
HAL Id: hal-03664857
https://inria.hal.science/hal-03664857

Submitted on 11 May 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Transitive closure logic, nested tree walking automata,
and XPath

Balder Ten Cate, Luc Segoufin

To cite this version:
Balder Ten Cate, Luc Segoufin. Transitive closure logic, nested tree walking automata, and XPath.
Journal of the ACM (JACM), 2010, 57 (3), pp.1-41. �10.1145/1706591.1706598�. �hal-03664857�

https://inria.hal.science/hal-03664857
https://hal.archives-ouvertes.fr

Transitive Closure Logic, Nested Tree Walking
Automata, and XPath

Balder ten Cate
ISLA, Universiteit van Amsterdam
and
Luc Segoufin
INRIA, ENS-Cachan

We study FO(MTC), first-order logic with monadic transitive closure, a logical formalism
in between FO and MSO on trees. We characterize the expressive power of FO(MTC) in
terms of nested tree-walking automata. Using the latter we show that FO(MTC) is strictly
less expressive than MSO, solving an open problem. We also present a temporal logic on
trees that is expressively complete for FO(MTC), in the form of an extension of the XML
document navigation language XPath with two operators: the Kleene star for taking the
transitive closure of path expressions, and a subtree relativisation operator, allowing one
to restrict attention to a specific subtree while evaluating a subexpression. We show that
the expressive power of this XPath dialect equals that of FO(MTC) for Boolean, unary
and binary queries. We also investigate the complexity of the automata model as well as
the XPath dialect. We show that query evaluation be done in polynomial time (combined
complexity), but that emptiness (or, satisfiability) is 2ExpTime-complete.

Categories and Subject Descriptors: []:

1. INTRODUCTION

When studying query languages for tree structured data, two natural yardsticks of expres-
sive power are commonly considered: first order logic (FO) and monadic second order
logic (MSO). The former is the traditional yardstick for expressive power of relational
query languages, while the latter is a very well-behaved and well-understood logic on trees.
In between the two lies FO(MTC), first-order logic extended with an operator for taking
the transitive closure of definable binary relations. We propose FO(MTC) as another yard-
stick of expressive power, and develop a variant of the XML path language XPath that is
expressively complete for FO(MTC).

Our main contributions are the following:

(1) We give an automata theoretic characterization of FO(MTC) in terms of nested tree
walking automata. Roughly speaking, these extend ordinary (non-deterministic) tree
walking automata in that the transitions of an automaton may depend on whether or
not a subautomaton has an accepting run in the subtree rooted at the current node. We

We would like to thank Mikołaj Bojańczyk and Hendrik-Jan Hoogeboom for their comments. The first author is
supported by the Netherlands Organization for Scientific Research (NWO) grant 639.021.508, and partially by
NSF grant IIS-0430994.

2 ⋅ Balder ten Cate and Luc Segoufin

show that these automata capture FO(MTC) with respect to Boolean queries, unary
queries and binary queries.

Theorem 1 Nested tree walking automata have the same expressive power as
FO(MTC) on trees.

(2) We show that nested tree walking automata, and hence also FO(MTC), are strictly less
expressive than MSO on finite trees (and hence also on infinite trees), which solves an
open problem raised in [Potthoff 1994; Engelfriet and Hoogeboom 2007]. This result
can be seen as the culmination of a line of recent research [Bojańczyk and Colcombet
2008; Bojańczyk et al. 2006] separating increasingly rich versions of tree walking
automata from MSO.

Theorem 2 FO(MTC) is strictly less expressive than MSO on finite trees.

Note that FO(MTC) and MSO are equally expressive on finite and on infinite
strings. However, on infinite trees, FO(MTC) is strictly less expressive than MSO
because it is contained in weak MSO (the fragment of MSO restricting quantifica-
tions to finite sets. For instance [TCxy�](u, v) can be expressed in weak MSO as
∃finX∀finY (Y u ∧ ∀xy(Y x ∧ �→ Y y)→ Y v)) which is known as being strictly less
expressive than MSO over infinite trees [Rabin 1970]. Over infinite trees Theorem 2
shows that FO(MTC) is actually strictly less expressive than weak MSO.

(3) We present a temporal logic on trees that is expressively complete for FO(MTC), in
the form of an extension of the XML document navigation language XPath. The logic
in question, called Regular XPath(W), extends Core XPath [Gottlob et al. 2002] with
the Kleene star for transitive closure, and with the subtree relativisation operator W.
We show that Regular XPath(W) has the same expressive power as nested tree walking
automata, and therefore FO(MTC), with respect to Boolean, unary and binary queries.

Theorem 3 Regular XPath(W) has the same expressive power as nested tree walking
automata on trees.

Theorem 3 can be seen as providing a normal form for FO(MTC)-formulas on trees,
which uses only four variables and a restricted from of transitive closure. We also
derive that Regular XPath(W) is closed under the path intersection and complementa-
tion, even though these are not primitive operators in the language.

Extending XPath with the Kleene star for transitive closure has been advocated for a
variety of reasons, ranging from practical (e.g., [Nentwich et al. 2002]), to more the-
oretical. For instance, the transitive closure operator enables us to express DTDs and
other schema constraints (e.g., ancestor based patterns) directly inside XPath [Marx
2004]. It also enables view based query rewriting for recursive views [Fan et al. 2007].
The extension of Core XPath with the Kleene star is known as Regular XPath [Marx
2004]. The W operator can be seen as a special case of the XPath subtree scoping
operator in [Bird et al. 2005], and is closely related to subtree query composition as
studied in [Benedikt and Fundulaki 2005].

XPath, Transitive Closure Logic, and Nested Tree Walking Automata ⋅ 3

All results hold both on finite and on infinite (ranked or unranked, sibling ordered) trees.
We also determine the computational complexity of basic tasks involving nested tree

walking automata and Regular XPath(W) expressions, namely the evaluation problem and
the non-emptiness (or, satisfiability) problem. The former can be solved in polynomial
time, and the latter is 2ExpTime-complete, both for nested tree walking automata and for
Regular XPath(W) (compared to ExpTime-complete for unnested tree walking automata
and Core XPath).

The fact that FO(MTC) is strictly included in MSO, in some sense, provides a for-
mal justification for the intuition that sequential finite automata cannot capture all regu-
lar tree languages. Finding a sequential type of automata that could capture all regular
tree languages is something desirable, and several attempts have been made. Tree walk-
ing automata, even with pebbles, are known to be not powerful enough [Bojańczyk et al.
2006]. Tree walking automata with an unbounded number of invisible pebbles are pow-
erful enough [Engelfriet et al. 2007] but these automata are not strictly speaking finite
state automata anymore. Our results imply that, in fact, no type of sequential automata
translatable to FO(MTC) is powerful enough. We leave it to the reader to decide if being
translatable into FO(MTC) is a natural formalization of “being sequential”.

All in all, our results show that the tree languages definable in FO(MTC) form a robust
class that can be characterized in several ways.

Related work. Connections between transitive closure logic and TWA have already been
observed in [Engelfriet and Hoogeboom 2007]. The automata model used in [Engelfriet
and Hoogeboom 2007] is different than the one we use: it extends TWA with nested peb-
bles marking positions in the tree. Transitions then depend on the presence or absence of
pebbles in the current node. The main difference between pebble TWA and our nested
TWA is that the latter can make negative tests. It is still an open problem whether peb-
ble TWA are closed under complementation, while the closure under complementation
of nested TWA is immediate from the definition. Also, emptiness of pebble TWA is
non-elementary while it is 2ExpTime-complete for our nested TWA model. It is shown
in [Engelfriet and Hoogeboom 2007] that pebble TWA have exactly the same power as
FO(pos-MTC), the fragment of FO(MTC) where the TC operator can only be used in the
scope of a even number of negations. Pebble TWA, and hence FO(pos-MTC), were shown
to be strictly contained in MSO in [Bojańczyk et al. 2006]. Our proof of Theorem 2 uses
the same separating language, and the same proof technique as in [Bojańczyk et al. 2006].
In Section 8 we will see that pebble TWA can be seen as the positive fragment of nested
TWA.

The logical core of XPath 1.0, Core XPath [Gottlob et al. 2002], has been studied
in detail. For instance, the combined complexity of query evaluation is known to be
in PTime [Gottlob et al. 2002], static analysis tasks such as satisfiability are ExpTime-
complete [Benedikt et al. 2005], and the expressive power of Core XPath has been charac-
terized in terms of FO2 [Marx and de Rijke 2005], the two-variable fragment of first-order
logic on trees. Two extensions of Core XPath have subsequently been proposed and studied
that capture full first-order logic, namely Conditional XPath [Marx 2005], extending Core
XPath with “until” operators, and Core XPath 2.0 [ten Cate and Marx 2007]. Likewise,
extensions of Core XPath have been proposed that are expressively complete for MSO, for
instance with least fixed point operators (see, e.g., [ten Cate 2006, Sect. 4.2]).

In [ten Cate 2006], another variant of Regular XPath was considered, containing path

4 ⋅ Balder ten Cate and Luc Segoufin

equalities instead of W. This language was shown to have the same expressive power as
FO∗, the parameter free fragment of FO(MTC). It is not known at present whether FO∗ is
as expressive as full FO(MTC).

A complete axiomatization for the FO(MTC)-theory of finite trees was recently obtained
in [Gheerbrant and ten Cate 2009].

The W operator we use is a generalization to trees of the “now” operator from temporal
logics with forgettable past [Laroussinie et al. 2002]. It is closely related to the “within”
operator in temporal logics for nested words [Alur et al. 2007], the XPath “subtree scoping”
operator proposed in [Bird et al. 2005], and the issue of subtree query composition studied
in [Benedikt and Fundulaki 2005]. See Section 8 for more details on the connection.

Organization of the paper. In Section 2, we introduce Regular XPath(W), FO(MTC),
and nested TWA. In Section 3 and 4, we prove Theorem 3. In Section 5, we prove The-
orem 2. In Section 6, we determine the complexity of query evaluation and satisfiability
for Regular XPath(W). In all cases, attention is restricted to binary trees. In Section 7,
however, we show that all results generalize to unranked trees. Finally, we conclude in
Section 8 by deriving some further consequences of our results. We have pushed into the
Appendix two proofs that would break the flow of the paper. The first one, in Appendix A,
proves an initial normal form for FO(MTC) that is more or less folklore. The second one,
Appendix B, proves that positive nested TWA has the same expressive power than pebble
TWA. It basically go again through the proof of Theorem 3 and check that the number of
negations is preserved.

2. PRELIMINARIES

2.1 Trees

In this paper we consider two kinds of trees: sibling-ordered unranked trees and, as a
special case, binary trees. We do not assume that the trees are finite. Thus, unless explicitly
stated otherwise, all results hold both for finite trees and for infinite trees.

Fix a finite alphabet Σ. A Σ-tree is a partial mapping t : ℕ∗ → Σ whose domain
dom(t) is non-empty, prefix-closed, and such that whenever n(i+ 1) ∈ dom(t) then also
ni ∈ dom(t). Elements of this domain are called nodes, and the label of a node x is t(x).
The empty sequence " is called the root of t, and all maximal sequences are called leafs.
For x, y ∈ dom(t), we write x < y if y = xz for some non-empty z ∈ ℕ∗ (i.e., if x is
an ancestor of y in the tree), and we write x ≺ y if x = zi and y = zj for some z ∈ ℕ∗
and natural numbers i < j (i.e., y is a sibling to the right of x). For any x, y ∈ dom(t),
lca(x, y) denotes the least common ancestor of x and y, i.e., the largest common prefix.
Given a node x in a tree t, we denote the subtree of t rooted at x by subtree(t, x). A context
is a tree with a designated leaf with no label called the hole of the context. If C is a context
and t a tree, the concatenation of C and t, denoted Ct, is the tree constructed from C by
replacing the hole of C with a copy of t. Conversely, given a tree t and a node x of t, the
context context(t, x) is constructed by replacing subtree(t, x) with a hole.

A Σ-tree is called a binary tree if each non-leaf node has exactly two successors. In most
of our proofs, we will restrict attention to binary trees, but we will show in Section 7 that
this is without loss of generality. When speaking of binary trees, we will use <1 and <2

for the “descendant along the first child” and “descendant along the second child relation”.
Formally, for any two nodes x, y and for i ∈ {1, 2}, x <i y holds if xi is a prefix of y, i.e.,
if y is a not-necessarily-strict descendant of x’s ith child.

XPath, Transitive Closure Logic, and Nested Tree Walking Automata ⋅ 5

A tree language is a set of Σ-trees, for a given Σ. A tree language is regular if it is
definable by a sentence of monadic second-order logic (MSO) in the signature with binary
relations <,≺ and a unary relation for each element of Σ.

2.2 Transitive closure logic

FO(MTC) is the language of first-order logic extended with a monadic (reflexive) transitive
closure operator. Since we work only with Σ-trees, we assume a fixed signature, consisting
of binary relations <,≺ and a unary predicate letter for each element of Σ. We use the
notation [TCxy �] for the (reflexive) transitive closure operator:

[TCxy �](u, v) ≡ ∀X.(Xu ∧ ∀xy(Xx ∧ �→ Xy)→ Xv)

Note that � may contain other free variables besides x and y. These will be called param-
eters of the transitive closure formula. The parameter-free fragment of FO(MTC), which
only allow for formulas [TCxy�](u, v) where � has no free variables besides x and y, is
also known as FO∗ [ten Cate 2006].

It is clear from the definition that FO(MTC) is a fragment of MSO.
To make life easier, we will use a normal form for FO(MTC)-formulas on binary trees.

Consider the following restricted version of the transitive closure operator:

[TC<xy �](u, v) ≡ u < v ∧ [TCxy(u ≤ x, y ∧ v ∕< x, y ∧ �)](u, v)

It expresses that u < v and that there is a sequence u = x1, . . . , xn = v such that each xi
is below u but not strictly below v, and �(xi, xi+1) holds for all i < n. The idea is that u
and v delimit a part of the tree to which the entire sequence belongs.

We denote by FV(�) the free variables of �. FO(MTC<) is the fragment of FO(MTC)
in which transitive closure is only allowed in the restricted form of [TC<xy �](u, v) with
FV(�) ⊆ {x, y, u, v}.

Lemma 4 On binary trees, every FO(MTC) formula is equivalent to a FO(MTC<) for-
mula.

The proof of Lemma 4 uses standard Ehrenfeucht-Fraı̈ssé techniques, and is given in
Appendix A. Lemma 4 is only an intermediate result: stronger normal form theorems for
FO(MTC) on arbitrary trees will follow from our main results, see Section 8.

2.3 Regular XPath(W)

As we already mentioned, Regular XPath(W) essentially extends Core XPath with a tran-
sitive closure operator and a subtree relativisation operator. We now define it formally.

Definition 5 Regular XPath(W) is a two-sorted language, with path expressions
(�, �, . . .) and node expressions (�, , . . .). These are defined by mutual recursion as
follows:

� ::= ↓ ∣ ↑ ∣ → ∣ ← ∣ . ∣ �/� ∣ � ∪ � ∣ �[�] ∣ �∗
� ::= � ∣ ⟨�⟩ ∣ ¬� ∣ � ∧ ∣ � ∨ ∣W� (� ∈ Σ)

Given a tree t, each path expression � defines a binary relation [[�]]t and each node ex-
pression � defines a set of nodes [[�]]t. The exact semantics is specified in Table I.

6 ⋅ Balder ten Cate and Luc Segoufin

Table I. Semantics of Regular XPath(W) expressions

[[↓]]t = {(x, xi) ∣ xi ∈ dom(t)}
[[↑]]t = {(xi, x) ∣ xi ∈ dom(t)}
[[←]]t = {(xi, x(i+ 1)) ∣ x(i+ 1) ∈ dom(t)}
[[→]]t = {(x(i+ 1), xi) ∣ x(i+ 1) ∈ dom(t)}
[[.]]t = {(x, x) ∣ x ∈ dom(t)}

[[�/�]]t = {(x, y) ∈ dom(t)2 ∣ ∃z ∈ dom(t).
((x, z) ∈ [[�]]t and (z, y) ∈ [[�]]t)}

[[� ∪ �]]t = [[�]]t ∪ [[�]]t

[[�[�]]]t = {(x, y) ∈ [[�]]t ∣ y ∈ [[�]]t}
[[�∗]]t = the reflexive transitive closure of [[�]]t

[[�]]t = {x ∈ dom(t) ∣ t(x) = �}
[[⟨�⟩]]t = {x ∈ dom(t) ∣ ∃y ∈ dom(t).(x, y) ∈ [[�]]t}
[[¬�]]t = dom(t) ∖ [[�]]t

[[� ∧]]t = [[�]]t ∩ [[]]t

[[� ∨]]t = [[�]]t ∪ [[]]t

[[W�]]t = {x ∈ dom(t) ∣ x ∈ [[�]]subtree(t,x)}

A path expression essentially describes a movement in a tree. It will sometimes be useful
to perform the movement in the reverse order. We denote by −1 this operation. Given a
path expression �, �−1 is the path expression defined by induction as follows: (�[�])−1 is
.[�]/�−1, (�/�)−1 is �−1/�−1, (� ∪ �)−1 is �−1 ∪ �−1, (�∗)−1 is (�−1)∗, .−1 is ., and
for � ∈ {↓, ↑,←,→}, �−1 is defined by reversing the direction of the arrow, for instance
↓−1 is ↑. It is easy to see that, with this definition, (x, y) ∈ [[�−1]]t iff (y, x) ∈ [[�]]t.

We will use root as a shorthand for ¬⟨↑⟩.
It is not difficult to see that Regular XPath(W) is a fragment of FO(MTC). Table II

gives a linear translation TR(⋅) from Regular XPath(W) to FO(MTC). Note that, in this
translation, the parameter z is used in order to remember the root of the subtree with respect
to which the formula has to be evaluated. The translation can easily be modified to use only
four variables.

Lemma 6 For every Regular XPath(W) path expression � and tree t, [[�]]t =
{(x, y) ∣ TRx,y(�) holds on t}. Similarly for node expressions.

The proof of Lemma 6 is by induction and is left to the reader. A large part of the
paper will be devoted to a translation in the other direction, i.e., from FO(MTC) to
Regular XPath(W).

2.4 Nested tree walking automata

For proving our lower bounds on expressive power, it will be convenient to represent
Regular XPath(W) formulas using automata walking in the tree. We introduce here the
model that we shall use.

Let DIR = {↓, ↑,→,←, .} be the set of basic moves in the tree, corresponding to “go
to a child” and its converse, “go to the next sibling” and its converse, and “don’t move”.

XPath, Transitive Closure Logic, and Nested Tree Walking Automata ⋅ 7

Table II. Translation from Regular XPath(W) to FO(MTC)

TRu,v(�) = ∃z.(∀z′.(z ≤ z′) ∧ TRzu,v(�))
TRu(�) = ∃z.(∀z′.(z ≤ z′) ∧ TRzu(�))

TRzu,v(�) = (z ≤ u, v) ∧R�(u, v) for � ∈ {↑, ↓,→,←}
where R� is the FO formula defining the appropriate successor relation.

TRzu,v(.) = (z ≤ u, v) ∧ u = v
TRzu,v(�/�) = ∃w.(z ≤ w ∧ TRzu,w(�) ∧ TRzw,v(�))
TRzu,v(� ∪ �) = TRzu,v(�) ∨ TRzu,v(�)
TRzu,v(�[�]) = TRzu,v(�) ∧ TRzv(�)
TRzu,v(�∗) = [TCx,y TR

z
x,y(�)](u, v)

TRzu(�) = (z ≤ u) ∧ P�(u)
TRzu(⟨�⟩) = (z ≤ u) ∧ ∃v.TRzu,v(�)
TRzu(¬�) = z ≤ u ∧ ¬TRzu(�)
TRzu(� ∧) = TRzu(�) ∧ TRzu()
TRzu(� ∨) = TRzu(�) ∨ TRzu()
TRzu(W�) = ∃z((z = u) ∧ TRzu(�))

Given a node x in a tree,DIR(x) ⊆ DIR denotes the set of possible moves from x (which
always contains ‘.’). In other words, DIR(x) characterizes what type of node x is (root,
first child, . . .). A non-deterministic tree walking automaton (or 0-nested TWA) is a tuple
A = (Q,Σ, �, q0, F), where Q is a finite set of states, Σ is the alphabet, q0 ∈ Q is the
initial state, F ⊆ Q is the set of accepting states, and � is the transition relation:

� ⊆ (Q× Σ× ℘(DIR))× (DIR×Q)

where ℘(⋅) means powerset. If (q, �,D,m, q′) ∈ �, this means intuitively that when the
automaton is in state q at a node x with label � and DIR(x) = D, then it may choose to
make the move m and go to state q′. We require that m always belongs to D.

An accepting run of A from a node x to a node y in a tree t is a sequence of
pairs (x0, q0), . . . , (xn, qn), where x0 = x, xn = y, q0 is the initial state, and qn ∈
F , where each transition (xi, qi), (xi+1, qi+1) conforms to the transition relation, i.e.,
(qi, t(xi), DIR(xi),m, qi+1) ∈ � for some m ∈ DIR such that (xi, xj) ∈ [[m]]t. For
any tree t, A(t) is the binary relation containing all pairs (x, y) such that A has an accept-
ing run from x to y. A tree t is accepted by an automaton A if (", x) ∈ A(t) for some
x ∈ dom(t).

Intuitively, a nested tree walking automaton of rank k > 0 is a non-deterministic tree
automaton A that has finitely many sub-automata of rank less than k, and such that each
transition of A may be conditional on whether some of the sub-automata do or do not have
an accepting run from the current node, either in general or within the subtree rooted at the
current node. Formally, for k > 0, a nested tree walking automaton of rank k (k-nested
TWA) is a tuple (Q,Σ, (Ai)i∈I , �, q0, F) with (Ai)i∈I a finite set of nested tree walking
automata of rank strictly less than k, where Q,Σ, q0, F are as before, and

� ⊆
(
Q× Σ× ℘(DIR)× ℘(I)× ℘(I)× ℘(I)× ℘(I)

)
× (DIR×Q)

Accepting runs are defined as before, except that the automaton can now take additional

8 ⋅ Balder ten Cate and Luc Segoufin

information into account when deciding its next move, given by the ℘(I)×℘(I)×℘(I)×
℘(I) in the definition of �. The first ℘(I) stands for a set of sub-automata Ai that are
required to have an accepting run starting in the current node, in order for the transition to
be allowed. The second ℘(I) stands for a set of sub-automata Ai that are required not to
have an accepting run starting in the current node. The third ℘(I) stands for a set of sub-
automata Ai that are required to have an accepting run in the subtree subtree(t, x) rooted
at the current node x (starting from the root of this subtree). Finally, the fourth ℘(I) stands
for a set of sub-automata Ai that are required not to have an accepting run in the subtree
subtree(t, x) rooted at the current node x (starting from the root of this subtree). Note that
the notion of an accepting run is defined here by induction on the rank of the automaton.

The same notations are used for k-nested TWA as for 0-nested TWA. In particular, A(t)
is the binary relation containing all pairs of nodes (x, y) such that A has an accepting
run from x to y, and a tree t is accepted by an automaton A if (", x) ∈ A(t) for some
x ∈ dom(t).

The following lemma establishes Theorem 3: Regular XPath(W) path expressions and
nested TWA essentially define the same objects. It is proved using the classical translations
between regular expressions and finite automata.

Lemma 7 For every nested TWA A there is a Regular XPath(W) path expression �, com-
putable in exponential time from A, such that for all trees t, A(t) = [[�]]t.

Conversely, for every Regular XPath(W) path expression � there is a nested TWA A,
computable in linear time from �, such that for all trees t, A(t) = [[�]]t.

PROOF. (sketch) The first part of the lemma is proved by induction on the nesting depth
of the automaton. TWA without nesting are known to be equivalent to caterpillar expres-
sions, a fragment of Regular XPath(W) (cf. [Neven and Schwentick 2003]). Consider now
a nested TWA of nesting depth k > 0. By induction we have a Regular XPath(W) expres-
sion corresponding to all of its sub-automata of depth less than k − 1. We can then apply
again the translation of TWA into Regular XPath(W) formulas simulating each tests refer-
ring to some sub-automata using the filter operator [⋅], the W operator and the expressions
obtained by induction.

The second part of the lemma is proved by induction on the Regular XPath(W) expres-
sion. More precisely, we show by simultanous induction that, for every Regular XPath(W)
path expression � there is a nested TWA A�, computable in linear time from �, such
that for all trees t, A�(t) = [[�]]t, and for every Regular XPath(W) node expression �
there is a nested TWA A�, computable in linear time from �, such that for all trees t,
{x ∣ ∃y.(x, y) ∈ A�(t)} = [[�]]t. The inductive step for filter operator [⋅] uses a non
subtree-restricted sub-automata test, while the inductive step for the W operator uses a
subtree-restricted sub-automata test.

3. DEFINING K-ARY QUERIES USING TREE PATTERNS

We aim to translate FO(MTC) formulas in at most two free variables to Regular XPath(W)
expressions. In order to perform the translation inductively, however, we have to be able to
handle formulas with more than two free variables. For this reason, following [Schwentick
2000], we will use tree patterns as an intermediate formalism. Intuitively, a tree pattern
over a set of variables v1, . . . , vn is a tree-shaped conjunctive query over v1, . . . , vn, in
which Regular XPath(W) expressions may be used as atomic relations. See for examples

XPath, Transitive Closure Logic, and Nested Tree Walking Automata ⋅ 9

Figure 2 on page 17. In this section, we define unions of tree patterns, and show that they
form a natural generalization of node and path expressions to k-ary queries with k > 2. In
particular, tree patterns in at most two variables correspond to node or path expressions. In
Section 4, we prove that every FO(MTC) formula is equivalent to a union of tree patterns
in the same free variables. Together with Theorem 3, this implies Theorem 1.

We will restrict now our attention to binary trees, but we will show in Section 7 that all
results generalize to arbitrary unranked ordered trees.

3.1 Downward node and path expressions

Before defining tree patterns, we first introduce a restricted class of path expressions, called
downward path expressions, that can only move downwards in the tree and test node prop-
erties that depend only on the current subtree.

Definition 8 (Downward node and path expressions) A downward node expression is a
node expression the form W�. A downward path expression is a path expression generated
by the following inductive definition:

� ::= ↓1 ∣ ↓2 ∣ . ∣ � ∪ �′ ∣ �/�′ ∣ �[�] ∣ �∗

where ↓1 and ↓2 are shorthand for ↓[⟨→⟩] and ↓[⟨←⟩], respectively, and � is a downward
node expression.

In the sequel we may be using ↓ in a downward path expression as a shortcut for ↓1 ∪
↓2 and ↓+ as a shortcut for ↓/↓∗. Downward path expressions can be seen as defining
regular languages over an alphabet whose letters consist of Boolean combinations of node
expressions. More precisely, fix any finite set of downward node expressions Φ, and let
ΣΦ = ℘(Φ) × {r, 1, 2}. For any binary tree t with nodes x < y, we can associate to the
pair (x, y) a finite word wxy over Σ� describing the path from x to y in t, where each letter
in the word encodes which node expressions from Φ are true at the corresponding node in
the tree, and whether the node is the initial node x (indicated by r), a left child of another
node on the path (indicated by 1) or a right child of another node on the path (indicated by
2). Now, for every downward path expression � built up from downward node expressions
in Φ there is a regular word language L� over ΣΦ such that for all trees t and nodes x < y,
(x, y) ∈ [[�]]t iff wxy ∈ L�. Conversely, for every regular word language L over ΣΦ there
is a downward path expression �L built up from downward node expressions in Φ, such
that for all trees t and nodes x < y, (x, y) ∈ [[�L]]t iff wxy ∈ L. Both directions follow
from the close syntactic correspondence between path expressions and regular expressions.
It follows by standard automata theoretic results that the downward path expressions are
closed under intersection and complementation.

Lemma 9 On binary trees,

(a) For every two downward path expressions �, � there is a downward path expression
, such that for all binary trees t, [[]] = [[�]] ∩ [[�]].

(b) For every downward path expression � there is a downward path expression � such
that, for all binary trees t, [[�]] = {(x, y) ∣ x ≤ y} ∖ [[�]].

Similarly, the following Lemma follows by standard automata theoretic results. We give
an explicit proof for the sake of completeness.

10 ⋅ Balder ten Cate and Luc Segoufin

Lemma 10 (Uniform splittings) Every downward path expression � is equivalent to a
finite union

∪
i≤k(�i/�i) with �i, �i downward path expressions, such that for all trees t

with nodes x < y < z, (x, z) ∈ [[�]] if and only if, for some i ≤ k, (x, y) ∈ [[�i]] and
(y, z) ∈ [[�i]].

PROOF. The proof proceeds by induction on �. If � is of the form ↓i or ., then it has
the uniform splitting (↓i /.) ∪ (./ ↓i) or ./., respectively. If � of the form � ∪ , then the
uniform splitting of � is simply the union of the uniform splittings of � and . If � is of
the form �[�], then, by induction hypothesis, � has a uniform splitting

∪
i≤n(�i/�i), and

hence
∪
i≤n(�i/�i[�]) is a uniform splitting of �.

Next, suppose � is of the form �I/�II. By induction hypothesis, �I and �II have uniform
splittings

∪
i≤n(�I

i/�
I
i) and

∪
i≤m(�II

i /�
II
i), respectively. Suppose that x < y < z and

(x, z) ∈ [[�]]. Then, by definition, there is a node u such that (x, u) ∈ [[�I]] and (u, z) ∈
[[�II]]. Clearly, either x < y < u < z or x < u < y < z. It follows that � is equivalent to∪
i≤n(�I

i/(�
I
i/�

II))∪
∪
i≤m((�I/�II

i)/�II
i), and that the latter is in fact a uniform splitting.

Finally, let � be of the form �∗. By the induction hypothesis, � has a uniform splitting∪
i≤n(�i/�i). It follows that � is equivalent to . ∪ (�∗/

∪
i≤n(�i/�i)/�

∗) and hence to
(./.) ∪

∪
i≤n((�∗/�i)/(�i/�

∗)), which is a uniform splitting.

3.2 Tree patterns

A tree pattern will consist of a tree-configuration for the relevant variables, plus a labeling
of the edges in the tree with downward path expressions. We first give the definition of
tree configurations. Unlike with binary trees as in Section 2.1, in the definition of tree
configurations, we will use trees with at most two children, i.e. we do not require the first
child of a node to be defined whenever the second child is, or vice versa. We call those
trees pre-binary trees.

Definition 11 (Tree configurations) A tree configuration for a finite set of variables V is
a pair (t, �), where t is an unlabeled finite pre-binary tree and � : V → dom(t) maps
variables to nodes, such that each node of t is either the image of a variable, or is the least
common ancestor of two nodes that are images of variables, or is the root.

Fact 12 A tree configuration for n variables can have at most 2n+ 1 nodes. Hence, there
are only finitely many tree configurations for a given finite set of variables.

Definition 13 (Tree patterns) A tree pattern over a finite set of variables V is a tuple
p(V) = (t, �, �), where (t, �) is a tree configuration for V , and � assigns to each edge of
t a downward path expression. In case t consists of only one node (and therefore has no
edges), then � assigns to the node a downward node expression.

A union of tree patterns over a finite set of variables V is an expression of the form
P (V) = p1(V) ∪ ⋅ ⋅ ⋅ ∪ pn(V), n ≥ 0, with p1(V), . . . , pn(V) tree patterns over V .

For convenience, if p = (t, �, �) is a tree pattern and v a variable, then we will often
write p(v) meaning �(v).

The semantics of tree patterns is based on the notion of an embedding. An embedding
of a tree t into a tree t′ is a map f : dom(t)→ dom(t′) such that (i) the root is preserved,
i.e., f(") = ", (ii) descendant relationships are preserved, i.e., f(x) <i f(xi), for all

XPath, Transitive Closure Logic, and Nested Tree Walking Automata ⋅ 11

xi ∈ dom(t) with i ∈ {1, 2}, and (iii) least common ancestors are preserved, i.e., if x is
the least common ancestor of y and z in t, then f(x) is the least common ancestor of f(y)
and f(z) in t′.

Definition 14 (Semantics of tree patterns) Given a tree pattern p(V) = (t, �, �) and a
tree t′, a faithful embedding of p into t′ is an embedding f : t→ t′ such that

—for all xi ∈ dom(t) (with i ∈ {1, 2}), (f(x), f(xi)) ∈ [[�(x, xi)]]t
′
,

—if dom(t) = {"}, then " ∈ [[�(")]]t
′

A tree pattern p(v1, . . . , vn) is satisfied by a n-tuple of nodes x1, . . . , xn in a tree t (nota-
tion: t ∣= p [x1, . . . , xn]) if there is a faithful embedding of p into t sending �(vi) to xi for
all i ≤ n.1 A union of tree patterns P (v1, . . . , vn) =

∪
i≤k pi(v1, . . . , vn) is satisfied by a

n-tuple of nodes x1, . . . , xn in a tree t if pi(v1, . . . , vn) is satisfied by x1, . . . , xn for some
i ≤ k.

Since we have a notion of satisfaction for unions of tree patterns, we can also speak of
equivalence between unions of tree patterns, node or path expressions, and FO(MTC)-
formulas. Unions of tree patterns form a natural generalization of Regular XPath(W)
node and path expressions to k-ary queries with k > 2. Indeed, as the following
Lemma shows, unions of tree patterns in at most two free variables variables correspond
to Regular XPath(W) node or path expressions.

Lemma 15 On binary trees,

(1) every union of tree patterns with no variable is equivalent to a Regular XPath(W)
node expression interpreted at the root of the tree.

(2) every union of tree patterns in a single variable v is equivalent to a Regular XPath(W)
node expression.

(3) every union of tree patterns in variables u, v is equivalent to a Regular XPath(W) path
expression.

PROOF. We prove the second claim, by means of a case distinction. The proofs for the
other claims are similar. There are three kinds of tree patterns in a single variable:

v ∙ � ,
∙
/ �
∙ v

and
∙
∖ �
∙ v

.

In the first case, the equivalent Regular XPath(W) node expression is simply ¬⟨↑⟩ ∧ �, in
the second case it is ⟨(� ∩ (↓1/↓

∗))−1[¬⟨↑⟩]⟩, where �−1 is the converse of �, and in the
third case it is ⟨(� ∩ (↓2/↓

∗))−1[¬⟨↑⟩]⟩. Note that we use the fact that the downward path
expressions are closed under intersection, cf. Lemma 9. It follows that every union of tree
patterns in v is equivalent to a disjunction of such Regular XPath(W) node expressions.

Furthermore, unions of tree patterns still form a fragment of FO(MTC). Indeed, the
translation from node and path expressions to FO(MTC) we gave in Lemma 6 can be
extended to tree patterns, showing that every tree pattern is equivalent to a conjunctive

1This notation, often used in logic, assumes an ordering on the variables v1, . . . , vn, just to improve readability.

12 ⋅ Balder ten Cate and Luc Segoufin

query over FO(MTC)-translations of downward node or path expressions. We will show
in the next section that there is also a translation in the other direction, and hence unions of
tree patterns have exactly the same expressive power as FO(MTC)-formulas. Theorem 1
then follows immediately, since, by Lemma 15 unions of tree patterns in at most two
variables are equivalent to Regular XPath(W) node or path expressions which in turn are
equivalent to nested TWA by Lemma 7.

4. THE TRANSLATION FROM FO(MTC) TO UNIONS OF TREE PATTERNS

We now turn to the translation from FO(MTC) formulas to unions of tree patterns. In
fact, we make use of the normal form fragment FO(MTC<) of FO(MTC) provided by
Lemma 4. We show that every atomic formula of FO(MTC<) is equivalent to a union of
tree patterns, and next that unions of tree patterns are closed under all desired operations:
intersection, complement, existential quantification and the restricted form of transitive
closure that is part of FO(MTC<). As in the previous section we restrict attention to binary
trees, the generalization to arbitrary unranked ordered trees will be presented in Section 7.

4.1 Translation of atomic formulas and FO connectives

The following proposition provides the base case for our inductive translation.

Proposition 16 Every atomic FO(MTC<) formula is equivalent on binary trees to a union
of tree pattern in the same variables.

PROOF. The atomic formulas of FO(MTC<) are of the formulas of the form u < v,
u ≺ v, P�(u), u = v and ⊤. The atomic formula u < v is equivalent to the union of
all tree patterns p = (t, �, �) in u, v with p(u) < p(v) where � assigns to each edge the
downward path expression ↓+. Note that, by Fact 12, there are only finitely many such tree
patterns. The other cases are treated similarly.

We show that union of tree patterns have the same expressive power FO(MTC<) by
showing that union of tree patterns are closed under all first-order operations and under
transitive closure. As one would expect, the difficult case is closure under transitive clo-
sure. The following sequence of propositions prove closure under all first-order operations.

Proposition 17 (Expansion) For each union of tree patterns P (u1, . . . , un) there is a
union of tree patterns P ′(u1, . . . , un, v) such that for all binary trees t and nodes
x1, . . . , xn, y, we have that t ∣= P ′ [x1, . . . , xn, y] iff t ∣= P [x1, . . . , xn].

PROOF. For each tree pattern p(u1, . . . , un) in P (u1, . . . , un), we consider all possi-
ble placements of v relative to u1, . . . , un and their least common ancestors. There are
four cases: (i) v coincides with an existing node of the tree pattern, (ii) v is a descendant
of one of the leafs of the tree pattern, (iii) v is located on the path between two nodes
of the tree pattern, or (iv) v is a descendant of a node on the path between two nodes
of the tree pattern. Correspondingly, we construct a union of tree patterns, one for each
possibility. In the first case, we simply take the tree pattern p(u1, . . . , un) and extend
the variable mapping to send v to the corresponding node. In the second case, we ex-
tend p(u1, . . . , un) with an extra node and edge, where the edge is labeled by the trivial
downward path expression ↓+, and the variable mapping is extended to send v to the new

XPath, Transitive Closure Logic, and Nested Tree Walking Automata ⋅ 13

node. In the third case, one of the edges of p(u1, . . . , un) is split in two, and the vari-
able mapping is extended to send v to the newly added intermediate node. Lemma 10 is
used to split the downward path expression of the original edge into two parts. Finally,
in the last case, one of the edges of p(u1, . . . , un) is split in two and also an extra node
is added as a child of the newly added intermediate node, Lemma 10 is again used to
split the downward path expression of the original edge into two parts, and the second
new edge is labeled by the trivial downward path expression ↓+. All tree patterns ob-
tained in this way, from each p(u1, . . . , un) in P (u1, . . . , un), are collected into a union
of tree patterns P ′(u1, . . . , un, v). It follows from immediately from the construction that
t ∣= P ′ [x1, . . . , xn, y] iff t ∣= P [x1, . . . , xn].

Proposition 18 (Disjunction) For all unions of tree patterns P1(u1, . . . , un) and
P2(u1, . . . , un) there is a union of tree patterns P (u1, . . . , un) such that for all binary
trees t with nodes x1, . . . , xn, t ∣= P [x1, . . . , xn] if and only if either t ∣= P1 [x1, . . . , xn]
or t ∣= P2 [x1, . . . , xn].

PROOF. It suffices to take P (u1, . . . , un) = P1(u1, . . . , un) ∪ P2(u1, . . . , un).

Proposition 19 (Conjunction) For all unions of tree patterns P1(u1, . . . , un) and
P2(u1, . . . , un) there is a union of tree patterns P (u1, . . . , un) such that for all binary
trees t with nodes x1, . . . , xn, t ∣= P [x1, . . . , xn] if and only if t ∣= P1 [x1, . . . , xn] and
t ∣= P2 [x1, . . . , xn].

PROOF. Since disjunction distributes over conjunction, it suffices to show that the con-
junction of two tree patterns p1(u1, . . . , un), p2(u1, . . . , un) is definable by a tree pattern
p(u1, . . . , un). The proof proceeds by a case distinction. If the underlying tree configu-
ration of p(u1, . . . , un) and p′(u1, . . . , un) is different (i.e., non-isomorphic), then clearly
the two cannot be satisfied at the same time. Hence, we can pick p(u1, . . . , un) to be any in-
consistent tree pattern, i.e., a tree pattern in which one of the edges is labeled by .[W⊥]. If,
on the other hand, the underlying tree configurations of p1(u1, . . . , un) and p2(u1, . . . , un)
are isomorphic, then p(u1, . . . , un) can be defined as the tree pattern whose underlying tree
configuration is the one of p1 and p2 and where each edge is labeled by the intersection of
the downward path expressions labeling the edge in p1(u1, . . . , un) and p2(u1, . . . , un).
Note that we use here Lemma 9.

Proposition 20 (Negation) For each union of tree pattern P (u1, . . . , un) there is a union
of tree patterns P ′(u1, . . . , un) such that for all binary trees t with nodes x1, . . . , xn,
t ∣= P ′ [x1, . . . , xn] if and only if t ∕∣= P [x1, . . . , xn].

PROOF. Since we already established closure under conjunction and disjunction it suf-
fices to consider negations of a single tree pattern. If a tree pattern p(u1, . . . , un) fails to
be satisfied by a sequence of elements x1, . . . , xn in a tree t, it is either because the relative
positions of x1, . . . , xn in the tree do not conform to the underlying tree configuration of
p(u1, . . . , un), or because one of the edge labels of p(u1, . . . , un) is not satisfied. Corre-
spondingly, we define P ′(u1, . . . , un) to be the union of the following (finitely many) tree
patterns:

14 ⋅ Balder ten Cate and Luc Segoufin

—for each tree configuration for u1, . . . , un that is different than the one underlying p, take
the tree pattern based on this configuration, in which each edge is labeled by the trivial
downward path expression ↓+.

—for each edge e in the underlying tree configuration of p(u1, . . . , un), take a copy of
p(u1, . . . , un) in which e is labeled by the complement of the downward path expression
labeling e in p(u1, . . . , un), while all other edges are labeled by the trivial downward
path expression ↓+. Note that we use here Lemma 9.

It is easily seen that t ∣= P ′ [x1, . . . , xn] if and only if t ∕∣= P [x1, . . . , xn].

Proposition 21 (Existential quantification) For each union of tree patterns
P (u1, . . . , un, v) there is a union of tree patterns P ′(u1, . . . , un) such that for all
binary trees t with nodes x1, . . . , xn, t ∣= P ′ [x1, . . . , xn] if and only if there is a node y
such that t ∣= P [x1, . . . , xn, y].

PROOF. We start by taking each tree pattern in P (u1, . . . , un, v) and removing the label
v. The tree patterns obtained in this way are in general not well formed: they may contain
nodes that are neither the image of a variable, nor the least common ancestor of nodes
that are the image of a variable, nor the root. However, any such redundant nodes can be
eliminated from the tree pattern by applying one or more times the rewrite rules in Figure 1,
where the redundant node is indicated by ∘ and symmetric cases of the rules are left out.
Note that we use here again Lemma 9.

We are left with the task to show that the unions of tree patterns are closed under the
transitive closure operator, which we will prove next.

4.2 Closure under TC<

Our aim in this section is to show that the unions of tree patterns are closed under tran-
sitive closure. In fact, by Lemma 4 it is enough to show closure under transitive closure
for unions of tree patterns of a restricted shape. More precisely, it is enough to prove
Proposition 23 below.

Definition 22 A 4-pattern is a tree pattern p(u, v, x, y) satisfying p(u) < p(v), p(u) ≤
p(x), p(y) and p(v) ∕< p(x), p(y).

Proposition 23 Let P (u, v, x, y) be a union of 4-patterns. Then there is a union of
tree patterns P ′(u, v, x′, y′) such that for all binary trees t and nodes u, v, x′, y′, t ∣=
P ′(u, v, x′, y′) iff (x′, y′) belongs to the transitive closure of the relation {(x, y) ∣ t ∣=
P (u, v, x, y)}.

We first prove a special case of Proposition 23. We call 4-pattern linear if x and y lie on
the path from u to v, i.e., if there are no forks in the pattern.

Lemma 24 For each union of linear 4-patterns P (u, v, x, y) there is a union of linear 4-
patterns P ′(u, v, x′, y′) such that for all trees t and nodes u, v, x′, y′, t ∣= P ′(u, v, x′, y′)
iff (x′, y′) belongs to the transitive closure of the relation {(x, y) ∣ t ∣= P (u, v, x, y)}.

XPath, Transitive Closure Logic, and Nested Tree Walking Automata ⋅ 15

Rule 1 (non-leaf):

...
∙
/ �
∘
/ �
∙
...

becomes

...
∙
/ �/(� ∩ ↓1/↓∗)
∙
...

Rule 2 (leaf without sibling):

...
∙... ∖ �
∙
∖ �
∘

becomes

...
∙... ∖ �[⟨W (� ∩ ↓2/↓∗)⟩]
∙

Rule 3 (leaf with sibling):

...
∙

� / ∖ �
∙ ∘
...

becomes

...
∙
/ .[⟨W (� ∩ ↓2/↓∗)⟩]/�
∙
...

Rule 4 (only node besides the root):
∙
/ �
∘

becomes
∙ ⟨� ∩ ↓1/↓∗⟩

Fig. 1. Rules for eliminating redundant nodes from a tree pattern

PROOF. As described in Section 3.1, downward path expressions can be seen as defining
regular string languages over an alphabet consisting of Boolean combinations of downward
node expressions and sibling order information. More precisely, if Φ is a finite set of down-
ward node expressions and Σ = ℘(Φ) × {r, 0, 1}, then every downward path expressions
with downward node tests from Φ can be seen as defining a regular string language over
the alphabet Σ. It follows that every union of linear 4-patterns P (u, v, x, y) defines, in the
same way, a 4-ary MSO query on finite strings over the alphabet Σ (where the strings cor-
respond to paths in trees from the root to v), and therefore also [TCxyP (u, v, x, y)](x′, y′).

Let �(u, v, x′, y′) be the MSO formula on finite Σ-strings thus obtained from
[TCxyP (u, v, x, y)](x′, y′). It is well known that, on finite strings, every MSO definable
n-ary query (x1, . . . , xn) is equivalent to a disjunction of formulas of the form

x�(1) ≤ x�(2) ≤ . . . ≤ x�(n)∧
 [...,1](x�(1)) ∧ [1,2](x�(1), x�(2)) ∧ ⋅ ⋅ ⋅ ∧ [n−1,n](x�(n−1), x�(n)) ∧ [n,...](x�(n))

where � : {1, . . . , n} → {1, . . . , n} is a permutation and the “segment formulas”
 [...,�(1)], . . . , [�(n),...] express that the corresponding segment of the string belongs to
some regular language (over Σ). In particular, we may assume that �(u, v, x′, y′) is of this
form (with n = 4).

By Kleene’s theorem, we can translate each segment formula to a regular expression

16 ⋅ Balder ten Cate and Luc Segoufin

over Σ, which can again be seen as a downward path expression with downward node tests
from Φ.

All together, this shows that we can translate �(u, v, x′, y′) to a union of linear 4-patterns
P ′(u, v, x′, y′), which then defines [TCxyP (u, v, x, y)](x′, y′).

We also know that the unions of linear 4-patterns are closed under union and composi-
tion (i.e., for all unions of linear 4-patterns P1(u, v, x, y), P2(u, v, x, y) there is a union of
linear 4-patterns P (u, v, x, y) such that for all trees t and nodes u, v, x, y, t ∣= P (u, v, x, y)
iff there is a node z such that t ∣= P1(u, v, x, z) and t ∣= P2(u, v, z, y)). Closure under
union is trivial, and closure under composition follows from Proposition 19 and Proposi-
tion 21 (inspection of the proof of these propositions shows that the resulting tree patterns
are indeed again linear 4-patterns). In other words, the unions of linear 4-patterns are
closed under all three regular operations: transitive closure, union and composition. This
immediately gives us the following:

Lemma 25 Fix a finite set of linear 4-patterns P (u, v, x, y). For every regular language
L over the alphabet P (u, v, x, y), there is a union of linear 4-patterns P ′(u, v, x′, y′) such
that, for all trees t and nodes u, v, x′, y′, the following are equivalent:

(1) t ∣= P ′(u, v, x′, y′),

(2) there is a word w = p1 . . . pn ∈ L, where each pi(u, v, x, y) is a linear 4-pattern
from P (u, v, x, y), and there is a sequence of nodes x1, . . . , xn+1, such that x1 = x′,
xn+1 = y′, and for all i ≤ n, t ∣= pi(u, v, xi, xi+1).

We are ready to proceed with the proof of Proposition 23.

PROOF OF PROPOSITION 23. Let P (u, v, x, y) be any finite set of 4-patterns. We clas-
sify these 4-patterns p(u, v, x, y) ∈ P into three groups: those in which lca(x, v) <
lca(y, v), those in which lca(y, v) < lca(x, v) and those in which lca(x, v) = lca(y, v).
We call these downward, upward and subtree 4-patterns, reflecting the fact that walking
from x to y in the tree pattern involves downward, upward or no movement along the path
from u to v, and we denote by P↓, P↑, Psubtree the set of downward, upward and subtree
4-patterns in P . Equivalently, a 4-pattern is downward if it is of the form in Figure 2(a)
where the sibling order may be changed and some of the edges may be contracted (but not
the edge from lca(x, v) to lca(y, v)), it is upward if it is of the form in Figure 2(b) where
the sibling order may be changed and some of the edges may be contracted (but not the
edge from lca(y, v) to lca(x, v)), and it is a subtree 4-pattern if it is of the form in Fig-
ure 2(c), where the sibling order may be changed and some of the edges may be contracted.
The node lca(y, v) has been highlighted in Figure 2 to anticipate the fact that it will play
a special role in the construction below, and each edge is marked by a label �i for ease of
reference.

Intuitively patterns of the form P↓, P↑ can be reduced to Lemma 25 while patterns of
the form Psubtree needs to be combined as a downward node expression. In order to
achieve the latter, for p ∈ Psubtree, we will use �pxy as a shorthand for the path expression
�−1

3 [⟨�−1
2 [root]⟩]/�4, which describes a walk from the node x to the node y inside the

subtree below lca(x, v) (= lca(y, v)), where �2, �3 and �4 are the path expression of the
pattern p according to Figure 2. For a set S ⊆ Psubtree we will use �Sxy as a shorthand for

XPath, Transitive Closure Logic, and Nested Tree Walking Automata ⋅ 17

x

y v

u

α0

α1

α2 α3

α4 α5
y

x v

u

α0

α1

α4 α3

α2 α5
x y v

u

α0

α1

α2
α3 α4

α5

(a) (b) (c)

Fig. 2. Downward, upward, and subtree 4-patterns

the path expression (
∪
p∈S

�pxy)∗ which describes a path in the subtree below lca(x, v) =

lca(y, v) where each step satisfies the constraints below lca(x, v) of a tree pattern in S.
We have to construct a union of tree patterns P ′(u, v) such that for all trees t and nodes

u, v, it is the case that t ∣= P ′(u, v) iff (u, v) belongs to the transitive closure of the binary
relation {(x, y) ∣ t ∣= P (u, v, x, y)}. We will use Lemma 25 for this, by constructing a
non-deterministic finite automaton over an alphabet consisting of linear 4-patterns. More
precisely, define define an NFA A = (Σ, Q, �, q0, F) as follows:

—The set of states Q contains a state qp for each p(u, v, x, y) ∈ P↓ ∪ P↑, plus the initial
state q0. Intuitively, the state qp represents a situation, during the walk from u to v,
where one is currently in a node matching the lca(y, v)-node of p, having just arrived
there from a node matching the node x of p.

—The alphabet Σ consists of finitely many linear 4-patterns pi,j,S one for each pi, pj ∈
P↓ ∪P↑ and S ⊆ Psubtree. Intuitively, pi,j,S(u, v, x′, y′) expresses the following move-
ment in the tree: starting in a node matching the lca(y, v)-node of pi, move to a node
matching the y-node of pi. Next, move around in the subtree below the node lca(y, v)
by making any number of executions of subtree patterns in S. Finally, having arrived
at a point that can be matched with the x-node of pj , move to the node corresponding
to the lca(x, v)-node of pj and then to node corresponding to the lca(y, v)-node of pj .
The precise definition of pi,j,S is as in Figure 3. Note that the set S need to be guessed
in advance as, for instance, the constraint induced by a pattern in S between the root and
u need to be verified from the beginning.

—For each pairs pi, pj ∈ P↓ ∪ P↑ and for each subset S ⊆ Psubtree, there is a transition
from the state qpi to the state qpj labeled by the linear 4-pattern pi,j,S(u, v, x′, y′) (which
belongs to the alphabet Σ). Furthermore, there is a transition from the initial state q0 to
every state qp(u,v,x,y) for p ∈ P↓ such that p(u) = p(x), where the transition is labeled
by the following linear 4-pattern (assuming that p is of the form in Figure 2(a) but with
the edges between x and u contracted):

18 ⋅ Balder ten Cate and Luc Segoufin

x'

y'

v

u
 ∩{α0

q | q ∈ S ∪{pj}}

 ∩{α1
q | q ∈ S ∪{pj}}

 ∩{α5
q | q ∈ S ∪{pj}}

 .[W(α4
pi / αxy

S / (α2
 pj)-1[root])] / α3

pj y'

x'

v

u
 ∩{α0

q | q ∈ S ∪{pj}}

 ∩{α1
q | q ∈ S ∪{pj}}

 ∩{α5
q | q ∈ S ∪{pj}}

α3
pj [W(α4

pi / αxy
S / (α2

 pj)-1[root])]

(a) The linear 4-pattern pi,j,S in the case where (b) The linear 4-pattern pi,j,S in the case where
pj ∈ P↓ is of the form depicted in Figure 2(a) pj ∈ P↑ is of the form depicted in Figure 2(b)

Fig. 3. The linear 4-patterns pi,j,S .

y'

v

u, x'

 α0
p

 α3
p

 α5
p

—The final states are all those states qp(u,v,x,y) where p(y) = p(v), as well as the initial
state q0.

It is not hard to see that, the union of linear 4-patterns obtained from this automaton
by means of Lemma 25 defines the transitive closure of the relation {(x, y) ∣ t ∣=
P (u, v, x, y)}.

5. STRICT CONTAINMENT IN MSO

In this section we prove Theorem 2, which says that nested TWA (or equivalently,
FO(MTC)) fail to recognize all regular tree languages. The separating tree language that
we use is the same tree language used in [Bojańczyk et al. 2006] to separate the regular
tree languages from those recognized by TWA with pebbles. Actually, not much has to
be done for the proof as the construction used in [Bojańczyk et al. 2006] contains most of
what is needed to show that nested TWA fail to capture all regular tree languages.

The separating language uses only finite and binary trees, two properties expressible
in FO(MTC). We therefore show the stronger result that FO(MTC) fail to recognize all
regular tree languages over finite and binary trees.

The goal is to construct by induction tree languages Lk such that Lk is not recognized by
any (k−1)-nested TWA. The separating language is then essentially the union over all k of
the Lk. The basis of the induction relies on the regular tree language that is not recognized
by any TWA as exhibited in [Bojańczyk and Colcombet 2008]. For technical reasons we
actually need a slightly more powerful basis hypothesis and therefore a language slightly
more complex as introduced in [Bojańczyk et al. 2006].

The precise description of the regular tree language not recognized by any TWA will
not be important here but we will make use of some of its properties that we now describe.

XPath, Transitive Closure Logic, and Nested Tree Walking Automata ⋅ 19

Fig. 4. The construction of L2. The left tree is 2-separated and belongs to L2 iff the right one is in L1.

This tree language is a set of quasi-blank-trees. Those are trees over the alphabet {a,b} in
which the label a occurs only at leaves. Hence essentially all the useful information about
the tree is located into its leaves that may be labeled either with a or with b. Typically a
language over quasi-blank-trees express properties about the structure induced by the a-
leaves, like the relative positions of their common ancestors and such. The idea is that this
structure is difficult to compute for TWA as they “loose their way” in the middle of the tree
as it contains only b-nodes. The language L1 contains only quasi-blank-trees and is such
that no TWA can recognize L1 or the language consisting of the quasi-blank-trees not in
L1.

We now give the intuition that underlines the construction of L2 from L1 as it already
contains all the ideas of the general inductive steps. In order to define L2 we consider
trees that are 2-separated. Those are trees that can be decomposed as (i) a top part, that
contains only b-nodes, (ii) a maximal antichain of c-nodes that separate completely the top
part from the rest of the tree and, (iii) each such c-node is the root of a quasi-blank-tree,
denoted c-subtree in the sequel. A 2-separated tree belongs to L2 if after replacing each
c-subtree with a node of label a if the subtree belongs to L1 or with a node of label b
otherwise, the resulting tree belongs to L1. The construction is depicted in Figure 4.

Intuitively a 1-nested TWA cannot recognize L2 for the following reasons: While the
automata is in the top part, it cannot infer any relevant information from its nested subruns
because, by induction, those cannot tell whether the subtree rooted at a c-node belongs or
not to L1 and hence whether this node should be considered as a leaf of label a or of label
b. Hence at an inner node of the top part it behaves as a TWA and hence, by induction,
cannot tell whether this top part is in L1 or not.

There is one difference however between the behavior of the 1-nested TWA and the
behavior of the TWA: Even if the nested subruns cannot say whether a c-node should be
interpreted as a a or as a b, they can perform several computations that a TWA cannot do,
like testing whether the subtree rooted at the current node has a even number of node, or
testing whether the path from the current node to the root has odd length. Hence, on the
top part of the tree, a 1-nested TWA behaves like a TWA extended with extra tests that are
blind in the sense that they cannot see the labels of the nodes. We formalize this concept
of blind tests using the notion of an oracle-TWA. In order to make the induction work we
thus need to choose L1 so that no oracle-TWA can recognize it. Such a tree language was
constructed in [Bojańczyk et al. 2006].

We will first recall the results on oracle-TWA from [Bojańczyk et al. 2006] that we
use, then formally define the tree languages Lk, and finally state and prove the inductive

20 ⋅ Balder ten Cate and Luc Segoufin

hypothesis.

5.1 Oracle-TWA

Oracle-TWA extend the model of nested TWA by allowing MSO tests, but only on the
structure of the tree, without any access to the label of the nodes of the tree. We recall the
relevant definitions from [Bojańczyk et al. 2006].

A structure oracle O is a (parallel) deterministic bottom-up tree automaton that is label
invariant. That is, any two trees that have the same nodes get assigned the same state by
O. Therefore, a structure oracle is defined by its state space Q, an initial state s0 ∈ Q
and a transition function Q × Q → Q. We write tO for the state of O assigned to a tree
t. This notation is extended to contexts: given a context C, CO : Q → Q is defined by
CO(q) = (C[t])O, where t is some tree with q = tO. (All states are assumed reachable.)

For a tree t and a node v of t, and a structure oracle O, the structural O-information
about (t, v) is the pair

(context(t, v)O, subtree(t, v)O) ∈ QQ ×Q .

It should be noted that the result of any unary query expressible in monadic second-order
logic which does not refer to the label predicates can be calculated based on the structural
O-information for some O (and vice-versa). Since the only type of oracles we use in this
paper are structure oracles, we just write oracle from now on.

An oracle-TWA (OTWA) is a TWA extended by a structure oracleO. The only difference
to a usual TWA is in the definition of the transition relation which also takes into account
the structural O-information about (t, v), when at a node v of t. The size of a OTWA is
defined as the total-size of the TWA part plus the number of states of the oracle part.

The behavior of an OTWA, or a nested TWA, in a tree is, informally, the set of state
transitions corresponding to root-to-root runs of the automaton in the tree. More formally
we define the behavior bA(t) of an OTWA or nested TWAA in a tree t as a subset ofQ×Q,
where Q is the set of states of A, such that the pair (p, q) is in bA(t) iff there exists a run of
A in t, starting at the root in state p, ending at the root in state q. Similarly we define the
behavior of A in a context C by looking at the runs of A starting and ending at the port of
C.

The following result of [Bojańczyk et al. 2006] plays an important role in the definition
of the languages Lk (k > 1): it provides not only for the base case L1, but it is also used
in the inductive definition of Lk with k > 1.

Proposition 26 ([Bojańczyk et al. 2006]) There exists a language of finite quasi-blank-
trees L1 such that for any number m, there exists a tree s ∈ L1 and a tree t ∕∈ L1, such
that for any OTWA A of size bounded by m, the behavior of A on s is the same as the
behavior of A on t.

5.2 Inductive definition of the tree languages Lk
A k-separated tree is a tree defined by induction, the base case being the 1-separated trees
which are the quasi-blank-trees. A k-separated tree can be decomposed as (i) a top part,
that contains only b-nodes, (ii) a maximal antichain of c-nodes that separate completely the
top part from the rest of the tree and, (iii) each such c-node is the root of a (k−1)-separated
tree, denoted by c-subtree in the sequel.

XPath, Transitive Closure Logic, and Nested Tree Walking Automata ⋅ 21

Definition 27 Lk (k > 1) is the set of k-separated trees for which the following holds:
when each maximal c-subtree is replaced by a node labeled a in case the subtree belongs
to Lk−1 and with a node labeled b otherwise, the resulting tree belongs to L1.

Given k and a (k−1)-nested TWAA, we want to construct two trees sk and tk such that
A accepts sk iff A accepts tk and sk ∈ Lk while tk ∕∈ Lk. We shall do this by induction
replacing in a sufficiently big tree in Lk several subtrees sk−1 by subtrees tk−1 in a way
that the resulting tree is no longer in Lk. We therefore need a inductive hypothesis stronger
than just the fact that A has the same behavior on sk−1 and tk−1: we need that A cannot
distinguish Csk−1 from Ctk−1 for all contexts C such that Csk−1 is a k-separated tree.
The technical difficulty is that the behavior of A in sk−1 and in tk−1 does depend on C
because of its nested subcomputations.

We relativize the notion of behavior to a context C. Given a tree t, a context C and a
nested TWA A, the behavior of A in t relative to C is the set of pairs of states (p, q) such
that there is a run of A in Ct, starting at the root of t in state p, ending at the root of t
in state q and such that A never leaves t during the run. Note that even if A does not go
outside t, its nested subcomputations may, and the behavior of A in t relative to C depends
on C. Similarly we define the notion of behavior of A in C relative to t, by considering
this time runs of A that starts and ends at the hole of C, stays inside the context C, but its
nested subcomputations may visit t.

The relative behavior of A in t is therefore essentially a function from a context C to
a behavior. It will be important for us that this function can be finitely represented and
computed by a tree automata. Consider for instance the case of a 1-nested TWA A. At any
node of t, the transitions of A depend by definition on the existence of runs of some TWA.
Those runs may occur in t but also in the context C. But for the part occurring in C it is
sufficient to know the behavior of those TWA in C, a finite amount of information! The
extension to arbitrary k is a bit tricky: A relative behavior of a k-nested TWA in t depends
on the behavior of (k − 1)-nested TWA in C, but this depends on the relative behaviors
of (k − 2)-nested TWA in t... We note that the finite presentation of relative behavior we
use below is different from the one used in [Bojańczyk et al. 2006] for TWA with pebbles.
The reason is that the relative behavior of a TWA using (k − 2) pebbles depends on the
positions of pebbles k − 1 and k in t, but in our case, there is no such pebbles, hence it
depends only on C and t. Therefore the finite presentation of relative behaviors is simpler
for nested TWA than for TWA with pebbles.

LetA be a nested TWA of rank k and let (Aj)j∈J be all the nested TWA (of rank strictly
less than k) occurring in the inductive definition of A. Let Q be the set of states of A and
(Qj)j∈J be the set of states of Aj . The basic relative behavior type of A on a tree t is a
function � from Πj∈J℘(Qj × Qj) to a subset of Q × Q such that for any context C, if
for all j ∈ J , �j is the behavior of Aj in C relative to t, then �((�j)j∈J) is the behavior
of A in t relative to C. In the degenerated case k = 0 this is simply a subset of Q × Q.
The relative behavior type of A on t is the set {�, (�j)j∈J} where � is the basic relative
behavior type of A on t while �j is the basic relative behavior type of Aj on t.

We are now ready to state and prove our induction hypothesis:

Proposition 28 For any numbers m and k ≥ 1, there exists a tree sk ∈ Lk and a tree
tk ∕∈ Lk, such that for any (k − 1)-nested TWA A of size bounded by m, the relative
behavior type of A in sk is the same as the relative behavior type of A in tk.

22 ⋅ Balder ten Cate and Luc Segoufin

PROOF. The proof is by induction on k. The base case of k = 1 is a special case
of Proposition 26 with a trivial structure oracle. Assume now that k > 1. Fix m and
assume by induction that sk−1 and tk−1 satisfies the statement of the proposition form and
k − 1. Assume also by induction that s1 and t1 satisfies the statement of the proposition
for f(m) and k = 1 for an appropriate function f that will be apparent from the proof
below. Construct sk as follows. Consider s1 and replace each leaf of label a with a copy
of sk−1 after relabeling its root with c, and each leaf of label b with a copy of tk−1 after
relabeling its root with c. Similarly we construct tk starting from t1. Consider a nested
TWA A of size smaller than m and of rank smaller of equal to k − 1. We show that the
relative behavior type of A in sk is the same as its relative behavior type in tk. This last
assertion is proved by induction on the rank of A. We only prove here the most difficult
case when the rank of A is exactly k − 1. The cases when the rank is strictly smaller than
k − 1 are special (and simpler) cases of this one.

Assume (Aj)j∈J are all the nested TWA occurring in the inductive definition of A, and
let lj be the rank of Aj and let �j be the basic relative behavior type of Aj on sk and �j
be the basic relative behavior type of Aj on tk. Similarly let � and � be the basic relative
behavior type of Aj on sk and tk. Because Aj has a rank strictly smaller than k − 1, we
already know that �j = �j and � = �. It remains to prove that � = �.

Consider a context C and let, for any j ∈ J , �j be the behavior of Aj in C relative to
tk. Note that because �j = �j we know that �j is also the behavior of Aj in C relative to
sk. Hence �j is independent of whether tk or sk is attached to C.

To show that � = � we will construct an OTWA B of size bounded by f(m) that
simulates in s1 the behavior of A in the top part of sk and simulates in t1 the behavior of
A in the top part of tk and we conclude that they are the same using Proposition 26. The
idea is that because the Aj have a rank strictly smaller than k − 1 and a size smaller than
m, they cannot distinguish sk−1 from tk−1 and hence their behavior in the top part of sk
or tk can be simulated by a structure oracle.

For j ∈ J , let �j be the relative behavior type of Aj in sk−1 (and hence also in tk−1 by
induction hypothesis).

Based on (�j)j∈J and (�j)j∈J we construct for any j ∈ J and any pair of state (p, q) of
Aj , a MSO formula 'jp,q(x, y) such that the formula is true for a pair of nodes x, y of s1

(resp. t1) iff Aj has a run in Csk (resp. Ctk) starting in state p at the copy x′ of x inside
the top part of sk (resp. tk) and ending in state q at y′ the copy of y inside the top part of sk
(resp. tk). Similarly we construct a MSO formula �jp,q(x, y, z) that moreover restrict the
runs of Aj to the subtree rooted at z. The formulas are blind in the sense that they don’t
use the unary predicates labeling each node. They are constructed by induction on the rank
of Aj . We only give the proof for 'jp,q(x, y) as �jp,q(x, y, z) uses the same construction
but moreover restricts all quantifications to the subtree rooted at z.

Assume first that Aj is a TWA. The runs of Aj do not depend on any other automata
and �j is a set of pairs of states of Aj . The formula 'jp,q(x, y) builds on the classical
construction for simulating the run of a TWA in a tree using MSO formulas (see also
Section 6). We apply this construction to the TWA A′ that uses the transition table of
Aj on inner nodes and switch state according to �j when visiting the root of the tree
and according to �j when visiting a leaf of the tree. As Aj cannot distinguish sk−1 from
tk−1, the labels of the leaf are irrelevant and the formulas built from A′ have the desired
properties.

XPath, Transitive Closure Logic, and Nested Tree Walking Automata ⋅ 23

Assume now that Aj is of rank lj > 0. Let (Ai)i∈I be the nested TWA occurring in the
inductive definition of Aj . Again the formula we construct uses the classical simulation
using MSO of the following TWA A′. At an inner node, the transitions of A′ are given by
the transition table of Aj together with the formulas ('i)i∈I and (�i)i∈I constructed by
induction in order to test whether subruns are accepting of not. At the root of the tree the
transition of A′ is made according to �j . At a leaf x the transition of A′ is made according
to �j((�′i)i∈I) where �′i is the behavior of Ai in the context CC ′ where C ′ is the context
formed from Ct by placing the hole in x in the current tree, i.e ignoring the subtree rooted
at x. We are done if we can express �′i in MSO but that can be achieved by composing the
relations (�j)j∈J with the formulas ('i)i∈I and (�i)i∈I computed by induction, and this
composition can be expressed in MSO.

From the formulas just computed it is now possible to compute an oracleO such that for
any node v of s1 or t1, the structural information about v implies all possible runs (Aj)j∈J
may have starting from v and therefore which transitions of A at the copy of v in sk or tk
can be taken. The size of O can be deduced from the formulas computed above and is a
function g of m.

Based on O, we construct the desired OTWA B as follows. The states of B are exactly
the states of A and B relies on the structural automaton O. Let � ′ be the basic relative
behavior type of A in sk−1 and �′ be the basic relative behavior type of A in tk−1. Notice
that �′ and � ′ may be different as we only know by induction that (k − 2)-nested TWA
cannot distinguish sk−1 from tk−1. At an inner node of label b, the transitions of B are set
according to the transitions of A, using the structural O-information for deciding whether
Ai has an accepting run or not in the appropriate subtree. At a leaf of label a, the transitions
of B is set according to �′((�′j)j∈J) where �′j is the behavior of Aj in the context formed
by placing a hole at the current leaf and, as above, can be computed from the information
provided byO and (�j)j∈J . Similarly, at a leaf of b, the transition of B is set according to
� ′((�′j)j∈J). By construction it is now clear that B is in state q at a node x of s1 iff A was
also in state q at x in sk. Similarly for t1 and tk. Hence the behavior of B in s1 is the same
as the behavior of A in sk while the behavior of B in t1 is the same as the behavior of A in
tk. From the discussion above, the size of B is f(m) = O(mg(m)) and by Proposition 26
the two behaviors must be equal.

5.3 Deriving the strict containment

We now apply Proposition 28 to derive strict containment results. In [Bojańczyk et al.
2006] it is shown that L1 is recognizable by a TWA using 1 pebble. A simple modification
of their argument actually show that L1 is recognizable by a 1-nested TWA. Moreover, a
simple induction on k then shows that for any k, Lk is recognized by a k-nested TWA. We
refrain from giving the argument here, only for the reason that it would require a detailed
definition of the definition of the language L1.

It follows by Proposition 28 that for nested TWA, more nesting depth provides more
expressive power:

Theorem 29 Lk is recognizable by a k-nested TWA but not by a (k − 1)-nested TWA.

It is easy to see that the union over k of all the Lk is not a regular language. The
language ℒsep separating MSO from nested TWA is therefore formed from the union of all
Lk by relaxing the constraint of being k-separated for some k. It will be defined such that

24 ⋅ Balder ten Cate and Luc Segoufin

the intersection of ℒsep with the set of k-separated trees is exactly Lk. In particular, all
the trees sk from Proposition 28 belong to ℒsep, but none of the trees tk does. Therefore,
no nested TWA can recognize ℒsep. More formally, ℒsep is the set of trees with labels in
{a,b, c} such that a appears only at the leaves and such that the following rewriting process
ends with a tree in L1. The rewriting process replace a subtree whose root has label c and
which does not contain any other c-node, with a leaf of label a if this subtree belongs to
L1, or with a leaf of label b otherwise. It ends when there is no more node of label c in the
tree. The following fact is easy to prove.

Fact 30 ([Bojańczyk et al. 2006]) ℒsep is a regular tree language, i.e., it is definable in
MSO.

From Proposition 28 it follows that ℒsep cannot be recognized by a nested TWA and
Theorem 2 is proved.

Theorem 31 ℒsep cannot be recognized by a nested TWA.

6. COMPLEXITY ISSUES

In this section we study the complexity of two types of problems for Regular XPath(W)
and nested TWA. The (finite) satisfiability, or (finite) non-emptiness, problem is to deter-
mine the existence of a (finite) tree that satisfies a given Regular XPath(W) expression (or
is accepted by a given nested TWA). The evaluation problem is to compute, given a finite
tree and a Regular XPath(W) path expression (or nested TWA), the set of pairs satisfying
the path expression (or, accepted by by the nested TWA).

We first comment on the size of a nested TWA. Given a nested TWA A, its state-size
∣A∣ will be the total number of states of all the nested TWA that are used in the inductive
definition of A. The total-size ∣∣A∣∣ of A will be the sum of the state-size of A and the
total number of transition of all the nested TWA that are used in the inductive definition of
A. Note that ∣∣A∣∣ can be exponential in ∣A∣. The translation from Regular XPath(W) to
nested TWA described in Lemma 7, since it runs in linear time, always produces a nested
TWA whose total-size is linearly bounded by the length of the input expression. Hence, for
the results below, it is enough to prove all our upper bounds for nested TWA model while
proving the lower bounds for Regular XPath(W) expressions.

We start with the evaluation problem.

Theorem 32 (i) Given a nested TWAA and a finite tree t, one can computeA(t) in time
polynomial in ∣∣A∣∣ and ∣t∣.

(ii) Given a Regular XPath(W) path expression �, and a finite tree t, one can compute
[[�]]t in time polynomial in ∣�∣ and ∣t∣.

PROOF. Since Regular XPath(W) expressions can be translated into nested TWA in lin-
ear time, it suffices to prove the first part of the theorem. Let A be any nested TWA, let
A0, . . . , An−1 be all subautomata used (recursively) by A, in order of increasing nesting
depth, let An = A and let t be any finite tree. For each i ≤ n starting with i = 0, and for
each node x ∈ t, we compute and store the relation Ai(tx). Hence it is enough to consider
the case of TWA. Using classical automata techniques, this can be done in polynomial
time.

XPath, Transitive Closure Logic, and Nested Tree Walking Automata ⋅ 25

Note that the naive algorithm used in the above proof is not likely to be optimal. We
leave it as an open question whether non-emptyness of A(t) can be tested O(∣∣A∣∣ ⋅ ∣t∣).

Theorem 32 shows that query evaluation for Regular XPath(W) is no harder than for
Core XPath, up to a polynomial. For static analysis tasks, the situation is a bit differ-
ent: as we will show next, the emptiness problem for nested TWA, and the satisfiability
problem for Regular XPath(W) path expressions, are 2-ExpTime-complete. Note that sat-
isfiability is only ExpTime-complete for Core XPath and for Regular XPath, while it is
non-elementary for FO(MTC) (and in fact, already for FO) [ten Cate and Lutz 2007].

Theorem 33 The following problems are 2-EXPTIME-complete:

(i) The satisfiability and finite satisfiability problems of Regular XPath(W).
(ii) The non-emptiness and finite non-emptiness problems for nested TWA, both when the

complexity is measured in terms of the state-size and when it is measured in terms of
the total-size.

The same holds for many other static analysis problems for Regular XPath(W), such
as query containment and query equivalence, since they are all interreducible, using the
negation operator in node expressions (cf. for instance [ten Cate and Lutz 2007]). Theo-
rem 33 is to be compared with a similar result over nested words obtained in [Alur et al.
2007]. In [Alur et al. 2007] the authors considered an extension of CaRet with a “within”
operator and satisfiability over nested words was shown to be 2-EXPTIME-complete. As
nested words are trees presented as words and CaRet is a temporal logic, the two results
are similar in spirit. However the extension of CaRet with the “within” operator has the
expressive power of FO over trees while Regular XPath(W) has the stronger expressive
power of FO(MTC).

The remainder of this section is devoted to a proof of Theorem 33. We will consider
in this section only the binary tree case but it will follow immediately from Section 7 that
this extends to arbitrary unranked ordered trees. We therefore assume for the rest of this
section that the tree are binary, possibly infinite.

The upper bounds are based on a double exponential time translation from nested TWA
to top-down tree automata. It is well known that non-emptiness of top-down tree automata
can be tested in PTime. The lower bounds are based on a simulation of exponential space
bounded alternating Turing machines using Regular XPath(W) formulas. Since finiteness
of a tree is definable by Regular XPath(W) expressions and by nested TWA, finite satis-
fiability and finite non-emptiness reduce to satisfiability and non-emptiness, respectively.
Therefore, it is enough to prove the upper bounds for the case of arbitrary, possibly infinite
trees while proving the lower bounds for the case of finite trees only.

We start with the translation of nested TWA into top-down tree automata on infinite
trees. Our goal is to show the following propositions by simultaneous induction on the
rank of the nested TWA. These propositions make use of the following notation. Given
an alphabet Σ and a unary predicate P we denote by ΣP the alphabet constructed from
Σ and P - hence ΣP has two copies per letter of Σ, distinguishing the positions where P
holds from those where P does not hold. Given a ΣP -tree t we denote by tΣ the Σ-tree
constructed from t by ignoring the extra predicate P .

Proposition 34 LetA be a nested TWA using the alphabet Σ. There exists a top-down tree
automata B over ΣP , computable in time doubly exponential in ∣A∣, such that B accepts

26 ⋅ Balder ten Cate and Luc Segoufin

a ΣP -tree t iff all nodes of t marked by P are exactly those where the subtree of tΣ rooted
at that node is accepted by A.

Proposition 35 LetA be a nested TWA using the alphabet Σ. There exists a top-down tree
automata B over ΣP , computable in time doubly exponential in ∣A∣, such that B accepts
a ΣP -tree t iff all nodes of t marked by P are exactly those where A has an accepting run
in tΣ starting from that node.

Before we prove these propositions we note that each of them immediately yields a
doubly exponential time transformation of nested TWA into top-down tree automata and
hence the upper bounds for Theorem 33.

PROOF. Let A be a nested TWA. The constructions of both top-down tree automata are
made by simultaneous induction on the rank of A.

The base cases is when A is a TWA. Consider first the top-down automata required
by Proposition 35. From A we construct an alternating TWA A′ over ΣP -trees which
essentially simulates A on every node of a ΣP -tree. More precisely, A′ uses universality
to investigate all nodes of the tree and, for each node, starts a simulation of A from that
node if its label contains P or starts a simulation of Ā if its label does not contain P ,
where Ā is the alternating TWA for the complement of A. The construction of A′ is
done in time linear in ∣∣A∣∣ and ∣A′∣ is linear in ∣A∣. We then transform A′ into a top-
down tree automata using classical constructions in time exponential in ∣A′∣ [Muller and
Schupp 1995]. Altogether the construction requires a time exponential in ∣A∣. Consider
now the top-down tree automaton required by Proposition 34. It is constructed similarly
as above with the extra difficulty that in order to simulate A inside the appropriate subtree
it is necessary to remember where the simulation started. We avoid this problem by first
making A one way. This extra step induces an extra exponential blow-up. More precisely,
from A we construct a top-down tree automata B which recognize exactly the same tree
language as A. Using [Muller and Schupp 1995] B is constructed in time exponential in
∣A∣. We then viewB as an alternating TWAB′ where each transitions of the top-down tree
automata is replaced by a universal move to each of the children of the current node. Note
that ∣B′∣ = ∣B∣ and that B′ never goes up in the tree. We then proceed as in the previous
case starting with B′ and get the desired top-down tree automata in time exponential in
∣B′∣. Altogether the construction requires a time doubly exponential in ∣A∣.

Assume now that A has rank k > 0. Let A1, ⋅ ⋅ ⋅ , Al be the nested TWA of rank < k
occurring in the definition of A. By induction we can construct for each 1 ≤ i ≤ l a
top-down tree automata Bi over ΣPi -trees such that Pi holds on each node where Ai has
an accepting run on the corresponding subtree. By induction we can also construct for
each 1 ≤ i ≤ l a top-down tree automata Ci over ΣQi -trees such that Qi holds on each
node where Ai has an accepting run starting from that node in an initial state. Let Γ be
the alphabet extending Σ with all the propositions P1, ⋅ ⋅ ⋅ , Pl, Q1, ⋅ ⋅ ⋅ , Ql. Let A′ be the
TWA over Γ-trees simulating A by assuming at each node that Ai has an accepting run in
the subtree rooted at that node exactly when the label Pi holds at that node and assuming
thatAi has an accepting run starting from that node exactly whenQi holds at that node. Let
D be a top-down tree automata obtained by induction from A′ on ΓP -trees. A top-down
tree automata required for Proposition 34 from A is constructed as follows. At each node
the automata guesses the values of the predicates P1, ⋅ ⋅ ⋅ , Pl, Q1, ⋅ ⋅ ⋅ , Ql and P and then
simulates simultaneously all the automata B1, ⋅ ⋅ ⋅ , Bl, C1, ⋅ ⋅ ⋅ , Cl and D. By induction

XPath, Transitive Closure Logic, and Nested Tree Walking Automata ⋅ 27

each of the top-down tree automata were constructed in time doubly exponential in ∣Ai∣,
hence the total construction is performed in time doubly exponential in ∣A∣. A top-down
tree automata required for Proposition 35 from A is obtained similarly.

This concludes the proof of Proposition 35 and Proposition 34.

We now turn to the simulation of exponential space bounded alternating Turing machines
using Regular XPath(W) formulas. We start with a well known fact about alternating
Turing machines.

Fact 36 There is an alternating Turing machine M that uses at most 2n tape cells on
inputs of size n, and such that whether M accepts an input string w is a 2-ExpTime-hard
problem in the length of w. Moreover, we may assume that every configuration of M has
exactly two successor configurations.

Lemma 37 Let M be as above. For each string w of size n, there is a Regular XPath(W)
node expression � computable in time polynomial in n, such that � is satisfiable on finite
trees iff M accepts w.

PROOF. A configuration of M is a description of the current content of the tape, the
current position of the head, and the current state. As M uses only 2n cells on w, this can
be coded by a string of length 2n, where each position carries the information of the tape
at the corresponding position. Moreover the position where the head is also carries the
current state of M .

We code this with a finite binary tree as follows. Each position of the tape is coded in
binary by a string of length n that we view as a labeled tree of depth n where the string
corresponds to the leftmost branch, the rest of the tree being labeled with a dummy symbol.
If i is a number let T [i] be the corresponding coding tree.

A configuration is now coded as a sequence of length 2n where the label of the itℎ

element carry the content of the itℎ position of the configuration, its left child is T [i]
and its right child the next element. In order to separate configurations we also assume
one extra #-node at the end of the sequence. Our encoding for runs of M is depicted in
Figure 5.

Sequences of configurations can now code successive configurations of M . The branch-
ing structure of the tree can be used to code alternation of M . We require that the topmost
part of the tree codes the initial configuration, that is essentially w, that configurations
coding an existential state have only one successive configuration in the tree, while config-
urations coding a universal state must have two successive configurations in the tree. All
the configurations occurring at the bottom of the tree must be accepting.

A bit of terminology. A node x of the tree is said to be important if its left subtree is
T [i] for some i. Hence an important node is expected to code the content of a cell in a
configuration. The position of an important node x is then i.

Right now all the description given above can be enforced by a Regular XPath(W) node
expression (no W is needed). Indeed the formula checks that (i) the children of a #-
symbol are important and their positions are 0, (ii) two successive important nodes have
successive positions (this requiresO(n) formulas of sizeO(n) checking the incrementation
bit per bit), (iii) the parent of a #-node is important and its position is 2n − 1, (iv) the
#-nodes following an existential state have only one child, (v) the #-nodes following a

28 ⋅ Balder ten Cate and Luc Segoufin

Fig. 5. Encoding of runs of M .

universal state have exactly two children, (vi) the initial configuration codes w and (vii) all
configurations with no successor are accepting.

The difficulty is to enforce that two configurations successive in the tree are consistent
with the transitions ofM . To do this we first describe a Regular XPath(W) node expression
�eq(�) —taking as argument any Regular XPath(W) node expression �, such that �eq(�)
is true at an important node x with position i if and only if W� holds at the important node
with position i in some successor configuration. This can be done by first restricting the
scope to the subtree below x, then walking down passing exactly one # on the way, and
then successively checking that each bit of the position is the same as in the original node.
The corresponding Regular XPath(W) node expression is:

�eq(�) = W(
〈

(↓[¬#])∗/↓[#]/(↓[¬#])∗/↓[¬# ∧
⋀
i

'i ∧W�]
〉

)

where 'i is ⟨(↓1)i[0]⟩ ↔ ⟨↑∗[root]/(↓1)i[0]⟩. It follows that ¬�eq(¬�) is true at an im-
portant node with position i if and only if W� holds at the important node with position
i in every successor configuration. Once this is done, it is straightforward (but tedious)
to construct the Regular XPath(W) node expression enforcing a correct transition of M
between each two successive configurations of the tree.

This concludes the proof of Theorem 33.

7. FROM BINARY TO UNRANKED TREES

In this section, we discuss a well known encoding of unranked ordered trees into binary
ones, that allows us to generalize our results to the general, unranked case.

Intuitively, for any tree t, bin(t) is the binary tree constructed from t by using the first
child relation and the next subling relation as the two new successor relations. More for-
mally bin(t) is the tree t′ such that there exists a bijective relation f from the nodes of t
to the nodes of t′ verifying the following properties: (i) f(�) = �, (ii) for all x ∈ t such
that x1 ∈ t, f(x1) = f(x)1 and (iii) for all x ∈ t such that ∃y x = yi and i > 1,
f(x) = f(y(i − 1))2. Moreover, to ensure that every non-leaf node has exactly two chil-
dren, we pad bin(t) with extra nodes as needed, having a designated label #. For any set
of unranked ordered trees L, we denote by bin(L) the set of all binary encodings of trees

XPath, Transitive Closure Logic, and Nested Tree Walking Automata ⋅ 29

in L.
It is well known that this encoding preserves MSO definability: if L is an MSO defin-

able set of unranked ordered trees then bin(L) is also MSO definable, and vice versa, and
likewise for unary and binary MSO queries. It is not hard to see that the same holds for
FO(MTC). It is less easy to show that the binary encoding also preserves (in both direc-
tions) definability in Regular XPath(W). Below, we will prove this for Boolean queries,
i.e., tree languages. The same arguments apply to unary and binary queries.

A set of trees L is said to be definable in Regular XPath(W) if there is an
Regular XPath(W) node expression � such that L is precisely the set of all trees satisfying
� at the root.

Theorem 38 For any set of trees L, bin(L) is definable in Regular XPath(W) iff L is.

In order to prove Theorem 38, it is convenient to introduce a subforest predicate W′. By
a forest, we will mean an ordered sequence of trees, such as obtained by removing the root
node from a tree. Regular XPath(W) expression can be evaluated on forests in the same
way as they are evaluated on trees (cf. I). In particular, trees are a special case of forests.
For any forest f and node x, we denote by subforest(f, x) the subforest of f consisting of
x and its descendants, plus all siblings to the right of x and their descendants. Now, the W′

operator has the following semantics:

[[W′�]]f = {x ∈ dom(f) ∣ x ∈ [[�]]subforest(f,x)}

It is easy to see that Regular XPath(W) definability of bin(L) implies definability of L in
Regular XPath(W′), and vice versa. Indeed, applying the W operator in bin(t) precisely
corresponds to applying the W′ operator in t. Thus,

Proposition 39 For any set of trees L, bin(L) is definable in Regular XPath(W) iff L is
definable in Regular XPath(W′).

It remains to show that, over unranked ordered trees, W′ does not give us any more
expressive power than W, i.e., all occurrences of W′ can be eliminated in the favor of
W. The main idea behind the proof is the following. Consider any node expression of
the form W′�, where � itself is a Regular XPath(W) node expression, i.e., does not use
W′. When W′� is evaluated at a node x of t, the evaluation of � on subforest(t, x) can
be decomposed into horizontal navigation along the sequence of roots of subforest(t, x)
and subtree tests (i.e., using W) at each of these roots. We rewrite the formula so that this
horizontal navigation becomes uni-directional from left to right, and hence the formula
depends only on the selected subforest, which means that may drop the W′ operator.

In order to make this precise, we need to introduce two notions. We call a
Regular XPath(W) node expression tree-local if its sub-programs never attempt to leave
the tree in which it started. In other words every left or right move is preceded by a test
to ensure that the current node is not a root. On trees, of course every Regular XPath(W)
node expression is equivalent to a tree-local one, but on forests this is in general not the
case. Still, every downward node expression, i.e., Regular XPath(W) node expression of
the form W�, is equivalent on forests to a tree-local one. A forest test is an MSO formula
in one free (first-order) variable over the vocabulary consisting of ≺ plus a unary predicate
for each downward node expression. We say that a forest test is true at a node x in a forest

30 ⋅ Balder ten Cate and Luc Segoufin

iff the MSO formula is true when evaluated on the sequence of roots of the forest, where
the free variable is interpreted as the root of the tree to which x belongs.

Proposition 40 On forests, every Regular XPath(W) node expression is equivalent to a
Boolean combination of tree-local Regular XPath(W) node expressions and forest tests.

PROOF. (sketch) The proof goes by induction. The only interesting case is when � is of
the form ⟨�⟩ for some path expression �. By induction hypothesis, we may assume that
all node expressions inside � are of the given form. Assume that �1, . . . , �n are all the
corresponding forest tests and �1, . . . , �m are all the corresponding tree-local formulas.

Hence, as in the proof of Lemma 7, one can see � as a TWA A such that each transition
assumes the validity of some of the �i and some of the �j .

The run of A can be decomposed into: (i) the initial subrun that stays into the tree where
the computation started, (ii) navigation between the roots of the forests and (iii) the final
part of the run, which starts at the root of some tree and stay within that tree.

When staying within a tree, the subset of �1, . . . , �n that contains the valid forest tests
does not depend on the node of the tree but only on its root. Therefore this subset can be
guessed once for all and, for each guess, the whole subcomputation ofA, including the tests
for �j , can be simulated with an appropriate tree-local node expression using arguments as
in Lemma 7.

This implies that subruns of A of the form (ii) and (iii) can be combined into forest tests
as the top navigation and the appropriate guesses can be performed in MSO.

Similarly for each subset of �1, . . . , �n, the subrun (i) is uniquely determined by the
tree where the computation started and can be simulated by a tree-local node expression.
The result now follows by taking a big disjunction over all possible subsets and, for each
subset, combining the appropriate tree-local node expression with the appropriate forest
test.

We are now ready to prove Theorem 38.

PROOF OF THEOREM 38. First, suppose L is a set of trees defined by a
Regular XPath(W) node expression �. Let �′ be obtained from � by

—replacing all occurrences of ↓ by ↓1/↓
∗
2[¬#],

—replacing all occurrences of→ by ↓2[¬#],
—replacing all occurrences of ↑ by (↓−1

2)∗/↓−1
1 , and

—replacing all occurrences of← by ↓−1
2 .

where ↓1 and ↓2 are short for ↓[¬⟨←⟩] and ↓[¬⟨→⟩], respectively. Furthermore, let �
be a Regular XPath(W) node expression defining the class of all trees that are the binary
encoding of some other tree (it is not hard to find such a node expression). Then �′ ∧ �
defines bin(L).

Next, suppose that � defines bin(L). By Proposition 39, L is defined by a
Regular XPath(W′) node expression . We show how to eliminate all occurrences of
W′ from in the favor of W, using Proposition 40. To this end, consider W′�, for any
Regular XPath(W) node expression �. By proposition 40, � is equivalent to a Boolean
combination of tree-local node expressions and forest tests. Since � is evaluated at the
left-most root of the subforest, all the tree-local node expressions may be freely prefixed
with W, and may be considered as part of the forest test. Thus, � essentially expresses

XPath, Transitive Closure Logic, and Nested Tree Walking Automata ⋅ 31

that the sequence of roots of the subforest belongs to a regular language over an alpha-
bet consisting of Boolean combinations of downward node expressions. Any such regular
string language can be represented by a regular expression, which is nothing more than a
Regular XPath(W) path expression � built up from→ and downward node expressions. It
follows that W′� is equivalent to the Regular XPath(W) node expression ⟨�⟩. A simple
induction based on this argument shows that every Regular XPath(W′) node expression,
including , is equivalent on arbitrary forests, hence also on trees, to a Regular XPath(W)
node expression.

Remark 41 Note that the proof of the right-to-left direction of Theorem 38 is based on a
simple linear time translation. Thus, the satisfiability problem for Regular XPath(W) on
arbitrary trees polynomially reduces to the satisfiability problem on binary trees.

8. DISCUSSION

Our results show that the tree languages definable in FO(MTC) form a robust class of tree
languages that can be characterized in several ways. It lies strictly between the class of FO
definable tree languages and the class of regular tree languages. We conclude by listing
some additional consequences of our results, and some open problems.

8.1 Closure properties

An important corollary of our expressive completeness theorem is that Regular XPath(W)
is closed under the path intersection and complementation operators of XPath 2.0, in the
sense that adding these operators would not increase the expressive power (although it
would increase the complexity of satisfiability). Note that this does not follow immediately
from the definition of Regular XPath(W). In [Benedikt et al. 2005], closure under path
intersection and complementation was investigated for a variety of XPath fragments, and
most results were negative.

Along the same lines, Benedikt and Fundulaki [Benedikt and Fundulaki 2005] intro-
duced and motivated the notion of subtree composition closure. For any path expression
� and XML tree t, let [[�]]t" = {x ∣ (", x) ∈ [[�]]t}, i.e., the set of nodes reachable from
the root by �. An XPath dialect is said to be closed under subtree composition if the fol-
lowing holds: for any two path expressions �, �, there is a path expression such that
for any XML tree t, [[]]t" =

∪
{[[�]]

subtree(t,x)
" ∣ x ∈ [[�]]t"}. In [Benedikt and Fundulaki

2005], a number of XPath fragments were shown to be closed under subtree composition.
Theorem 3 easily implies that Regular XPath(W) is closed under subtree composition.

Corollary 42 Regular XPath(W) is closed under path intersection, path complementa-
tion, and subtree composition.

We do not know whether W adds any expressive power to Regular XPath. However we
can show that this issue reduces to the question whether Regular XPath is closed under
subtree composition:

Theorem 43 The following are equivalent:

(1) Regular XPath is as expressive as Regular XPath(W)
(2) Regular XPath is closed under subtree composition.

32 ⋅ Balder ten Cate and Luc Segoufin

PROOF. One direction is easy: if Regular XPath has the same expressive power as
Regular XPath(W), then by Corollary 42 it is closed under subtree composition. Con-
versely, suppose Regular XPath is closed under subtree composition, and let � be a Reg-
ular XPath node expression. Let � be the subtree composition of ↓∗ and .[�], and �−1 its
converse (recall that Regular XPath path expressions are closed under converse). Then W�
is equivalent to .[⟨�−1[root]⟩].

It is worth noting that a variant of W for path expressions was proposed in [Bird et al.
2005], under the name subtree scoping. It has the following semantics: [[W′�]]t = {(x, y) ∣
x ≤ y and (x, y) ∈ [[�]]tx}. It is easy to see, using this variant of the operator, W� can be
expressed as ⟨W′(.[�])⟩, and that the subtree-composition of path expressions � and � can
be expressed as �/W′�. Theorem 3 implies that Regular XPath(W) is closed even under
the W′-operator.

8.2 Normal forms for FO(MTC)

Theorem 3 implies a normal form for FO(MTC) over trees. Let FO4(MTC) be the set of
FO(MTC) formulas containing at most four variables, free or bound. Also, recall that in
formulas of the form [TCxy�](u, v), � might have other free variables besides x, y, and
that we call these additional free variable parameters of the transitive closure formula. We
say that a FO(MTC) formula ' is single-parameter if for all subformulas [TCxy](u, v)
of ', has only one parameter. The formula is parameter-free if it does not use any
parameter. Finally a FO(MTC)-formula � is said to be “looping” if all subformulas with
main connective TC are of the form [TCxy �](u, u).

The following normal form combines Theorem 3 and the translation of TWA into tran-
sitive closure logic from [Neven and Schwentick 2003].

Theorem 44 Every FO(MTC) formula with at most one free variables is equivalent to a
single-parameter looping formula of FO4(MTC).

PROOF. The proof is an induction on the rank of the nested TWA equivalent to the
FO(MTC) formula obtained using Theorem 3 and Lemma 7. We show that for all nested
TWA A, there exists a single-parameter looping formula '(x, y) of FO4(MTC) such that
for all tree t and nodes x, y of t with y < x,

(x, x) ∈ A(subtree(t, y))⇔ t ∣= '(x, y)

The basis and the induction steps make use of the following result which generalize
slightly the statement of the main result of [Neven and Schwentick 2003] but follows
directly from its proof. The main differences with the result as stated in [Neven and
Schwentick 2003] are: (i) we consider runs that start at a given node x of the tree and
not just the root of the tree (ii) the proof of [Neven and Schwentick 2003] uses predicates
counting the depth of a node modulo some number. These predicates are definable by a
parameter-free looping FO(MTC)-formula.

Proposition 45 ([Neven and Schwentick 2003]) For all TWA A, there exists a parameter-
free looping formula '(x) of FO3(MTC) such that for all tree t and node x of t,

(x, x) ∈ A(t)⇔ t ∣= '(x)

XPath, Transitive Closure Logic, and Nested Tree Walking Automata ⋅ 33

The base case of our induction, i.e. A is a TWA, follows immediately by relativizing all
quantifications in the formula obtained in Proposition 45 to the descendants of y. When
doing this the number of variables increases to four and y becomes a parameter of the TC
formulas.

Now consider a nested TWA A of rank k > 0. Let A1, ⋅ ⋅ ⋅ , An be the nested TWA of
rank (k − 1) occurring in the definition of A. By induction there exists a looping single-
parameter formula �i(u, v) equivalent to Ai for each i ≤ n. By Proposition 45 there exists
a looping parameter-free formula �(x) that is equivalent to A, assuming the presence of
predicates Pi(u) and Qi(u) that hold on a node u of t iff Ai has an accepting run starting
from node u in the subtree rooted in u in the case of Pi(u) and in the whole tree in the case
of Qi(u). As before we relativize all quantifications to the descendants of y and this gives
a looping single-parameter formula '(x, y) of FO4(MTC) that simulates A. When doing
this the predicates Pi(u) remain untouched but Qi(u) now becomes Qi(u, y) with the
obvious meaning. Replacing the predicates Pi(u) and Qi(u, y) using the formula �i(u, v)
yields the desired normal form.

When the formula of FO(MTC) has more than two free variables, looping can no longer
be enforced. However the direct translation from Regular XPath(W) into FO(MTC) shows
that FO(MTC) still has the 4-variable property.

Theorem 46 Every FO(MTC) formula with at most four free variables is equivalent to a
single-parameter FO4(MTC) formula.

One might wonder whether parameters are needed at all. Perhaps every FO(MTC) for-
mula is equivalent to a parameter-free formula? We do not know the answer to this question
at present. However we know that the parameter-free fragment of FO(MTC), denoted by
FO∗ in [ten Cate 2006], has exactly the same expressive power as Regular XPath≈ (see
also our discussion of related work in Section 1) and that FO∗ has the three variable prop-
erty [ten Cate 2006].

8.3 Positive nested TWA and pebble automata

Our methods can also be used to obtain a new characterization of FO(pos-MTC), the
fragment of FO(MTC) in which all occurrences of the TC-operator are in the scope of
an even number of negation signs. It was shown in [Engelfriet and Hoogeboom 2007] that
tree walking automata with nested pebbles, pebble TWA for short, have the same expressive
power as FO(pos-MTC) in terms of definable tree languages. It turns out that by restricting
the use of negation in Regular XPath(W) expressions or in nested TWA, an analogue of
Theorem 3 for FO(pos-MTC) can be obtained.

We call a node or path expression positive if all occurrences of the transitive closure
operator ∗ are in the scope of an even number of negation signs. We call a nested TWA
positive if it does not make any negative tests, by which we mean that its transitions do not
rely on the non-existence of runs of some of its nested TWA, except for testing whether a
node is the root, is a leaf, is a first child, or is a last child.

Theorem 47 The following three formalisms have the same expressive power:

(1) FO(pos-MTC),
(2) positive Regular XPath(W) formulas,

34 ⋅ Balder ten Cate and Luc Segoufin

(3) positive nested TWA

The result applies again to Boolean queries, unary queries, and binary queries. The proof
of equivalence between (2) and (3) is along the same lines as in Lemma 7, using the fact
that, in positive Regular XPath(W) formulas, negations can be pushed down to the atomic
subformulas. Concerning the equivalence of (1) and (2), a simple induction shows that
every positive Regular XPath(W) expressions is equivalent to an FO(pos-MTC) formula.
The proof of the converse, that each FO(pos-MTC) formula is equivalent to a positive
Regular XPath(W) formula, is done via tree patterns as in Section 4 by realizing that each
step preserves the number of negations. The details can found in Appendix B.

Perhaps Theorem 47 can help in resolving the open question whether FO(MTC) is
strictly more expressive than FO(pos-MTC) on trees.

8.4 Open problems

It is open whether Regular XPath is strictly included in Regular XPath(W), i.e., whether W
adds expressive power. This is equivalent to the problem whether Regular XPath is closed
under subtree composition (cf. Section 8.1).

It is open whether FO(pos-MTC) is strictly included in FO(MTC) on trees (cf. Sec-
tion 8.3). This is equivalent to the problem whether pebble automata are closed under
complementation.

It is open whether the hierarchy of nesting of TCs in FO(MTC) is strict.
It is open whether FO∗ is strictly included in FO(MTC) on trees, i.e., whether the fact

that parameters are allowed in FO(MTC) is essential.
It is open whether there are finitely many generalized quantifiers Q1, . . . , Qn (as in

[Lindström 32]) such that FO extended with the quantifiers Q1, . . . , Qn has the same ex-
pressive power as FO(MTC) on trees. Note that the monadic transitive closure operator
is an example of a generalized quantifier, but that second order quantifiers are not. We
conjecture that the answer is positive.

In order to present the last open problem, we need to introduce some terminology. By a
k-ary logical operation on binary relations we mean a map that takes as input a set D and
binary relations R1, . . . , Rk on D, and outputs a new binary relation on D, in a way that
respects isomorphisms. Thus, for instance, union, complementation and composition are
logical operations on binary relations. It follows from the results in [ten Cate 2006] that
there is a finite set of operations on binary relations (viz. union, complement, composition,
and transitive closure) such that every binary FO∗-query on trees can be defined by an
algebraic expression built up from the atomic binary relations ↑, ↓, ←, →, “.”, and label
tests p? (interpreted as subrelations of the identity relation) using the given operations. It is
open whether a similar result holds for FO(MTC) and MSO. (It is important to note here
that W is not a logical operation, since the denotation of W� in a model is not determined
by the denotation of � in the same model.)

REFERENCES

ALUR, R., ARENAS, M., BARCELÓ, P., ETESSAMI, K., IMMERMAN, N., AND LIBKIN, L. 2007. First-order
and temporal logics for nested words. In LICS. 151–160.

BENEDIKT, M., FAN, W., AND GEERTS, F. 2005. XPath satisfiability in the presence of DTDs. In PODS.
25–36.

BENEDIKT, M., FAN, W., AND KUPER, G. M. 2005. Structural properties of XPath fragments. Theoretical
Computer Science 336, 1, 3–31.

XPath, Transitive Closure Logic, and Nested Tree Walking Automata ⋅ 35

BENEDIKT, M. AND FUNDULAKI, I. 2005. XML subtree queries: Specification and composition. In DBPL.
Number 3774 in LNCS. 138–153.

BIRD, S., CHEN, Y., DAVIDSON, S. B., LEE, H., AND ZHENG, Y. 2005. Extending XPath to support linguistic
queries. In PLAN-X. 35–46.

BOJAŃCZYK, M. AND COLCOMBET, T. 2008. Tree-walking automata do not recognize all regular languages.
SIAM J. Comput. 38, 2, 658–701.

BOJAŃCZYK, M., SAMUELIDES, M., SCHWENTICK, T., AND SEGOUFIN, L. 2006. Expressive power of pebble
automata. In ICALP (1). 157–168.

ENGELFRIET, J. AND HOOGEBOOM, H. J. 2007. Nested pebbles and transitive closure. Logical Methods in
Computer Science 3, 2.

ENGELFRIET, J., HOOGEBOOM, H. J., AND SAMWEL, B. 2007. XML transformation by tree-walking trans-
ducers with invisible pebbles. In PODS, L. Libkin, Ed. ACM Press, 63–72.

FAN, W., GEERTS, F., JIA, X., AND KEMENTSIETSIDIS, A. 2007. Rewriting regular xpath queries on XML
views. In ICDE. 666–675.

GHEERBRANT, A. AND TEN CATE, B. 2009. Complete axiomatizations of MSO, FO(TC1) and FO(LFP1) on
finite trees. In LFCS, S. N. Artëmov and A. Nerode, Eds. Lecture Notes in Computer Science, vol. 5407.
Springer, 180–196.

GOTTLOB, G., KOCH, C., AND PICHLER, R. 2002. Efficient algorithms for processing XPath queries. In VLDB.
95–106.

GRÄDEL, E. 1991. On transitive closure logic. In CSL, E. Börger, G. Jäger, H. K. Büning, and M. M. Richter,
Eds. LNCS, vol. 626. Springer, 149–163.

LAROUSSINIE, F., MARKEY, N., AND SCHNOEBELEN, P. 2002. Temporal logic with forgettable past. In LICS.
383–392.

LINDSTRÖM, P. 32. First-order predicate logic with generalized quantifiers. Theoria 32, 186–195.
MARX, M. 2004. XPath with conditional axis relations. In Proceedings of EDBT 2004. Lecture Notes in

Computer Science, vol. 2992. Springer.
MARX, M. 2005. Conditional XPath. Transactions on Database Systems 30, 4, 929–959.
MARX, M. AND DE RIJKE, M. 2005. Semantic characterizations of navigational XPath. SIGMOD Record 34, 2,

41–46.
MULLER, D. E. AND SCHUPP, P. E. 1995. Simulating alternating tree automata by nondeterministic automata:

new results and new proofs of the theorems of rabin, mcnaughton and safra. Theor. Comput. Sci. 141, 1-2,
69–107.

NENTWICH, C., CAPRA, L., EMMERICH, W., AND FINKELSTEIN, A. 2002. xlinkit: a consistency checking
and smart link generation service. ACM Transactions on Internet Technology 2, 2, 151–185.

NEVEN, F. AND SCHWENTICK, T. 2003. On the power of tree-walking automata. Inf. Comput. 183, 1, 86–103.
POTTHOFF, A. 1994. Logische klassifizierung regularer baumsprachen. Ph.D. thesis, Christian-Albrechts Uni-

versität Kiel.
RABIN, M. O. 1970. Weakly definable relations and special automata. In Mathematical Logic and Foundations

of Set Theory. North-Holland, 1–23.
SCHWENTICK, T. 2000. On diving in trees. In MFCS, M. Nielsen and B. Rovan, Eds. Lecture Notes in Computer

Science, vol. 1893. Springer, 660–669.
TEN CATE, B. 2006. The expressivity of XPath with transitive closure. In PODS. 328–337.
TEN CATE, B. AND LUTZ, C. 2007. The complexity of query containment in expressive fragments of xpath 2.0.

In PODS. ACM, 73–82.
TEN CATE, B. AND MARX, M. 2007. Axiomatizing the logical core of XPath 2.0. In ICDT.

A. A FIRST NORMAL FORM FOR FO(MTC) ON BINARY TREES

The aim of this section is to prove Lemma 4. Throughout the section, we restrict attention
to binary trees.

The following Ehrenfeucht-Fraı̈ssé (EF) game for FO(MTC) was introduced by Grädel
[Grädel 1991]:

36 ⋅ Balder ten Cate and Luc Segoufin

Definition 48 (EF games for FO(MTC)) The EF game for FO(MTC) are defined as the
standard one for FO, except that, besides the usual moves, there is one more type of move,
which consists of the following four steps (counted all together as one round):

(1) Spoiler selects two pebbles already on the board, say u and v, and chooses one of
the two models. He then plays a finite sequence d1, . . . , dk of elements of the chosen
model, such that d1 is the node labeled u and dk is the node labeled v.

(2) Duplicator responds by playing a sequence (not necessarily of the same length)
e1, . . . , eℓ in the other model, where, again, e1 is the node labeled u and eℓ is the
node labeled v.

(3) Spoiler selects a pair (ei, ei+1) (with i < ℓ) and places new pebbles x and y on the
these nodes.

(4) Duplicator responds by selecting a pair (di, di+1) (with i ≤ k) and placing the peb-
bles x and y on the respective nodes.

The game continues with the new pebble configuration.

We use the following notation for configurations in the game: (M,N, k, Z) denotes
the situation in the game between M and N where there are k moves left to go, and the
finite partial bijection constructed so far is Z ⊆ M × N . Let the depth of an FO(MTC)
formula be the maximal combined nesting depth of quantifiers and/or TC-operators in the
formula. We use FO(MTC)k to denote the collection of FO(MTC) formulas of depth at
most k. Given modelsM,N for the same finite relational vocabulary, and d1, . . . , dn ∈M ,
e1, . . . , en ∈ N , we write (M,d1, . . . , dn) ≡FO(MTC)k

(N, e1, . . . , en) if both satisfy the
same FO(MTC)k-formulas in n free variables.

Theorem 49 ([Grädel 1991]) For all models M,N in the same finite relational vocabu-
lary, d1, . . . , dn ∈M and e1, . . . , en ∈ N , the following are equivalent:

(1) (M,d1, . . . , dn) ≡FO(MTC)k
(N, e1, . . . , en)

(2) Duplicator has a winning strategy in the FO(MTC) game (M,N, k, {(di, ei) ∣ i ≤
n}).

Similarly, we can define a game for FO(MTC<).

Definition 50 (EF games for FO(MTC<)) The EF game for FO(MTC<) is defined as the
one for FO(MTC), except that the following modifications are made to the TC move:

—Spoiler must choose u, v and the sequence x1, . . . , xn such that u < v and u ≤ xk and
v ∕< xk, for all k ≤ n.

—After a TC move is finished, all pebbles except u, v, x, y are removed from the board.

Theorem 51 For all models M,N in the same finite relational vocabulary, d1, . . . , dn ∈
M and e1, . . . , en ∈ N , the following are equivalent:

(1) (M,d1, . . . , dn) ≡FO(MTC<)k
(N, e1, . . . , en)

(2) Duplicator has a winning strategy in the FO(MTC<) game (M,N, k, {(di, ei) ∣ i ≤
n}).

PROOF. A straightforward modification of the proof of Theorem 49.

XPath, Transitive Closure Logic, and Nested Tree Walking Automata ⋅ 37

Theorem 52 For binary trees M,N , if Duplicator has a winning strategy for the
FO(MTC<) game from (M,N, 3k + ∣Z∣ + 2, Z), then he has a winning strategy for the
FO(MTC) game from (M,N, k, Z).

PROOF SKETCH. Call a configuration Z ⊆M ×N full if the roots of the two structures
are pebbled, and whenever two nodes in one of the trees are pebbled, then their least
common ancestor is also pebbled (by pebbled, we mean that the node belongs to the domain
respectively codomain of Z). A full configuration naturally divides the trees into regions,
bounded by pebbles: if x <i y are pebbled nodes, and for every pebbled node z with
x <i z, it holds that y ≤ z, then we denote by [x, y] the set consisting of x and all <i-
descendants of x that are not descendants of y, i.e., “the region bounded by x and y”. If
a pebbled node x has no pebbled descendants, then we denote by [x, . . .] the set of x and
its descendants, i.e., “the region bounded by “y”. Thus, full configurations are convenient,
because they allow us to reason by region.

It is not hard to see that every consistent configuration Z can be extended to a full
one by adding at most ∣Z∣ + 1 extra pairs. We call a strategy of Spoiler tidy if she only
plays TC-moves when the configuration is full. It is not hard to see that if Spoiler has a
winning strategy in the FO(MTC)-game (M,N, k, Z), then she has a tidy winning strategy
in the FO(MTC)-game (M,N, 2k+ ∣Z∣+ 2, Z), as the extra moves allow her to make the
configuration full initially and to restore fullness after every round. Hence, in order to show
that Duplicator has a winning strategy in the FO(MTC)-game (M,N, k, Z), it is enough
to show the following

Claim: Duplicator has a strategy in the FO(MTC)-game (M,N, 2k+ ∣Z∣+2, Z) that wins
from any tidy strategy of Spoiler.

The proof proceeds by induction on the number of rounds left. The case when there are
zero rounds left is trivial. If there is more than one round left, and Spoiler’s first move
is a quantifier move, we simply respond using the given FO(MTC) strategy and use the
induction hypothesis. If Spoiler’s first move is a TC-move u = x1, . . . , xn = v (and the
current configuration is full) we proceed as follows:

We may assume without loss of generality that u ∕= v, and no xi other than the first and
the last one is a pebbled node. We split up the sequence x1, . . . , xn into maximal segments
each belonging to a single region in the tree. We then prefix and postfix each segment by
the boundary points of the corresponding region, and we apply Duplicator’s given strategy
in the FO(MTC<) game to each extended segment. (In the case some segment belongs to
a region that has only one pebbled boundary point, we first play an extra quantifier move,
selecting any node that is not an ancestor of any node in the segment, thus ensuring that
the region containing the segment is bounded by two pebbled nodes). By IH, for each such
subgame Duplicator has a winning strategy. Combining these we get an overall winning
strategy.

Lemma 4 now follows by a standard argument.

B. POSITIVE

The goal of this Appendix is to prove Theorem 47. It only remain to show each
FO(pos-MTC) formula is equivalent that positive Regular XPath(W) expression.

Recall that a node or path expression of Regular XPath(W) is positive if all occurrences
of the transitive closure operator ∗ are in the scope of an even number of negation signs.

38 ⋅ Balder ten Cate and Luc Segoufin

Similarly, a node or path expression is said to be negative if all occurrences of the transi-
tive closure operator are in the scope of an odd number of negation signs, except for the
occurrences that are not inside any node expression. Thus, for instance, a path expres-
sion � of the form (↓/↓)∗[�] is considered to be both positive and negative, whereas the
node expressions .[⟨�⟩] and .[¬⟨�⟩] are considered positive and negative, respectively. The
following gives a more intuitive characterization of the positive path expressions.

Proposition 53 A node or path expression is positive if and only if it is equivalent to
one in which negation is only used in the form ¬� (with � ∈ Σ) and ¬⟨�⟩ (with � ∈
{↑, ↓,←,→}).

PROOF. We show the result for node expressions, the case for path expressions then
follows immediately. Let � be any positive node expression. To reduce the number of
cases, we first replace in � every sub-expression of the form �[] by �/.[]. The following
rewrite rules then show how to push the negation signs down to the atoms:

¬(� ∧) = ¬� ∨ ¬
¬(� ∨) = ¬� ∧ ¬
¬¬� = �
¬⟨� ∪ �⟩ = ¬⟨�⟩ ∧ ¬⟨�⟩

¬⟨�/�⟩ =

⎧⎨⎩

¬⟨�⟩ ∨ ⟨�[¬⟨�⟩]⟩ for � ∈ {↑,←,→}
⟨↓[¬⟨←⟩ ∧ ¬⟨�⟩/(→[¬⟨�⟩])∗[¬⟨→⟩]⟩ for � = ↓
¬⟨�1/�⟩ ∧ ¬⟨�2/�⟩ for � of the form �1 ∪ �2

¬⟨�1/(�2/�)⟩ for � of the form �1/�2

¬� ∨ ¬⟨�⟩ for � of the form .[�]

They are all self-explaining except maybe for the one for ¬⟨↓/�⟩ that requires a bit more
explanation. A node expression of the form ⟨↓/�⟩ does not hold if there is no child of the
current node that satisfies ⟨�⟩, hence we need to investigate all those children one by one
and this is exactly what the rewriting formula does.

The translation of FO(pos-MTC) formulas into positive Regular XPath(W) expressions
is done by induction via positive or negative tree patterns as in Section 4. A tree pattern is
said to be positive (negative) if all its labeling expressions are positive (negative). The fact
that positive tree patterns with only one variable correspond to positive Regular XPath(W)
node expressions is immediate. Similarly it is immediate to see that positive tree patterns
with two variables correspond to positive Regular XPath(W) path expressions is imme-
diate. The reader can verify that the constructions given in Section 4 showing that tree
patterns are closed under FO operations and unary-TC operations preserve the positive-
ness or the negativeness of tree patterns, except of course for negation that transform one
into the other, assuming the construction of Lemma 9 does.

In the remaining part of this section we show that Lemma 9 do preserve polarity.

Lemma 54 On binary trees,

(a) For every two downward positive (negative) path expressions �, � there is a positive
(negative) downward path expression , such that for all binary trees t, [[]] = [[�]] ∩
[[�]].

XPath, Transitive Closure Logic, and Nested Tree Walking Automata ⋅ 39

(b) For every positive (negative) downward path expression � there is a negative (positive)
downward path expression � such that, for all binary trees t, [[�]] = {(x, y) ∣ x ≤
y} ∖ [[�]].

We first develop some general theory on what we call regular expression with tests.
Incidentally, this notion is only used in this section, and will not play any further role in
later sections.

Definition 55 (Regular expressions with tests) LetP be a finite set of proposition letters.
A regular expression with tests over P (or, a “RET over P”) is any expression generated
by the following recursive definition:

� ::= ?� ∣ ↓ ∣ �/� ∣ � ∪ � ∣ �∗

where � is a propositional formula overP (or, inductively, � ::= p ∣ ⊤ ∣ ¬� ∣ �∧ ∣ �∨ ,
with p ∈ P).

A RET over a set of proposition letters P naturally defines a language over the alphabet
2P . Expressions of the form ?� are interpreted as tests, and ↓ can be seen as an instruction
to move to the next node. Thus, for instance, (?p / ↓)∗/?¬q accepts precisely those words
s1 ⋅ ⋅ ⋅ sn (with n ≥ 1 and each si ∈ 2P), for which it holds that p is true under the
assignments s1, . . . , sn−1, and q is false under the assignment sn. One can give a formal,
inductive, definition of the language accepted by a RET, but we leave this to the reader.

Fact 56 (RETs define the regular languages) Every RET over P defines a regular lan-
guage over the alphabet 2P . Conversely, every regular language over the alphabet 2P is
recognized by some RET over P .

PROOF SKETCH. One direction is shown by translating RETs into formulas of monadic
second-order logic. The other direction follows by translating regular expressions over
2P into RETs over P . The latter is done, roughly speaking, by replacing atomic regular
expressions of the form S, with S ∈ 2P , by RET expressions ?(

⋀
p∈S p ∧

⋀
p ∕∈S ¬p)/ ↓,

but one has to take care that no ↓ occurs after the last test in the RET.

It follows that the family of languages defined by RETs is closed under intersection and
complementation. In what follows, we will improve this result a bit further. What makes
RETs interesting, compared to ordinary regular expressions, is that the symbols of the al-
phabet have a bit of internal structure. In particular, since they are composed of proposition
letters, a natural notion of monotonicity arises.

Definition 57 (Monotonicity) Given words w,w over the alphabet 2P , and given a
proposition letter p ∈ P , we say that w ⊆p w′ if w and w′ are identical except that at
some positions p is false in w and true in w′. A language ℒ over 2P is said to be monotone
with respect to the proposition letter p if whenever a word w ∈ ℒ and w ⊆p w′ then also
w′ ∈ ℒ. Likewise, ℒ is said to be inversely monotone with respect to p if whenever w ∈ ℒ
and w′ ⊆p w then also w′ ∈ ℒ.

Clearly, if a RET only contains positive, or only negative, currency’s of a proposition letter
p, then the language it defines is monotone, respectively inversely monotone, in p. The
observation can in fact be turned into a syntactic characterization of monotonicity:

40 ⋅ Balder ten Cate and Luc Segoufin

Proposition 58 For every regular language ℒ over 2P , there is a RET � that defines it,
such that for all p,

—there is an negative occurrence of p in � iff ℒ is not monotone with respect to p
—there is a positive occurrence of p in � iff ℒ not inversely monotone with respect to p

PROOF. By Fact 56, every regular language over 2P is defined by some RET. Moreover,
it follows from our earlier observation that, if a language is not monotone (not inversely
monotone) in p, then any RET defining it must contain negative (positive) occurrences of
p. Hence, only the left-to-right direction of the two conditions requires our concern.

Suppose � defines a language that is monotone in p, but � contains negative occurrences
of p. We may assume without loss of generality that � is in disjunctive normal form (i.e.,
of the form

⋁
i

⋀
j(¬)pij). Let �′ be obtained from � by replacing each occurrence of ¬p

by ⊥. We claim that � defines the same language as �. One direction of this claim is
easy: since⊥ logically implies ¬p, the language defined by �′ is contained in the language
defined by �. Conversely, suppose w is accepted by �. Let w′ be obtained from w by
making p true (and hence ¬p false) at every position. Then w′ belongs to the language
defined by � iff w belongs to the language defined by �′. By monotonicity and the fact
that w ⊆p w′, w′ belongs to the language of �. Hence, w belongs to the language defined
by �′, and therefore � and �′ define the same language.

Likewise, if � defines a language that is inversely monotone in p, then any positive oc-
currence of p in �may be replaced by⊥. Repeating this process for all relevant proposition
letters p, we obtain a RET satisfying the required conditions.

Corollary 59 (Polarity preserving intersection) For all RETs � and � there is a RET
defining the intersection of the languages defined by � and �, such that for all proposition
letters p, p occurs positively (negatively) in iff p occurs positively (negatively) in � or �.

Corollary 60 (Polarity switching complement) For each RET � there is a RET � defin-
ing the complement of the language defined by �, such that for all proposition letters p, p
occurs positively (negatively) in � iff it occurs negatively (positively) in �.

Finally, we apply the general theory on RETs developed above, in order to give a more
elaborate proof of the closure properties of downward path expressions.

PROOF OF LEMMA 54. We will only prove the case for complementation of positive
downward path expressions (the other cases are similar). Let � be any positive downward
path expression. Let �′ be the RET obtained from � by replacing each test of the form
?� by ?p�, for some fresh proposition letter p�. Apply Corollary 60 in order to obtain a
RET �, that defines the complement of the language defined by �′. Finally, replace each
proposition letter p� in � by the corresponding original node expression �. It is easy to see
that the resulting downward path expression is negative and has the desired property.

