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Abstract
This paper describes how virtual classes can be supported in a vir-
tual machine. Main-stream virtual machines such as the Java Vir-
tual Machine and the .NET platform dominate the world today,
and many languages are being executed on these virtual machines
even though their embodied design choices conflict with the design
choices of the virtual machine. For instance, there is a non-trivial
mismatch between the main-stream virtual machines mentioned
above and dynamically typed languages. One language concept that
creates an even greater mismatch is virtual classes, in particular be-
cause fully general support for virtual classes requires generation
of new classes at run-time by mixin composition. Languages like
CaesarJ and Object Teams can express virtual classes restricted to
the subset that does not require run-time generation of classes, be-
cause of the restrictions imposed by the Java Virtual Machine. We
have chosen to support virtual classes by implementing a special-
ized virtual machine, and this paper describes how this virtual ma-
chine supports virtual classes with full generality.

Categories and Subject Descriptors D.3.3 [ Programming Lan-
guages ]: Language Constructs and Features — Classes and ob-
jects, Inheritance ; D.3.4 [ Programming Languages ]: Processors
— Interpreters, Run-time environments

General Terms Languages, Design

Keywords Object oriented programing language, virtual classes,
class combination, virtual machines, gbeta

1. Introduction
Like virtual methods, classes can also be modeled as late-bound
features of objects, in which case they are known as virtual
classes [20, 10, 11]. A virtual class is obtained by lookup in an ob-
ject, just like a virtual method implementation is found by lookup.
This means that the type analysis of a language that supports virtual
classes must be able to handle a form of existential types, because
a virtual class is typically only known by an upper bound, and a
simple form of dependent types, because the identity of the object
where it is looked up is an essential part of the type. However, it is
not just the static analysis of virtual classes that requires advanced
concepts.

In full generality, the dynamic semantics of virtual classes re-
quires that they can be constructed at run-time by composition of
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mixins. This creates a significant mismatch between the virtual ma-
chine requirements associated with virtual classes, and the actual
feature set provided by main-stream virtual machines such as the
Java Virtual Machine and the .NET platform.

Several languages that support a form of virtual classes use a
main-stream virtual machine (the JVM) as the execution platform,
including CaesarJ [3, 22] and Object Teams [15, 16]. However, they
support only the subset of virtual classes that does not require run-
time generation of classes, because of the restrictions imposed by
the Java Virtual Machine. In the source language this implies that
it is not possible to inherit from a class unless there is a location
in the program from where it is statically known; it is typically not
known, e.g., for a superclass on the form x.C.

In contrast, we have chosen to support virtual classes in full
generality, by implementing a specialized virtual machine, the gvm.
This virtual machine differs from the main stream by having an
object layout that explicitly models parts of an object as instances
of mixins, and by being able to dynamically compute classes and
set up the representation of them in objects, in order to support
dynamic class lookup of classes. Another area where this virtual
machine is different is concerned with object initialization, which
may include essentially general execution of code. More traditional
languages would initialize all fields to default values (such as null)
and run a constructor, but this is not an option when some attributes
are class valued and may be used as types—such type attributes
must be initialized before user code gets access to the object for the
first time.

The main contribution of this paper is that it describes how
general support for virtual classes may be realized in a specialized
virtual machine, including dynamic computation of classes and
type safe initialization of objects.

The rest of this paper is organized as follows: The next section
introduces virtual classes and describes how they differ in the
language BETA [18, 21] where they were first introduced, in the
generalized form present in the language gbeta, and in several other
languages. Section 3 is the core part of the paper; it describes
the run-time entities and mechanisms that are needed in a virtual
machine in order to support the required semantics. Section 4
describes a non-trivial example that demonstrates dynamic creation
of classes as well as recursive propagation of the class composition
process, also known as deep mixin composition. Finally, section 5
describes the implementation status, section 6 describes related
work, and section 7 concludes.

2. History of Virtual Classes
The concept of virtual classes was introduced in the BETA pro-
gramming language in the late 70s. They were substantially gen-
eralized during the development of the gbeta language in the 90s,
in particular by allowing them to appear as superclasses and in a
number of other contexts where they could not previously be used.
Virtual classes have later been adopted and used by a range of lan-



guages, including CaesarJ [3, 22], Object Teams [15, 16], J& [26],
Tribe [9], and Newspeak [6, 7]. Moreover, the language Scala is
able to emulate virtual classes by means of its abstract type mem-
bers and path dependent types. This section characterizes the tech-
niques used in the different languages and the extent to which they
implement virtual classes.

2.1 BETA

The BETA programming language [18, 21] was the first language
to support virtual classes [20]. Actually, they arose as a natural
generalization of virtual methods, because methods and classes
and a number of other concepts were unified into the concept of
a pattern. Hence, BETA does not have classes in the traditional
sense like Smalltalk or Java, it has patterns. Patterns may be used as
methods or as classes, because they have all the features needed in
order to play each of these roles; but there is no technical difference
between a method call and an object, they are just instances of
patterns which are used differently. Consequently, virtual classes
are actually virtual patterns in the context of BETA.

The BETA language was realized as the Mjølner BETA com-
piler, which translates BETA programs to native code and uses the
standard linker to create executables. The choice of translating pro-
grams to native code gives rise to some considerations, but in the
80s this was the only way to get decent execution speed for trans-
lated BETA programs. To get an efficient translation, to produce
efficient code, and due to the limited generality of the static analy-
sis, some restrictions were imposed on the language. The two most
important restrictions in this context were that 1) virtual patterns
could not be used as superpatterns, and as a consequence it was
possible to maintain that 2) there was only single inheritance, and
no mixin composition.

By having only single inheritance in BETA, the process of find-
ing all contributions to a pattern (all mixins) was made a lot easier,
because the superpattern was always a compile-time constant. This
made it possible to create a static object layout for each pattern,
which again allowed for fast lookup based on fixed offsets to ev-
ery attribute in the object. There is no need to create classes (i.e.,
patterns) at runtime with this semantics.

BETA patterns can also be used as methods, and may work
similarly to standard method calls with an activation record and a
method body that is executed. BETA patterns that contain multiple
mixins work like a composition of several methods, somewhat
similar to the effect of method combination in CLOS [5], and also
similar to the combination of a number of overridden methods in
main-stream languages like Java by means of super calls. For this
method composition, a precise lookup table (similar to a vtable)
of mixins can be calculated to represent the entire method. This
lookup table is then used to find the next more specific body to call
in a method, when evaluating the so-called INNER-statements [13],
which are similar to super invocations, but toward the subpattern
rather than toward the superpattern.

Virtual patterns can be very useful as superpatterns for this
kind of composite method construction, but BETA does not support
virtual superpatterns. In fact, with virtual patterns as superpatterns,
it would not be possible to have only one object layout for each
pattern, but depending on context there would be as many layouts
as there are versions of the virtual super pattern, and this set of
patterns can not be computed modularly at the location where the
subpattern is created. Consequently, BETA programmers must work
around the lack of virtual patterns as superpatterns—as shown in
the example in Fig. 1.

Before we dive into the example we need to mention a few un-
usual syntactic properties of BETA, picking out some details from
Fig. 1: A mixin, i.e., the increment between a pattern and a super-
pattern, is declared by means of a mainpart, which is a block en-

(#
container: (#
element:< object;
scan: (#
current: ˆelement
do (#

doINNER: scanner(# do elm[]->current[];
INNER scan #)

do doINNER[]->scanImpl
#)

#);
scanner: (# elm: ˆelement enter elm[] do INNER #);
scanImpl:< (# theScanner: ˆscanner
enter theScanner[]
do INNER

#)
#);
(* dummy implementation: one element only *)
list: container (#
theElement: ˆelement;
append: (# enter theElement[] #);
scanImpl::< (# do theElement[]->theScanner #)

#);
#)

Figure 1. BETA example using virtual patterns as both methods
and classes.

closed by (#...#). An argument list may be declared in a main-
part by means of an enter clause, a list of returned values may be
declared by an exit clause, and the statement block that specifies
the behavior of the pattern is declared by the keyword do followed
by a list of statements. Assignment, method call, expression evalu-
ation, and a number of other mechanisms are unified syntactically
into evaluations, which are binary expressions with the operator
-> in the middle; note that the data-flow is from left to right, just
like the arrow, which makes this construct similar to the pipe sym-
bol, ‘|’, used on the command line of many operating systems.
Finally, [] indicates reference evaluation (pointer semantics for
assignments etc). For example, enter theScanner[] spec-
ifies that scanImpl accepts one by-reference argument named
theScanner; elm[]->current[] is a reference assignment
from elm to current, and theElement[]->theScanner
is an invocation of the variable method (i.e., function pointer)
theScanner, passing theElement as an argument, by refer-
ence.

Figure 1 shows a very simplified piece of the BETA standard li-
brary where we define the pattern container and the subpattern
list, describing the standard list data structure with append and
scan methods; the scan method is used to iterate over all ele-
ments in a list, similarly to the do: method on Smalltalk collection
classes. Normal usage of such a list structure is shown below, where
an object myList is created from the pattern list where we bind
the element type to string. Then a string is appended to the list
and at last we iterate over the elements of myList using the scan
method to execute the supplied block, which prints each element.
(# myList: @list(# element:: string #)
do ’example’->myList.append;

myList.scan(# do current[]->putline #);
#)

Intuitively, the scan method in the container pattern should
be a virtual pattern, in which case the actual implementation in
the list pattern could be supplied as a further binding of the
scan method, which would be very simple and direct. However,
this would break the example above, because the virtual pattern
scan would be used as a superpattern, which is not allowed in
BETA. Because of this issue, the example in Fig. 1 has a virtual
pattern scanImpl that is used to specify how to iterate over the
data structure, and a non-virtual pattern scanner that performs



the copying of the current element, and the delegation to the user
supplied block, and then it uses a reference (think: function pointer)
in order to pass theScanner into scanImpl such that it can be
called.

2.2 gbeta
Initially, the gbeta programming language was created in order
to have an open source version of BETA. Later it turned into a
language in its own right, and the basic mechanisms of BETA,
including virtual patterns, were fundamentally generalized in the
process. With the strong heritage in the BETA language there are
many similarities between BETA and gbeta; note however that the
syntax of gbeta has been changed quite visibly such that it is in
several ways more convenient. The underlying syntactic structures
of the two languages are still closely related. The core of this
paper describes the virtual machine gvm, which is able to run gbeta
programs, so at this point we just introduce gbeta briefly, based on
the example in Fig. 2.

As mentioned, the basic structure of gbeta syntax is the same
as in BETA. In gbeta, a mainpart is enclosed by braces, {... }
which may have an argument list and/or return value list associ-
ated, %(<args>|<returns>){... }, and the arg/return list
may also be used on its own if {...} is not needed; consequently,
the enter and exit clauses have been eliminated. The evalu-
ation operator is the pipe symbol, ‘|’. Indications of evaluation
mode (mainly: by reference vs. by value) has been moved away
from statements and into declarations, which means that the []
markers used many places in BETA are now gone. For instance,
the anonymous function which accepts an integer and returns two
times that integer is declared as (# i: @integer enter i
exit 2*i #) in BETA, whereas it is %(i:int|2*i) in gbeta.
The percent symbol, ‘%’, generally indicates communication (re-
ceiving arguments, returning results, or looking up features) and
must be present whenever communication is to be allowed. Finally,
note that the superscript numbers are not part of the syntax, they
are just used to refer to specific mainparts later on.

Now, Fig. 2 declares a family of classes, Lang, with two
virtual classes as members, Exp and Lit. This amounts to a
minimal version of the standard example illustrating the expres-
sion problem [28]. This family is specialized into two other
families LangEval and LangPrint, which declare the inter-
face extension needed in order to support evaluation and print-
ing of expressions. The further specialization of these two into
LangEvalImpl and LangPrintImpl adds an implementation
of the two interfaces, and finally the program itself (the statements
in lines 21–31) assigns the two complete (i.e., implemented) class
families to two class valued variables LangVar1 and LangVar2,
which implies that the exact class families are not known at com-
pile time when these variables are used. The nested block (lines
25–30) creates an instance of the composition of the two class fam-
ilies, named F; the composition must occur at runtime because it
is based on variables, not compile-time constant class denotations.
Next, it declares a variable lit whose type depends on the dy-
namic family F, and creates instances of members of F, and calls
methods on them. All in all, this example illustrates how dynamic
composition of class families with deep mixin composition can be
expressed.

2.3 CaesarJ, Object Teams and Scala
Many recent languages are designed to run on existing platforms
to thereby utilize software already present in the wild. A popular
platform for language designers is the Java virtual machine (JVM).
Two recent languages based on the JVM that include support for
a kind of virtual classes are CaesarJ and Object Teams. Both lan-
guages express virtual classes at the surface level and transform

1 ORIGIN ’gbetaenv’
2 -- program:merge --
3 {1

4 Lang: %{2

5 Exp:< object; Lit:< Exp %{10 value: int }
6 };
7
8 LangEval: Lang %{3 Exp:: %{8 eval: %(|i:int)}};
9 LangEvalImpl: LangEval {4

10 Lit:: {11 eval:: { value | i }}
11 };
12
13 LangPrint: Lang %{5 Exp:: %{9 print:%(|s:string)}};
14 LangPrintImpl: LangPrint {6

15 Lit:: {12 print:: { value | int2str | s }}
16 };
17
18 LangVar1: ˆ#=LangPrint;
19 LangVar2: ˆ#=LangEval;
20 #
21 LangPrintImpl# | LangVar1#;
22 LangEvalImpl# | LangVar2#;
23
24 {7
25 F: @LangVar1 & LangVar2;
26 lit: ˆF.Lit;
27 #
28 F.Litˆ | lit;
29 3 | lit.value;
30 lit.eval | int2str | stdio
31 }
32 }

Figure 2. gbeta example where two families are created and the
patterns are stored in pattern references. These references are com-
bined to create a new family dynamically. The number annotations
are not part of the actual syntax, but used to refer to specific main-
parts.

them into regular classes during compilation, along with factory
methods that allow for new expressions creating instances of a vir-
tual class.

A third language which is able to emulate the same subset of vir-
tual classes as CaesarJ and Object Teams is Scala [27, 2]. However,
there is no direct support for virtual classes in Scala, so they must be
expressed as a rather complicated idiom1 using traits and abstract
type members to express virtual class behavior. Similarly to Cae-
sarJ and Object Teams, classes must in all cases be known precisely,
relative to the dynamic type of the enclosing object. Note that this
is not the case when inheriting from an object which is looked up
(for instance, with this restriction myList.scan(#...#) as on
page 2 is impossible when scan is a virtual pattern).

All three languages are compiled directly to Java byte code.
There is no method composition, because methods have to be Java-
like in order to be executed by the JVM. Hence, only overriding
and overloading of methods is supported.

3. The gbeta Runtime System
Traditionally, the compiler and the virtual machine of the gbeta lan-
guage were combined in one single application. This was conve-
nient for several reasons, including testing and interactive query-
ing about types. However, a virtual machine implemented in a high
level language seldom gives good performance, except for meta-
circular virtual machines like the Jikes Research VM [8, 1]. When
using a high level language the design of the virtual machine is

1 Design document showing some details of how virtual classes can be ex-
pressed in Scala http://lampsvn.epfl.ch/trac/scala/wiki/
VirtualClassesDesign.



1 {1

2 Point: %{2
3 x,y: @int;
4 move:< %(dx,dy:int) {4 inner; x+dx|x; y+dy|y; }
5 };
6 ColorPoint: Point %{3
7 c: @string;
8 move:: {5 2*dx|dx; 3*dy|dy; inner; }
9 };
10 cp:@ColorPoint;
11 };

Figure 3. Small gbeta example where the enclosing pattern con-
tains three fields. Two of the fields contain pattern definitions,
Point and ColorPoint and the last field cp contains an ob-
ject created from the pattern ColorPoint. The number annota-
tions are not part of the actual syntax, but used to refer to specific
mainparts.

often restricted by the typing discipline of the language. We have
chosen to implement a new specialized virtual machine, called the
gvm, for the gbeta language supporting all its features. The virtual
machine is implemented in C++, has a standard Cheney garbage
collector [17, page 117] and uses a direct threaded byte code inter-
preter [4, 12] as its main execution loop. The design of the virtual
machine is prepared for execution of native code, but a Just-In-
Time compiler is currently future work.

The sections below give an informal description of the basic
entities in the gbeta language at both the compilation and run-
time level. We discuss the generated intermediate language and will
focus on how information related to virtual classes are represented.
At last we cover the internals of the gvm and focus on how virtual
classes are computed at run-time.

3.1 Basic Entities and Compilation
The compilation process of transforming gbeta programs to the
intermediate language is done by a pair of compilers. The first
part of the compilation process is performed by the original gbeta
compiler [10], which produces textual source code for a specialized
bytecode language. This textual format does not represent a suitable
input format for the virtual machine, so a second compilation is
required. This second part of the compilation process is handled by
the gbcc compiler [23], which analyzes and transforms the already
compiled program to an optimized binary format, the gbci-file.
All the transformations performed by the gbcc compiler could be
integrated into the original gbeta compiler, but this would tie the
compiler even closer to the virtual machine and could potentially
block other possible research directions. We do not go into detail
about the static analysis performed, the different optimizations that
are done or the other tasks handled by the compilers, but we will
focus on explaining only the relevant parts of the compilation
process and the basic entities of the language.

The basic entities of the gbeta language can be divided into
those that are present at compile-time and those that are present at
run-time. We will use the example in Fig. 3, as a running example
to illustrate the different aspects of the gbeta language that are
important in regards to this paper.

As mentioned, a crucial part of gbeta is the concept of a pattern.
The pattern concept unifies the concepts of methods and classes
known from other programming languages. A pattern is repre-
sented as an array of mixins, and each mixin consists of two el-
ements. The first element is a static description, known as a main-
part, and the second element specifies the dynamic context of
the mainpart. These contexts are only available at run-time, and
therefore a pattern can only be constructed at run-time. The only
compile-time entity within a pattern is the mainpart.

Figure 3 contains one surrounding mainpart denoted by the
superscript 1, which has three fields Point, ColorPoint and
cp. There are a total of five mainparts in the figure, marked by the
superscripts 1 to 5. Future references to mainparts will be of the
form mainpart-n. A mainpart is a static description, which contains
a list of its fields, the initialization code for each field and an action
part. As an example, Mainpart-3 in Fig. 3 has two fields called c
and move. For each field a block of initialization code is generated.
For field c the initialization code block will create a string object
and install it into the first field, and for field move the initialization
block finds a pattern and installs it into the second field. There is no
action part for the mainpart, which means that a default action part
containing only an INNER-statement is used.

If enough information is available at compile-time about the
mixins that are needed to construct a particular pattern, the com-
piler may generate a static pattern instead of generating code for
building the pattern dynamically. A static pattern is a compile-time
entity that describes the mixins needed to construct a particular pat-
tern at run-time. However, if the compiler is unable to determine the
exact set of mixins in the pattern, it will generate code for building
the pattern at run-time.

Like all other object oriented languages an important run-time
entity is the object. An object is created from a pattern and as a
pattern is an array of mixins, an object is conceptually a list of part
objects. The layout of each part object is described in the mainpart
of the corresponding mixin. The actual fields that are described in
the mainpart are allocated in the corresponding part objects, and
each field is initialized by executing the appropriate initialization
block. There are four different kinds of fields in a part object:

• There are immutable fields that contain a pattern.
• There are immutable fields that contain an object.
• There are mutable fields that contain a reference to a pattern.
• There are mutable fields that contain a reference to an object.

Other languages like Java use default values (like null and zero)
to initialize all fields in an object. After this initialization the con-
structor is called, to set up the object. In contrast, an object in gbeta
requires full initialization of all immutable fields before user code
is allowed to access the object, because these fields can be used
in types. This means that if an immutable field contains an object,
the object is built, initialized, and installed into the field before the
next field is processed. This makes the initialization of objects a
complex matter.

During compilation an analysis of each mainpart is performed
and an ordering of fields may be found that satisfies the initializa-
tion dependencies among the fields. If one field uses another field,
in the same object, as the type of the object, which this particu-
lar field should contain then there is a dependency between these
fields. As an example, look at line 10 in Fig. 3, the field cp is
immutable and contains an object that is build from the pattern in
field ColorPoint. To be able to initialize the field cp, the pat-
tern in the field ColorPoint has to be built first. If there exists
an ordering that satisfies all such dependencies among the fields in
a mainpart, this ordering can be used to create the array of field
initialization instructions that will initialize all fields correctly. If
there is no such ordering, the mainpart is marked and a slower on-
demand initialization of the fields is used.

At the syntactic level there are two kinds of virtual pattern
declarations, the initial binding of a virtual pattern (:<) and the
further bindings of the virtual pattern (::). There cannot be a
further binding of a virtual pattern if there is no initial binding for
it, and initial and further bindings are handled separately at both
compile- and run-time.



Constants

Fields Map

Virt. Fields Map

Labels Map

Field Init. Array

Action Ins. Array

. . .

0⇒ (8, 0, 7)

1⇒ (9, 8, 7)

1⇒ (9, 16, )

inner return

Figure 4. The structure of mainpart 3 in Fig. 3 and its elements.
For the sake of simplicity the structure of the labels map is left out.

The code generated for an initial binding and for further bind-
ings of a virtual pattern is very different. Where the initial binding
of a virtual pattern drives the construction of the pattern, the fur-
ther binding relies on the initial binding to have built the complete
pattern.

The field initialization block for an initial binding of a virtual
pattern contains three parts. The first part is the construction of the
initial pattern, which can be any number of instructions involving
the creation of a pattern. The second part is what makes initial bind-
ings special, in that it contains the search instruction next virtual
and the third part is the installation of the complete pattern into a
specific field in the part object.

As an example look at line 4 in Fig. 3. This is the initial binding
of the virtual pattern move. It describes that the initial pattern has
one mixin with mainpart-4.

A further binding of virtual pattern will generate an extension
code block, in addition to the field initialization block. The exten-
sion block contains code for extending an already existing pattern,
and the field initialization block is the installation of an already
built pattern from the initial binding of the virtual pattern.

As an example look at line 8 in Fig. 3. This declaration is a
further binding of the virtual pattern move and describes that one
mixin with mainpart-5 should be added to the final pattern. At
run-time this field will also contain the complete virtual pattern of
move.

3.2 Intermediate Language
The binary gbci-file, which is the output of the gbcc compiler and
the input for the virtual machine, is a compact description of a
compiled and linked gbeta program containing only the compile-
time entities described in the previous section.

The layout of a gbci-file is relatively simple and can be divided
into three parts. The first part of the gbci-file is comprised of several
tables. Each table is mapping an integer value to a symbol, a string
or the textual name of a mainpart. The second part of the gbci-file
is a list of mainparts, which we will return to, and the third part is a
list of static patterns. We will not discuss static patterns any further
in this paper, because they represent patterns that are fully known
at compile time, which is similar to the case that is already well-
known from other virtual machines. In this paper we will focus on
the cases where the compiler can not do this analysis and needs to
delay the construction of the pattern to run-time.

The mainpart is the most essential building block in the gbeta
programming language. At run-time, it is possible to generate new
patterns from existing patterns [24], but it is not possible to generate
new mainparts. As shown in Fig. 4 a mainpart can be divided into
four parts, as indicated by the coloring. The first part contains
constants, which include stack size and temporal array size. The
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Figure 5. Structure of the byte code instructions with op-code,
number of arguments and the actual arguments. As example is
shown the push literal integer instruction.
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Figure 6. Layout of the field initialization array from Fig. 4 with
initialization code for two fields, a return statement separating the
field initialization code and the virtual expansion blocks and one
expansion block for a further binding of a virtual pattern.

second part contains three maps, one for fields, one for virtual
fields, and one for labels. The last two parts of a mainpart are both
arrays of byte code instructions and contains the field initialization
blocks and action part, respectively. The array containing the field
initialization blocks also contains the virtual pattern extensions.
The action part is only used when a pattern is used as a method.

The intermediate language is the descriptions of all the static
patterns and the mainparts that a program contains. Besides these
elements, the intermediate language describes several tables for
symbols and strings, various maps in each mainpart, and byte code
instructions in the field initialization and action arrays. There are
a little more than 200 byte code instructions, and each instruction
consists of an op-code, the number of arguments the op-code uses,
and the actual arguments. The byte code instructions are segmented
into 16 bit blocks, and the op-code and the number of arguments
are packed into one 16 bit block. The arguments are located in the
subsequent 16 bit blocks. An overview of this structure is shown in
Fig. 5 where the instruction layout of op-codes with zero, one and
two arguments are shown. At the bottom of Fig. 5 the ‘push literal
integer’ instruction is shown in its binary form. This instruction
has op-code 81, uses 2 argument slots of 16 bits each, and will
push the raw integer (in this case the number 1073742848) onto the
evaluation stack.

Of the three maps in each mainpart, only two are important for
field initialization. For the on-demand initialization of field to work
the fields map is used to find the correct piece of initialization code
for a given field. The virtual fields map is used only when searching
for extensions to a virtual pattern.

The layout of the fields initialization instruction array is shown
in Fig. 6. At the beginning of the array all the initialization in-
structions for the fields are located in sequence. If the dependency
analysis found an ordering of the fields this sequence can be exe-
cuted to initialize all fields in the part object. However, if that or-



Blocks of field initialization code
in mainpart 2

Field x (I)

push_ptn_integer
new_stk
ins_ptn 0

Field y (II)

push_ptn_integer
new_stk
ins_ptn 1

Field move (III)

push_ptn_object
add_mixin_t 4
next_virtual
ins_ptn 2

Blocks of field initialization code
in mainpart 3

Field c (V)

push_ptn_string
new_stk
ins_ptn 0

Field move (VI)

rtps_upp 1
rtps_lpo 2
ins_ptn 1

Blocks of field extension code
in mainpart 3

Field move (IV)

push_ptn_object
add_mixin_t 5
ptn_merge
next_virtual_return

Figure 7. Field initialization code blocks for fields in the mainparts
2 and 3 in Fig. 3. The roman numerals indicate the evaluation order
when initializing the object in field cp.

dering was not found then the instructions for a given field need
to be copied and executed on a field-by-field basis. The last part
of the field initialization instruction array is used for the virtual
pattern extensions. There is no need for a separator between the ex-
tension blocks because all blocks end with the search instruction:
next virtual return.

Of all the byte code instructions, some of the more interesting
instructions in relation to this paper, can be seen in Fig. 7. Most
of the instructions are straight forward and the behavior can be
guessed from the instructions name. There are however, the in-
structions next virtual, next virtual return and the range of rtps
instructions, seen in block VI in Fig. 7.

In gbeta there is a concept of a run-time-path that can be tra-
versed at run-time to find another object or pattern. The rtps in-
structions are used to traverse such a run-time-path one step for
each instruction. Each rtps instruction comes in two versions,
where the ones that end with pp are steps from part object to part
object and the ones that end with po and from a part object to an
object or pattern and the object or pattern is pushed onto the eval-
uation stack. The two instructions shown in Fig. 7 are rtps upp 1
and rtps lpo 2, which respectively goes up one step to a more gen-
eral part object and a lookup of the object stored in the second field
in the part object and pushed that object found in the field to the
evaluation stack.

The two search instructions that are used to find extensions
to a virtual pattern are the next virtual and the next virtual return
instructions. The next virtual search instruction is only generated in
the initialization blocks of initial bindings of virtual patterns. This
instruction will search the more specific part objects of the object
to find an extension to the virtual pattern. If an extension is found
a larger pattern will be created. The next virtual return search
instruction is generated as the last instruction in the extension block
of further bindings of virtual patterns and work similar to the first
search instruction.

3.3 Virtual Machine
Mainparts and static patterns are the compile-time entities, which
the virtual machine loads from the gbci-file. All compile-time en-
tities are currently allocated in a static code space in the virtual
machine, where there is no garbage collection.

The most important run-time entities are objects, patterns and
evaluation frames. There are more run-time entities in the virtual

machine, but these are the most important ones. All run-time en-
tities are heap allocated and are subject to garbage collection. We
have already given a hint about the structure of objects and patterns
in section 3.1, but at this point we will go into greater detail.

As a point of reference, consider Java class files [14, 19].
Among other things, Java class files contain information about
static fields and methods, instance variables and instance methods
related to a class. There are no static fields or methods in gbeta,
so no corresponding element is needed. Next, patterns are arrays
of mixins that form classes or methods, so they correspond to both
classes and methods in Java. Each mixin contains a mainpart, which
roughly corresponds to the information about one class in Java. It
may contain references to other mainparts used in the methods of
the class—that is, nested patterns. A mixin also contains a refer-
ence to its dynamic context, the enclosing part object, and finally
each part object is created from a mixin.

Given that every part object has a mixin which has an enclosing
part object, it may seem like a never ending chain. However, during
start-up the virtual machine creates the top most part object of
the chain and installes this part object into a global position. This
part object is called predef, because all the predefined patterns are
located as fields in this predef part object. It is special in that it
does not have a mixin or an enclosing part object, and it is enforced
at compile time that no attempts are made to look up these non-
existing things.

This strong relationship between mixins and part objects would
make it natural to model an object as an array of part objects just
like a pattern is an array of mixins. However, unlike mixins, part
objects do not have a fixed size, so using an array is not possible.
A natural way to model an object would be as a doubly linked list
of part objects, which would enable the traversal of part objects in
both the more general and more specific direction. However, the
object would be split into several smaller part objects in the heap
and linked together by pointers. The current design of an object in
the virtual machine is to contiguously allocate the object header,
an offset table and all the part objects in one memory cell. This
design enables a more compact memory layout, which permits the
garbage collector to move an entire object in one copy operation,
instead of several copy operations and pointer updates to move
each part object separately. With the design choice of having object
contiguously allocated, came the limitation that a part object could
not be referenced directly. Therefore are all part object references
actually a pair of an object reference and an offset into the object.
With the object reference and the offset into the object we are able
to find the desired part object within the contiguously allocated
object and using the offset table in the object we are able to traverse
the object structure.

The evaluation frame is the most frequently used run-time entity
in the virtual machine, though not the most visible entity. Evalua-
tion frames cannot be described or accessed by programmers like
patterns and objects. An evaluation frame is created by the virtual
machine every time a computation is needed, e.g., when initializing
an object, evaluating a method, or calculating the contributions of a
virtual pattern. We have chosen to put the evaluation stack into the
evaluation frame along with an array of temporals, a reference to
the current evaluation context (a part object), the program counter,
and a reference to the old evaluation frame. The usage of evaluation
frames are similar to the activation records in Java or C.

Virtual patterns are not special run-time entities, they are just
patterns with a slightly more complex construction semantics. Fig-
ure 7 shows the byte code instructions of the field initialization
blocks for mainpart-2 and mainpart-3 from Fig. 3. These initial-
ization blocks are used when the virtual machine executes line 10
in Fig. 3, where an object is created from the pattern in the field
ColorPoint, and installed into the field cp.



The object created has two part objects. The first part object (2)
has fields described in mainpart-2 and the second part object (3) has
fields described in mainpart-3. After creating the object, the fields
have to be initialized. The virtual machine starts by initializing the
most general part object (2). In the left column of Fig. 7 the initial-
ization byte codes for the three fields x, y and move are shown.
The evaluation order of the byte code blocks are indicated by the
roman numerals. The virtual machine will first initialize field x,
then field y and then field move. The first two fields contain an
integer object built in blocks I and II. The third field is the initial
binding of the virtual pattern move. The byte codes for initializ-
ing field move, as seen in block III in Fig. 7, will push the empty
pattern onto the evaluation stack and add one mixin to this pattern
with the current evaluation part object as context and mainpart-4
from Fig. 3 as its static structure. This pattern is the initial pat-
tern of the virtual pattern move. The next instruction evaluated
by the virtual machine is the next virtual instruction. It will
search the more specific part objects for extensions to the virtual
pattern, and if found it will create an evaluation frame to evaluate
the code of the extension block. In the example in Fig. 3 there is
a further binding of the virtual pattern in mainpart-3, so the vir-
tual machine builds an evaluation frame, moves the initial pattern
to the evaluation stack in the new evaluation frame, and begins the
execution of the extension code. The extension code can be seen
in block IV in Fig. 7. This code builds a small pattern and extends
the initial pattern with the small pattern and leaves the result of
the merge on the evaluation stack. The last instruction in the ex-
tension is the next virtual return instruction, which, like
the next virtual instruction, will search for more extensions
to the virtual pattern. However, the behavior is slightly different: If
the next virtual return instruction finds an extension, the
evaluation frame is reused to execute the new extension code. If no
extension is found, the pattern on the evaluation stack is moved to
the old evaluation frame and the current evaluation frame used to
build the extensions is removed. In the example from Fig. 3 there
are no more extensions, so the evaluation frame is removed and the
pattern is put back onto the evaluation stack of the old evaluation
frame. Evaluation thereby returns to the ins ptn 2 instruction in
block III. After initializing all fields in the first part object (2) the
virtual machine will initialize the fields in the next part object (3).
The field initialization blocks can be seen in the right column of
Fig. 7. The first field to be initialized is field c, which contains a
simple object created from the string pattern. The second field is
the further binding of the virtual pattern move. The complete pat-
tern is already built and installed into the third slot in part object
2. The instructions in block VI will traverse the object and lookup
the pattern in the third field in part object (2). This pattern is then
pushed to the evaluation stack and installed into the second field in
the part object (3).

As seen in this little example the calculation of a virtual pattern
is a complex matter. We will go through a larger example in section
4, where the dynamic process is shown again.

4. Example: Family Combination
In this section we will extend on the discussion about how the
virtual machine constructs virtual patterns, and how the structures
are related to one another at run-time. To illustrate this we will use
the example from Fig. 2 throughout this section, and we will put
special emphasis on line 25 in the example.

Before going into details about the example, we will give a short
overview of the intention of the program in Fig. 2. The program
expresses one super family of patterns called Lang and two derived
families of this super family called LangEval and LangPrint.
Obviously, this example is the expression problem, but it could be a
real life example where a large company with several divisions had
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Figure 8. Diagram showing the pattern merge, where the numbers
in each mixin correspond to the mainpart annotations in Fig. 2. The
context pointer is the same for all mixins and is therefore omitted.
The rightmost figure shows the structure of an object created as an
instance of this pattern.

a common set of classes and each division had its own extensions
of this set of classes. Each of the two sub-families are split into
an interface extension part and an implementation extension part.
The family LangEval extends the virtual pattern Exp with an
eval method, and the family LangEvalImpl, which extends
the LangEval, adds the implementation of the evalmethod. The
families LangPrint and LangPrintImpl are built in a similar
way.

Gbeta patterns are first class values, so they can be referenced
and passed around. In the example program at lines 18–19, we
create two pattern references LangVar1 and LangVar2. The
reference LangVar1 can point to a pattern of type LangPrint
and the reference LangVar2 can point to a pattern of type
LangEval. It is not uncommon in gbeta programs to pass a
reference to a pattern around. For instance, a method may ac-
cept a pattern as an argument, and use it as a superpattern in a
method call, i.e., it may call the given method with a locally de-
fined specialization. In this case we pass patterns around in vari-
ables in order to build a pattern dynamically. We assign the pat-
tern LangPrintImpl to the pattern reference LangVar1, and
LangEvalImpl to the pattern reference LangVar2. These are
valid assignments because the patterns that are assigned are sub-
types of the bounds of the references.

In the rest of this section we will focus on line 25 in the example
in Fig. 2, where the pattern variables are used. All the relevant
mainparts in the example have been given a number as usual.

The semantics of the declaration of the object F in line number
25 in Fig. 2 contains a series of smaller actions that need to be
performed in order to initialize this field F. First, a pattern needs
to be constructed from the merge between the pattern held in the
pattern reference LangVar1 and the pattern held in the pattern
reference LangVar2. Second, from the constructed pattern a new
object is created, and finally the new object must be initialized
before it can be installed into the field F. The first two parts of
the process is shown in Fig. 8, where the patterns held in the two
pattern references are merged to a new pattern. We will not go
into details about how patterns are merged as this is the subject
of another paper [24]. Figure 8 shows the two patterns that are
held in the pattern references, and the highlighted mixins are the
statically known ones. If all mixins were highlighted the compiler
would have been able to create a static pattern that could have been
used instead of doing the dynamic merge. Doing the merge of these
two patterns will result in the pattern shown in the middle of Fig. 8
and from that pattern, a new object is created. The newly created
object has one part object per mixin, and the fields in each part
object are marked as little boxes in the part object.
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Figure 9. The figure shows the step-by-step process of initializing the object created in Fig. 8. The object has several part objects and the
first part object contains the initial binding of two virtual patterns that are further bound in the more specific part objects.

Before the newly created object can be installed into the field
F, it has to be initialized. We will now describe how the virtual
machine will initialize this object. The entire process is shown in
Fig. 9 and split up into steps from a) to o).

In step a) in Fig. 9 the initialization of the object is about to
begin. The virtual machine has created an evaluation frame and the
evaluation context is set to the most general part object marked by
the mainpart id 2. The evaluation frame has a reference to its old
evaluation frame, marked by the dashed line, in which the initial-
ization of the field F is executing. At this point no initialization
code for any of the fields has been executed yet.

The first field to be initialized is the field Exp. In step b)
the initial pattern for the field Exp has been built and placed
on the evaluation stack. This is the pattern object, which has
zero mixins. After building the initial pattern, the virtual machine
searches down the object to find any extensions to the virtual
pattern Exp. In step c) the virtual machine has found an extension
in the part object marked with mainpart id 3, has set up a new
evaluation frame, and has extended the pattern with one mixin.
This mixin has mainpart with id 8 (see Fig. 2 for reference) and it
has a context pointer to the current evaluation context. The context
pointer in the mixin is marked as a gray arrow going from the mixin
to the part object in Fig. 9. After extending the pattern, the virtual
machine again searches for more extensions to the virtual pattern
Exp. In step d) the virtual machine has found another extension
in the part object marked by mainpart id 5. This time, however, the

evaluation frame is reused and only the context pointer is redirected
to the new part object. The extension code is run and a new larger
pattern in placed on the evaluation stack before the virtual machine
again searches for more extensions. This time there are no more
extensions in any of the more specific part object of the object, so
the evaluation frame is removed and the pattern is moved to the
evaluation stack in the old evaluation frame, as seen in step e).
Evaluation has now returned to the field with the initial binding of
the virtual pattern and the last instruction is to install the pattern
from the evaluation stack into the first field of the part object
marked with mainpart id 2. This finishes the initialization of the
first field in the part object, and the state of the virtual machine is
shown in step f).

In step g) the virtual machine has built the initial pattern of the
second field, Lit. As field Lit has the pattern in field Exp as its
super pattern, the pattern in field Exp is pushed onto the evaluation
stack and a new pattern is created that extends it with one mixin.
This is an example why it is important that virtual patterns are built
completely from the initial binding. The pattern on the evaluation
stack is the initial pattern of field Lit and the virtual machine will
search for extensions in the more specific part objects. Like with
the pattern for field Exp the virtual machine finds two extensions
to the virtual pattern Lit. This is shown in steps h) and i). When
there are no more extensions to the virtual pattern the construction
is complete, and the evaluation frame can be removed. The pattern
is then moved to the evaluation stack on the old evaluation frame, as



seen in step j). The complete pattern for the field Lit is now built,
and in step k) it is installed into the second field of the first part
object. All fields in the first part object are now initialized and the
virtual machine will proceed with initializing the second part object
marked with mainpart id 3. The field in the part object marked with
mainpart id 3, is a further binding of the field Exp. The virtual
machine then finds the complete pattern for the virtual pattern Exp
in the first part object and installs the pattern into the field. This is
shown in step l). In the steps m), n) and o) the remaining fields in
the part objects are initialized and the complete object is shown in
step o).

The two fields that were the initial bindings of the virtual pat-
terns Exp and Lit, were the only places where the virtual machine
had to do any construction of patterns. All the other fields are just
aliases to the same patterns. However, the construction process in-
volves the traversal of the entire object to find all extensions to a vir-
tual pattern. Note that it is easy to generate code that gives rise to an
object layout that does not duplicate fields, but there is a time/space
trade-off because it is then necessary to navigate through more part
objects in order to perform lookup. It is part of future work to fur-
ther explore this trade-off.

5. Implementation Status
All the tools described in the paper including the gbeta compiler,
the gbcc compiler and the gvm virtual machine are implemented
and available for download [25]. The gbeta language and compiler
has existed for over 10 years and is continuously further developed.
The version of the compiler that is available for download above,
is a snapshot of the current development towards the next stable
release. The compiler is implemented in 82.000 lines of BETA code
and features a new syntax together with many language extensions.
The gbcc compiler and the gvm virtual machine are developed
as part of the first author’s PhD project. The gbcc compiler is
implemented in 4200 lines of Python code and the gvm virtual
machine is implemented in 6700 lines of C++ code. Along with the
gvm virtual machine there are around 1000 lines of C++ test cases
that exercise the various parts of the virtual machine. The gbcc
compiler and the gvm virtual machine are able to handle almost all
of the gbeta language, which includes the main features like pattern
composition, virtual patterns, use of static pattern information, and
more.

All the examples shown in the paper can also be found in the
download above. There are descriptions in the download package
on how to run the examples on a linux based system.

6. Related Work
Many aspects of related work were already discussed in section 2.
As mentioned, CaesarJ [3, 22] and Object Teams [15] embody a
similar notion of virtual classes as gbeta, though with restrictions
derived from the decision to have only classes that can be computed
at compile-time. A similar restriction applies to Scala [27, 2].

The language Newspeak [6], which is dynamically typed and in
several ways related to the Smalltalk family of languages, allows
classes to be features of objects and uses late binding to perform
class lookup. This makes the classes virtual because they are late-
bound, but there is no notion of deep mixin composition and no
mechanism to ensure that an overriding definition of a class is actu-
ally a subclass. Hence, dynamic creation of classes is supported in
Newspeak just like in other image based, dynamically typed envi-
ronments, but it does not support the specialized features targeted
at virtual classes. Newspeak actually uses a specialized version of
the Squeak virtual machine, but the modified parts are concerned
with foreign method calls, not classes.

7. Conclusion
We have described how virtual classes in full generality can be sup-
ported in a specialized virtual machine, the gvm. The reason why
special support is needed is that general virtual classes require the
construction of new classes at run-time through mixin composi-
tion, which conflicts with the design decisions behind main-stream
virtual machines, such as the Java Virtual Machine and the .NET
platform. Moreover, we have also shown how the dynamic class
composition process continues recursively when an instance of a
dynamic class is created, because of the computation of the nested
virtual classes. This process is also known as deep mixin composi-
tion, and it is supported by the gvm. To the best of our knowledge,
the gvm is the first virtual machine to support dynamic creation
of virtual classes as an integrated part of the language semantics,
thereby enabling full support for virtual classes.
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