited constructor is solely ovenidden aud
not overloaded. In this case, an infhitely recursive call

would result. This issue is quite significant because such a
problem cannot be detected by Ihe compiler. Therefore, we
choose to explicitly delegate to the superclass package to
ensure that the parent constructor will rdways lx called
regardless of the combination of overloading and overriding
that might exist.

package body Motor_Vehi.cle. Truck i,s

procedure Create (Instance : in out Object;
Weight : in Vehi.cle_Weight;
Color : in Colors;
Payload_Capacity : in Payloads;

Has_Cab : in Boolean : = False;
Wheels : in Wheel_Count := 4) is

begin

-- Delegate the initialization of inherited attributes to the parent type’s
-- version of the Create operation
Motor_Vehicle. Create (

Instance => Motor_Vehicle. Ob j ect (Instance),
-- The above type conversion is a “view” conversion and is necessary
-- since the inherited Create operation is NOT being called here.

Weight => Weight,
Wheels => Wheels,
Color => Color);

-- Initialize the new attributes
Instance. Payload_Capacity := Payload_Capacit y;

Instance. Has_Cab := Has_Cab;

-- The attributes Payload (defined for the Truck class) and Speed
-- (inherited from the Motor Vehicle superclass) have already been
-- initialized to their default values as specified in their respective
-- object record declarations.

end Create;

procedure Add_Payload (Instance : in out Object; Weight : in Payloads) ix
begin

Instance .Payload := Weight;
end Add_Payload;

function Payload (Instance : in Object) return Payloads is
begin

return Instance .Payload;
end Payload;

end Motor_Vehicle .Truck;

Figure 7. Implementation of a subclass package.

396

4.3.6 Extending Clientship

The previous subsections described how a subclass package
derives its class type from a tagged type to inherit and
specialize the features of an existing superclass package.
We now turn our attention to the effects of using child
library units to modularize our type derivations.

The first identifier in the expanded package name indicates
the root class of the hierarchy, while subsequent names
indicate subclasses. Since each subclass package is declared
in this way, each effectively documents its ancestry in its
very identifkation. Although this expanded notation can
become unwieldy for lower-level subclasses, Ada’s ‘use’
clause and ‘renames’ statement can help considerably when
referencing such units.

The key feature of a child library unit rests in the extended
visibility that it has into its parent unit. Child unita are
‘logically nested” inside their parent’s specification, which
means that they have impliat and direct visibility to the
public declarations made in the parent. What is even more
significant from an 00P point of view is that theprivale
part and body of a child unit have direct visibility to the
private part of its parent. This privileged visibility allows a
child unit to tmsily access, and in fact, “extend” its parent’s
capabilities. Child library units thus provide auother form
of ‘@gramming by extension” @wnes, 1993].

Our technique relies on this extended visibility because it
allows the type derivations to be nicely modularized into
their own (separately compilable) library units. Without
child unit visibility, subclass methods would not be able to
access the attibutes inherited from their parent’s private
object structure. While our Truck subclass example does
not demonstrate the need to do so, such visibdity will often
beneeded.

As another direct consequence of the extended visibility, the
attribute tvpes defined for a parent class package are

effectively “inherited” by subclass packages as well. In
Figures 6, we see that the specification for the Truck’s
Create procedure references the Motor Vehicle attribute
typea by their simple names. This sharing of data types is
most significant since previous approaches with Ada S3
would often declare subtype aliases of attribute types to

propagate their visibility, or would have the designer place
such types into a common types package. While such
techniques may still have a role in ROMAN-9X, child
library units present a significant improvement in that they
directly address the module visibility implications of
inheritance relationships.

Technically, a child library unit maybe considered a client
of ita parent unit in certain contexts. A child unit can
eertairdy create instances of its parent’s class type and
perform associated operations on those instances. Or, as in
the case of our Truck constructor, a child unit may simply

call a parent operation on an existing instance. However,

the primary reason to use a child unit is to extend a parent’s
capabilities to subclass clients while offering some
additional or refined features in the process. Thus, we refer
to a child library unit as an =tending client. In contrast, a
client that has visibility to only the public part of a class
package is referred to as au ordinary client. Without
qualification, clientship is understood to be ojf the ordinary
form.

It is interesting to note that in Ada 9X, the responsibility
for determining extended vs. ordinary clienfiship lies with
the client. If, for whatever reason, the form of clientship
needs be changed, the parent package would not require
modification itself. This is important from an evolutionary
development and change management perspective since it is
critical to keep the higher-level classes in an inheritance
hierarchy as stable as possible?

Note that a subclass package could alternatively be

implemented as au ordhry client. Such a client would
still inherit all of its parent’s features via the same type
derivation scheme. The client could then add new features
of its own as before. However, an ordinary client looses
direct visibility to attribute types and must thus declare
subtype aliases to propagate type visibility. More
importantly, the implementation of this client could not
access the private representation of the inherited attributes.
This is not a problem if the implementation does not
require such visibility, as is the case for our example.
Some authors go further by stating that ordinary clientship
sl#xdd be @choice for representing subclasses in general.

wild, 1992] goes as far to say

Child classes should be thought of as [ordinary]
clients of their parent classes. This way of
thinking promotes good encapsulation, and
minimizes the rmmbcr of hard dependencies that
will exist between classes in a class system.
Allowing cbses to access the parent’s instance
data [results in a] degree of coupling too strong to
be desirable All code that aaxsses the common
data [needs to be] considered with a full
understanding of the behavior of all of the other
code that accesses the common data.

An ordinary clientship approach to inheritance does indeed
better preserve aud enforce the original encapsulation defined
by parent classes. But we must examine the very essence
of what a “subclass” is really suppose to model, that being
the so-called “is-a” relationships in problem domain. An
instance of a subclass should simultaneously bean instance
of its superclass in every respect. In fact, as far as the

7 In contrast, clientship visibility privileges in C++ is

dictated by the server class declaration itself.

397

with Motor_Vehicle.Truck; -- with Motor_Vehi.cle; is implicit
with Text_IO;
procedure Truck_Client iS

My_Truck: Motor Vehicle.Truck.Object; -- -y attributes declared with— —

Current_Speed
Current_Payload

begin

:
:

-- defaults now have those values.

Motor_Vehic le.Velocity := o;
Motor_Vehicle.Truck.Payloads := O;

Motor_Vehicle.Truck.Create (Instance => My_Truck,

--
--
-.
--
--

Weight => 7200,
Wheels => 8,

Color => Motor_Vehicle.Black,

Payload_Capaci.ty => 2000);

The attributes Speed (from the Xotor Vehicle class) and Payload
(from the Truck class) were initialized in the object declaration
above, according to their respective object record defaults. The

Attribute fias_Cab added for the Truck class has been defaulted to
False, as is specified in the profile for the Create procedure.

-- Begin driving at 50 m.p.h.
Motor_Vehicle.Truck.Drive (My_Truck, Speed => 50); -- Inherited operation

-- Print out current speed
Current_Speed := Motor_Vehicle.Truck.Speed(My_Truck); -- Inherited operation
Text_IO.Put (“The current speed is”);
Text_IO.Put (Motor_Vehicle.Velocity’IM?@E(Current_Speed));
Text_IO.Put_Line (“ m.p.h.”);

-- Stop at hardware store
Motor_Vehicle .Truck.Stop (My_Truck);

-- Pick up some lumber
Motor_Vehicle.Truck.Add_Payload (My_Truck, Weight => 500);

-- Print out a payload message
Current_Payload := Motor_Vehicle.Truck.Payload(My_Truck);
Text_IO.Put (“The current payload is “);
Text_IO.Put (Motor_Vehicle.Truck.Payloads'IMA~(Current_Payload));
Text_IO.Put_Line (“ lbs.”);

-- Head on back to the ranch
Motor_Vehicle.Truck.Drive (My_Truck, Speed => 40);

-- Stop the truck
Metor_Vehicle.Truck.Stop (My_Truck);

:nd Truck_Client;

Figure 8. Client code utilizing a subclass package.

398

subclass instance is concerned, all of its features could have
just as well been defined in the subclass to begin with.

So a counter-case can be made stating that ~ “is-a”

relationships are ~ represented by an extending

mechanism such as child library units. One can apply the
“is-a” relationship test by presenting simple true-false
statements, such as, “a Truck is a Motor Vehicle.” As long
as such statements make sense from an application domain
perspective, the overtly strong coupling that results from
using child library units is warranted. If, however, the “is-
a“ criteria cannot be satisfied, then the very notion of
“subclass” should be conceded to ordinary clientship and
implemented accordingly.

In any respect, a “pseudo-modularity” does result from
structuring subclass packages in this way. But when
presented with “true” subclasses, child library units used in
conjunction with tagged types do allow single inheritance
to be directly and very easily implemented in Ada 9X.

4.3.7 Representing Subclass Clientship

Figure 8 illustrates the effects that inheritance has on users
of a subclass package. As before with the Motor Vehicle
client, we include an explicit context clause specifying the
server class. But note that a child library unit cannot be
with’ed in by ita simple name. Since a child unit is ddkd
within a strict hierarchy, its context is dependent on its
ancestry and must therefore be referenced by its fully
expanded path name. Note that a single ‘with’ statement
implicitly with’s in each of the packages indicated in the
expanded name.

Within the client code itself, the expanded name must also
be used to specify exactly to which level in the hierarchy
are references being made. While this syntax may at first

appear to be a bit obtrusive, it does have the maintenance
benefit of being very self-documenting, disclosing a more
“honest” view of how packages ‘in a class hierarchy are
actually coupled to one another.

4.3.8 Constraining Inherited Attributes

We continue working through the inheritance hierarchy and
show the representation of the Car class in Figure 9. The
Car class is similar in form to that of the Truck class.
However, an important difference is that the Car class

package must represent the object model’s constraint on the
number of Car wheels allowed. One approach might be to
define a subtype that tightens the value range allowed for
the Wheels attribute on Cars. However, since the
constraint is for exactly four wheels, we can do better. In

the overloaded constructor operation, we have removed the
parameter previously used for allowing clients to explicitly
initialize the Wheels attribute.

Upn examining the implementation for the constructor in
Figure 10, we see in the delegation that the constraint of
four wheels is hard-wired into the corresponding actual
parameter. This technique of varying the parameter profde
of an inherited constructor can be used in general to
constrain the values of selected inherited :attributes, thus
providing another means for specializing a class. But as
discussed earlier, this overloading does not mask the
inherited constructor from the client. Figure 11
demonstrates the client interface to the Car class. So long
as we call the proper constructor, instances of the Car class
will be constrained to having four wheels.

4.3.9 Representing Lower-Level Subclasses

We conclude the representation of our reference object
model by implementing the third-level class in the
inheritance hierarchy. Figure 12 illustrate:] how once the
pattern for building subclasses is established, a new or
adapted capability can be very quickly and reliably
developed. As before, each parent name in the hierarchy
must precede the new child unit name. and such a
specification implicitly with’s-in those units. Note that the
class type is derived from that of ita parent, which is itself a
derived type. While the characteristic of “tagged” is
explicitly specified only for the root class type, all types
derived directly or indirectly from a tagged type are
implicitly tagged. The body of the Convertible class

package is straight-fmward (I%gure 13).

As we proceed down a child unit hierarchy, the lengthy
references to child unit names can become loverwhehning.
One alternative, of course, is to employ tile ‘use’ clause
which establishes direct visibility to the server class
package features. In Ada 9X, a use clause can be selectively
applied to QQY level in a child unit’s exlpanded name,

allowing the degree of direct visibility to be better managed.
However, a probabl y better alternative is to use a renuming
approach, as is shown in Figure 14.

399

package Motor_Vehicle. Car iai -- with 140tor_Vehicle is implicit

-- Derived type declaration to inherit Motor Vehicle features
type Object is new Motor_Vehicle.Object with private;

-- All operations defined in the Motor Vehicle superclass have been
-- inherited and are thus implicitly declared in this subclass
-- package. These inherited operations may be directly invoked by
-- clients of the Truck class on instances of this new class type.

-- New attribute types
type Trunk_Space_Measure is range 0..150; -- cu. ft.

-- Specialized constructor for Cars (becomes overloaded with inherited
-- Create procedure)
procedure Create (Instance : in out Object;

Weight : in Vehicle_Weight; -- Defined in parent

Color : in Colors; -- Defined in parent

Trunk_Space : in Trunk_Space_Measure); -- Added for Cars

-- Note that Wheels parameter has been removed; the implementation of Create
-- ensures that all Car instances are constrained to having 4 wheels.

-- (no new operations are defined for Cars)

private

type Object is new Motor_Vehicle.Object with
record

Trunk_Space: Trunk_Space_Measure; -- New attribute unique to cars
end record;

-- Now instances of Motor_Vehicle.Car.Object will have 5 attributes, the 4 that
-- are defined for any motor vehicle, plus this new one.

end Motor_Vehicle.Car;

Figure 9. Representing constraints on inherited attributes.

5. Conclusions

Ihepurposeofthis papezwastodemonstrate howasimple
object model might be represented in Ada 9X. Our
techniqueisbasedon asoundfoundation ewablishedbythe
many ADT-based approaches to OODalready in practice.
However, with tagged types, wenow have theabilityto
ereate expendable ADTs, incrementally enhsneing the
features deflnedforeeehsuecessive abstraction. Andwith
thespecialvisibility affordedtochild libraryunits,we can
nowmoduhim eaehextendedADT andyetnotsuffer the
implementation difficulties seen with ordinary ADTs.
Wheuusedineonjunction withoneanother,tagged types
andehildlibriny unitsallowsingle inhdaneetobe directly
andveryeasilyrepresented inA&9X.

Agreatdealofthe ROW-9Xtechnique isecxxxmedwith
how to systematically map the various elements ofan

objeetmodelintoeompilableAda9Xsourceeode. Many
of the elements map directly to em-responding Ada
eonstrnets, making the representation process very
mechanical. Thisrnappingprovidesthetraeeabilitythatis
neededwhenehanging eithertheobject modelortbesouree
eodeitself. Andfortheaspeetsoftheeodethatarenot
directly trixxable tothe object model, we define naming
ecmventions that elimimte the need to contrive supezfkial
orotherwise arbitrary names. llispraetice allows different
designs using the ROMAN-9X technique to maintain a
highdegreeof uniformity and consistency.

The examples presented in this paper provide eanonierd
forms for representing object models in general. By
integrating the direet and indireet mapping rules, one could
automate the process of code generation toa large degree.

Thus, another goal for ROMAN-9X is to assist in the
development of future Ada9XCASEtools. Ourtechnique

400

may be used to support bi-directional change management
between object models aud their associated source code.

Unfortunately, even with the beat representation techniques,
there will generally still remain other “design decisions” to
be made-decisions that are not necessarily appropriate for
capturing within the confines of the object model itself.
The discussion portions of this paper serve to assist the
designer in making these choices, addressing the options
and trade-offs one faces when moving an abstract object
model into fully eompilable program source code.

Note that we do not consider ROW-9X to be auother
00D ‘tiethod” in and of itself, but rather a technique to be
used as part of an overall object-oriented methodology.
ROMAN-9X assumes that one has already gone through the
analysis and design process, and has in fact produced an

And finally, as a longer-term goal, we wish to use this
opportunity to incite a new round of methodological
discussions within the 00 community at large. Even in its
“object-based” form, Ada proved to be a leadiig technology
in the development and evolution of object-oriented
methods. Now that Ada has become a true object-oriented
progrdng language, the past ten years methodology
development stand to be revisited. We hope that ROMAN-
9X will play a role in leading a “second generation” of
00D methods and in promoting the use of Ada 9X in
general.

6. Further Study

Our ultimate goal for ROW-9X is to fully demonstrate
how to build object-oriented software with Ada 9X. This
paper focused on the fundamental task of representing

objekt model as-a product of that effort. -It is in the &ses and single inheritance. Other principl~ of obja;
construction of the object model that a fully-defined modeling and design that need to be addressedinclude
methodology is most needed. The textbooks referenced by
this paper represent several of the leading 00 methods ● Aggregation

available today. ROMAN-9X may therefore be considered ● Association
an additional technique for completing any of these
methods, speoificall y in showing how elements of a ● Multipliaty of associations

graphical representation (au object model) transcend into a ● Abstract ~tlSSeS
textualand mom detailed notation (Ada 9X).

● Multiple Inheritance

package body Motor_Vehicle. Car is

procedure Create (Instance : in out Object;
Weight : in Vehtile_Weight;
Color : in Colors;
Trunk_Space: in Trunk_Space_Measure) is

begin

.- Delegate the initialization of inherited attributes to the parent type’s

. . version of the Create operation
Motor_Vehicle. Create (

Instance => Motor_Vehicle. Ob ject (Instance),
-- The above type conversion is a “view” conversion and i~?
-- necessary since the inherited Create operation is NOT
-- being called here.

Weight => Weight,
Wheels => 4, -- constrains all cars to having only 4 wheels
Color => Color) ;

-- Initialize the new attributes

Instance. Trunk_Space := Trunk_Space;

-- The attribute Speed (inherited from the Motor Vehicle superclass) has
-- already been initialized to its default value as specified in its
-- respective object record declaration.

end Create;

end Motor_Vehicle. Car;

Figure 10. Implementing subclass constraints on inherited attributes,,

401

Several aspeetaof object-oriented programming need further .
attention, including.

. Class implementation with dynamic memory allocation ●

● Clientship with reference semantics
●

● Polymorphism with dynamic binding
●

●

Some additional features of Ada 9X needed to support these

Genelicfomlal derived types

oenelic formal tagged types

Private child library units

Named exception handling

Protected lecord types

.-
more advanced aspectsof 00P include For software engineers constrained to using Ada 83, note

●

●

●

●

●

Class-wide types and class-wide programming
that ROW-9X is directly related to ROMAN-83, an
analogous tedmique deAgned for representing object models

Dynamic dispatching of operations in Ada 83 notation. ROMAN-83 was developed with an

Access types to static memory
awareness of the 00 programming features being proposed
in Ada 9X, and can thus be used for transitioning into the

Access-to-subprogram types revised standard. Since our paper focused prin&ly on the

Abstract SUbpfOgl%31US
new 00 features of Ada 9X, we did not present the details
of ROMAN-83, nor its differences with ROMAN-9X.

And finally, several general features of Ada 9X are worthy
Readers interested in RO MAN-83 should contact the author
for more information.

of further study, including

with Motor_Vehicle. Car; -- with Motor_Vehicle; is implicit
with Text_IO;
procedure Car_Client is

My_Car: Motor_Vehi.cle. Car. Ob ject; -- AIIy attributes declared with
-- defaults now have those values.

Current_Speed : Motor_Vehicle .Velocit y := O; -- from Motor Vehicle class

begin

Motor_Vehicle. Car. Create (Instance => My_Car,
Weight => 3400,

color => Motor_Vehicle. Blue,
Trunk_Space => 90);

-- The attribute Speed (from the Motor Vehicle class) was initialized in the
-- object declaration above, according to its respective object record default.
-- The attribute Wheels has been removed from the parameter list and is
-- internally constrained to 4.

-- Begin driving at 60 m.p.h.
Motor_Vehicle. Car. Drive (My_Car, Speed => 60) ; -- Znheri ted operation

-- Print out current speed
Current_Speed := Motor_Vehicle. Car. Speed(My_Car); -- Inherited operation
Text_IO. Put (“The current speed is”);
Text_IO. Put (Motor_Vehicle.Velocity ’IMAGE (Current_Speed));
Text_IO. Put_Line (“ m.p.h.”);

-- Stop the car
Motor_Vehicle.Car.Stop (My_Car);

end Car_Client;

Figure 11. Limited clientship visibility to constrained attributes.

402

Acknowledgments

I would like to thank David Weller for providing me with
the latest forms and versions of Ada 9X documentation.
Ready access to such materhds proved to be vital in my
understanding of the new language. I also wish to thauk
Colin Atkinson for his review and consultation of the early
drafts of the paper. Colin helped me constrain my
presentation to a scope that was realizable for a paper such
as this. Both Colin and David are largely responsible for
many of the basic structuring and naming conventions used
in ROMAN-9X and in its Ada S3 counterpart.

Special thanks go to Tucker Taft who was responsible for
compiling my Ada 9X code examples. Presenting compiled
source code lends to the credibility of any paper, but it was
most significant here sin- there was no public compiler for
Ada 9X available at the time of writing. Tucker also helped
me semanticize the code, shedding light on some of the
more subtle aspects of the teehnique.

I would also like to thank Keith Shillington for reviewing
the paper in its final stages and for helping ensure ita proper
use of Ada’s semantics. And finally, I wish to thank Eileen
_ and Fasti Training Inc. for sponsoring the extra
effort it took to produce this paper.

package Motor_Vehicle. Car. Convertible is -- with Motor_Vehicle,
-- Motor_Vehicle. Car; is implicit

-- Derived type declaration to inherit Motor Vehicle and Car features
type Object is new Motor_Vehicle. Car. Ob j ect with private;

-- The Drive, Stop, and Speed operations have been inherited from the Car
-- class (which inherited them from the Motor Vehicle class) and are now
-- implicitly declared in this subclass package. These operations may now
-- be invoked by clients of the Convertible class on instances of this new
-. class type.

-- New attribute types
type Mechanisms is (Manual, Power);
type Positions is (Up, Down);

-- Specialized constructor for Convertibles (becomes overloaded with inherited
-- Create procedures from both Car and MOtQF Vehicle)
procedure Create (Instance : in out Object;

Weight : in Vehicle_Weight; -- Defined
Color : in Colors; -- in
Trunk_Space : in Trunk Space_Measure; -- parents
Movement_Mechanism : in Mecha&ms := Manual);-- New for COnv

-- New modifiers
procedure Put_Top_Down (Instance : in out Object);
procedure Put_Top_Up (Instance : in out Object);

I --New selectors
function Top_Position (Instance : in Object) return Positions;

Iprivate I
type Object is new Motor_Vehicle.Object with

record
Movmnent_Mechanism : Mechanisms;
Top_Positlon : Positions := up;

end record;

-- Now instances of Motor_Vehicle.Car.Convertible.Object will have 7
-- attributes, the 4 that are defined for any motor vehicle, the one
-- defined specifically for Cars, and these two.

end Motor Vehicle.Car.Convertible;

Figure 12. Representing lower-level subclasses.

403

package body Motor_Vehicle.Car.Convertible is

procedure Create (Instance : in out Object;
Weight : in Vehicle_Weight;
Color : in Colors;
Trunk_Space : in Trunk_Space_Measure;
Movment_Mechanism : in Mechanisms := Manual) is

begin

-- Delegate the initialization of inherited attributes to the parent type’s
-- version of the Create operation
Motor_Vehicle.Car.Create (

Instance => Motor_Vehicle.Car.Object(Instance) ,
-- The above type conversion is a “view” conversion and is
-- necessary since the inherited Create operation is NOT
-- being called here.

Weight => Weight,

Color => Color,

Trunk_Space => Trunk_Space);

-- Note that the 4-wheel constraint imposed on Car instances is
-- enforced by the delegation to the Create operation for Cars.

-- Initialize the new attributes
Instance.Movment_Mechanism := Movment_Mechanism;

-- The attribute Speed (inherited from the Car superclass, which inherited
-- it from its Motor Vehicle superclass) has already been initialized to its
-- default value as specified in its respective object record declaration.
-- The attribute Top_Position was initialized in the tagged type extension
-- for this Convertible subclass.

end Create:

procedure Put_Top_Down (Instance : in out Object) is
begin

Instance.Top_Position := Down;
end Put_Top_Down;

procedure Put_Top_Up (Instance : in out Object) is
begin

Instance.Top_Position := Up;
end PUt_Top_Up;

function Top_Position (Instance : in Object) return Positions is
begin

return Instance.Top_Position;
end Top_Position;

end Motor_Vehicle.Car.Convertible;

Figure 13. Implementation of lower-level subclasses.

404

with Motor_Vehicle.Car.Convertible; -- with Motor Vehicle,
with Text_IO; -- Motor’Vehicle.Car; is implicit
procedure Convertible_Client is

-- Rename the subclass package with its simple name for brevity
package Convertible renames Motor_Vehicle.Car.Convertible;

My_Convertible: Convertible.Object;
-- Any attributes declared with defaults now have those values.

Current_Speed : Motor_Vehicle.Velocity := O;
Current_Top_Position : Convertible.Positions := Convertible.Up;

begin

Convertible.Create (Instance => My_Car,

Weight => 2600,

Color => Motor_Vehicle.Red,

Trunk_Space => 50,
Movement_Mechankn => Power);

-- The attributes Speed (from the Motor Vehicle class) and Top_Position
-- (from the Car class) were initialized in the object declaration above,
-- according to their respective object record defaults.

-- Put the convertible top down
Convertible.Put_Top_Down (My_Convertible);

-- Begin driving at 70 m.p.h.
Convertible.Drive (My_Convertible, Speed => 70); -- Inherited operation

-- Print out current speed and position of’’convertible top
Current_Speed := Convertible.Speed(My_Convertible); -- Inherited operation
Current_Top_Position := Convertible .Top_Position (My_Convertible);
Text_IO.Put (wThe current speed is”);
Text_IO.Put (Motor_Vehicle.Velocity’IMAGE(Current_Speed));
Text_IO.Put (“ m.p.h.”);
Text_IO.Put (“ and the convertible top is “);
Text_IO.Put (Convertible.Positions'IMAGE(Current_Top_Position));
Text_IO.New_Line;

-- Stop the convertible car
Convertible.Stop (My_Convertible);

-- Put the convertible top up
Convertible.Put_Top_Up (My_Convertible);

,end Convertible_Client;

Figure 14. Clientship of lower-level subclasses.

405

Reference

Atkinson, C., Object-Oriented Reuse, Concurrency, and
Distribution - An Aok-Based Approach, ACM Press,
Addison-Wesley, 1991.

Atkinson, C. and Weller, D., ‘Integrating Inheritance and
Synchronbtion in Ada 9X; Tri-Ada ’93 Conference
Proceedings, 1993.

Barnes, J. Introducing Ah 9X, Intermetxicdlepartment of
Defense, February 1993.

Booth, G., So~are Engineering With Ada,
Benjamin.lCummings, 19S3.

Booth, G., So~are Components With Ada,
Benjamin/Cummings, 1987.

Booeh, G., Object-Oriented Design With Applications,
Benjamin/Cummings, 1991.

cardelli, L. and Wegner, P., “On Understanding Types,
Data Abstraction, and Polymorphism,” ACM Computing
Surveys, vol. 17(4), -mber 19S5.

Coad, P. and Yourdon, E., Object-Orienled Analysis,
Yourdon Press (2nd cd.), 1991.

Coad, P. and Yourdon, E., Object-Oriented Design,
Yourdon Press, 1991.

Di Maio, A., Cardigno, C., Genolini, S., Destombes, C.,
and Atkinson, C., “DRAGOON An Ada-based Object-
Oriented Language for Concurrent, Real-Time,
Distributed Systems? Proc. Ada-Europe In&natwnal
Conference 1989, The Ada Companion Series.

Intermetrics, Aaiz 9X Mapping Document, Volume II:
Mapping Specification, U.S. Department of Defense,
December 1991.

Intermetrics, AdQ 9X Mapping Document, Volume I:
Mizpping Rationale, U.S. Department of Defense, March
1992.

Intermelrics, Ada 9X Reference Man@ Ada 9X Project
Office, Version 3.0,29 June 1993.

Meyer, B., Object-Oriented So@are Construction, Prentice
Hall, 1!%3S.

Rumbaugh, J., Bl& M., Premerlani, W., F&hick, E.,
and Lcmmsen, W., Object-Oriented Mo&ling and Design,
Prentk Hall, 1991.

Seidewitz, E. and Stark, M., Principles of Object-Oriented
Software Development with Ada, Millennium Systems,
Inc., 1992.

Shlaer, S. and Mellor, S., Objecl LiJecycle.r: A40&ling the
World in States, Yourdon Press, 1992.

Wild, F., ‘Experience Report - Creating Well Formed Class
Inheritan& Schemes in C++: 00PS Messenger,
Addendum to the 00PSLA ’92 Conference Pmcee&ngs,
vol. 4(2), April 1993.

Wirfs-Brock, R., Wilkerson, B., and Wiener, L., Designing
Object-Oriented Software, FIR Prentice Hall, 1990.

Biography

Gary Cernosek is a senior software engineer with Fastrak
Training Inc. where he is responsible for developing and
administering training courses in object technology. Gary
has worked with object-oriented analysis and design
methods since 19S5 using Ada- and C-based languages. His
primary assignment over the past year-and-a-half has been
with CAE-Link Flight Simulation Co. in Houston, Texas
where he is the lead instructor and mentor for the object-
oriented development of realtime mission training
simulators for NASA-JSC. Gary was also responsible for
several software reuse initiatives while working at
McDounell Douglas through 1991 on both Space Shuttle
and Space Station projects. Gary received a Bachelor of
Science degree in electrical engineering from the University
of Texas at Austin in 19S3, and a Master of Science degree
from the University of Houston at CIear Lake in 19SS. His
master’s thesis was on the need for an object-oriented
approach to requirements analysis. Gary is a member of the
IEEE Computer Society and the ACM.

406

